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Abstract: Pedicle drilling is an important step in pedicle screw fixation and the most significant
challenge in this operation is how to determine a key point in the transition region between cancellous
and inner cortical bone. The purpose of this paper is to find a method to achieve the recognition for
the key point. After acquiring acoustic emission (AE) signals during the drilling process, this paper
proposed a novel frequency distribution-based algorithm (FDB) to analyze the AE signals in the
frequency domain after certain processes. Then we select a specific frequency domain of the signal
for standard operations and choose a fitting function to fit the obtained sequence. Characters of the
fitting function are extracted as outputs for identification of different bone layers. The results, which
are obtained by detecting force signal and direct measurement, are given in the paper. Compared
with the results above, the results obtained by AE signals are distinguishable for different bone layers
and are more accurate and precise. The results of the algorithm are trained and identified by a neural
network and the recognition rate reaches 84.2%. The proposed method is proved to be efficient and
can be used for bone layer identification in pedicle screw fixation.
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1. Introduction

At present, pedicle screw fixation, which is the most popular technique in spinal fixation
surgery [1], is often used in vertebral dysfunction caused by spinal deformity, injury or pathology.
In the screw fixation process, screw drilling is one of the most critical steps. There are also many organs,
tissues and nerves distributed around the spine [2]. To avoid the irreversible damages to them, and
meanwhile ensure good stiffness as well as biomechanical properties of the spine [3,4], depth of the
drilling bit into bone layers has to be accurately controlled in the operation while the angle between
the drilling bit and the bone must be well chosen at the beginning of the process [5]. Traditional spine
surgery mainly depends on surgeons’ experience and skills in performing the surgery, so tiny mistakes
of a doctor are likely to cause failure of the surgery.

During the drilling process, the invisibility of the osseous structure, along with consistent and
stable friction between the pedicle and the cutting edge of the tool, makes it hard to directly measure
the penetration depth. Therefore, it’s only possible to acquire different types of signals during the
drilling process and extract features to estimate the depth of penetration. Signals which can be used
for analysis are mainly image signals, force/torque signals, current signals and sound signals.
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Systems using image signals for navigation can significantly improve accuracy of pedicle screw
insertion and allow a surgeon to evaluate screw trajectory by using preoperative or intraoperative
acquired images at the same time [6–8]. However, lots of existing devices and methods rely on force
and torque transducers to measure thrust forces and torques, and then detect bone layers and changes
between the different bone layers from the detected signals. Online monitoring of the state of bone
drilling is essential to improve operational safety and the surgeons’ operating skills. Based on the
estimated cutting resistance that was detected by a motion sensor, the hand-held bone cutting system,
which was proposed by Osa et al., could automatically stop moving and avoid the penetration of
inner cortical bone [9]. Lee et al. proposed a force controller to automatically stop at critical points.
In addition, Hu et al. and Mohd et al. proposed a real-time force sensing algorithm based on force
signals to identify different bone layers [10–12]. By measuring force signals, Kaburlasos et al. estimated
tarsal thickness in the surgery [13] and Federspil et al. developed a force controlled robot to detect
the dura in neurosurgery [14]. Also, Kim et al. proposed a force feedback scheme to reduce the force
exerted by positioning robot and provide force feedback to the surgeon through a dual moment sensor
in long bone fracture operation [15].

However, the force signal is noisy and filtering introduces a certain delay. The delay is determined
by the filtering method and the equipment they used. Also, determination of the bone layers by force
signals is influenced by the threshold value used. A high threshold will cause the identification to be
too late while a low threshold will lead to false detections. Accini et al. proposed a novel algorithm
to detect position of the drilling bit and realize the control of bone drilling only based on a position
sensor [16]. Dai et al. pointed out that bone status can be monitored by analyzing the vibration signals
of bones and presented a non-contact system to collect and analyze the vibration signals by using a
laser displacement sensor, and eventually the system achieved real-time detection of the drilling state
in thoracic surgery, overcoming the shortcomings of any kinds of contact sensor [17].

Some people have gradually turned their attention to the study of acoustic emission (AE)
signals. AE signals are well studied and applied in the classification of composite material damage
mechanisms [18,19], tool wear analysis [20,21] and detection of crack damage based on ultrasonic
testing [22]. However, in the aspect of identification and recognition of bone layers, the AE signals are
still in a research phase. Boesnach et al. analyzed the AE signals in the process of spinal drilling and
proposed that sound signals have a strong correlation with bone mineral density [23]. Pohl et al. used
a sound sensor to collect the AE signals to detect the state of penetrating of mice skulls [24], and the
bone layer was successfully identified. In 2014, Sun et al. analyzed the AE signals collected during
drilling process through Fast Fourier Transform (FFT) and used Exponential Mean Amplitude and
Hurst Exponent to verify energy characteristics and stabilities of the AE signals, and then developed a
real-time algorithm to identify the bone layers by detecting the AE signals [25]. Liao et al. analyzed
histological structure and mechanical properties of the bone layers and studied the relationships
between the AE signals and the aspects including formation of chips, depth of penetration and cutting
faults in the drilling process. They declared that the AE signals contain much useful information and
have good potential for studies and applications [26].

The purpose of this study is to explore an innovative method of monitoring key points based
on AE signals during pedicle screw drilling. Firstly, the AE signals in the bone drilling process are
collected by a sound sensor and preprocessed by a recursive fast Fourier transformation (FFT), and then
the preprocessing results will be further processed by a frequency distribution-based algorithm (FDB).
The coefficients obtained from the FDB algorithm will be used in characterizing the shapes of fitting
functions, which can indirectly characterize the recognition of the bone layers. Finally, a neural network
is used to train and test to verify accuracy of the proposed method.

The structure of this paper is organized as follows: Section 2 details bone layer analysis and AE
signal acquisition. Section 3 presents the proposed FDB algorithm in detail and briefly introduces
the structure and parameters of the neural network. Experiments are carried out and the results are
analyzed in Section 4, then conclusions are given in Section 5.
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2. AE Signal Acquisition in Bone Drilling

2.1. Structural and Mechanical Properties of Bone

A typical bone structure consists of cortical and cancellous bone, which have different mechanical
properties [27]. In general, cortical bone, which has good mechanical properties, can be considered as a
reinforced composite material. The cortical bone plays an important role in supporting human body as
well as protection of organs. Meanwhile, cancellous bone, which has low density and elastic properties,
and uniformly fills the inner area of the cortical layer [28], is a soft tissue and helps to maintain skeletal
form and resist pressures coming from outside.

As shown in Figure 1, when drilling a path in a pedicle, the drilling bit drills the targeted bone
from outer cortical bone layer, goes through middle of cancellous bone and then stops in front of
the inner cortical bone. In this way, any weakening of the mechanical properties of the spine can
be minimized. Therefore, it is particularly important to detect the key point and for the drilling bit
to then stop in front of the inner cortical bone. The research described in this paper aims to extract
the features of AE signals during the process and realize the identification of the key point after
subsequent processing.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 17 

 

2. AE Signal Acquisition in Bone Drilling 

2.1. Structural and Mechanical Properties of Bone 

A typical bone structure consists of cortical and cancellous bone, which have different 
mechanical properties [27]. In general, cortical bone, which has good mechanical properties, can be 
considered as a reinforced composite material. The cortical bone plays an important role in 
supporting human body as well as protection of organs. Meanwhile, cancellous bone, which has low 
density and elastic properties, and uniformly fills the inner area of the cortical layer [28], is a soft 
tissue and helps to maintain skeletal form and resist pressures coming from outside. 

As shown in Figure 1, when drilling a path in a pedicle, the drilling bit drills the targeted bone 
from outer cortical bone layer, goes through middle of cancellous bone and then stops in front of the 
inner cortical bone. In this way, any weakening of the mechanical properties of the spine can be 
minimized. Therefore, it is particularly important to detect the key point and for the drilling bit to 
then stop in front of the inner cortical bone. The research described in this paper aims to extract the 
features of AE signals during the process and realize the identification of the key point after 
subsequent processing. 

Key point

Cortical bone

Cancellous bone

Outer cortical
 bone layer

Inner cortical 
bone layer

drilling bit

 
Figure 1. The structure of single segment in pedicle and the bone drilling in the spine pedicle, where 
light green represents the cortical bone and canary yellow represents the cancellous bone. 
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(Boulder County, CO, USA), can be used for acquisition of AE signals during the drilling process. 
The AE signal detector is a small board that combines a microphone and some processing circuitry. 
It provides not only an audio output, but also a binary indication of the presence of sound, and an 
analog representation of its amplitude. With its three separate outputs, the board itself is a lot more 
flexible and it is easy to see what each is doing with a graph. The output pin we choose in the 
experiments is the audio output. The power supply voltage ranges between 3.5 and 5.5 V and 5 V is 
an ideal value. The signal acquired by the AE detector sensor is an analog signal, which is 
continuously distributed at any time interval. In order to sample and study the digital signal in detail, 
an acquisition card is needed to discretize the analog signals. The NI data acquisition card is a  
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resolution is 16 bits and the maximum sampling rate is 50 kHz. The main function of the data 
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In order to enhance the intensity of the acquired AE signals and reduce the ambient noise 
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has the conical surface, is mounted on the front end of the microphone module. The conical surface 
of the device allows the device to reduce the spread and the attenuation of the AE signals. A specific 
device diagram is shown in Figure 2. 

Figure 1. The structure of single segment in pedicle and the bone drilling in the spine pedicle,
where light green represents the cortical bone and canary yellow represents the cancellous bone.

2.2. Signal Acquisition System

The system that collects AE signals mainly consists of two parts: an AE signal detector sensor and a
NI data acquisition card. The AE signal detector sensor, produced by the Spark Fun Company (Boulder
County, CO, USA), can be used for acquisition of AE signals during the drilling process. The AE
signal detector is a small board that combines a microphone and some processing circuitry. It provides
not only an audio output, but also a binary indication of the presence of sound, and an analog
representation of its amplitude. With its three separate outputs, the board itself is a lot more flexible
and it is easy to see what each is doing with a graph. The output pin we choose in the experiments is
the audio output. The power supply voltage ranges between 3.5 and 5.5 V and 5 V is an ideal value.
The signal acquired by the AE detector sensor is an analog signal, which is continuously distributed
at any time interval. In order to sample and study the digital signal in detail, an acquisition card
is needed to discretize the analog signals. The NI data acquisition card is a USB-6002, produced by
National Instruments (Austin, TX, USA). The analog-to-digital converter resolution is 16 bits and the
maximum sampling rate is 50 kHz. The main function of the data acquisition card is to automatically
measure voltage signal input from the AE signal detector sensor, and then send the data to a host
computer for analysis.

In order to enhance the intensity of the acquired AE signals and reduce the ambient noise
interferencef, a 3D printed device, which is the print piece for signal enhancement in Figure 2 and has
the conical surface, is mounted on the front end of the microphone module. The conical surface of the
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device allows the device to reduce the spread and the attenuation of the AE signals. A specific device
diagram is shown in Figure 2.Sensors 2018, 18, x FOR PEER REVIEW  4 of 17 
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2.3. AE Signal Acquisition

The AE signals during the drilling process are generated by friction between the drilling bit and
the bone layer. In order to extract a characteristic amount of the AE signal and perform subsequent
processing, the generated signal needs to be collected. During the experiment, the above experimental
device is used to collect the signal. The sampling frequency is set to 44,000 Hz, according to the
Shannon sampling theorem [22], frequencies below 22,000 Hz can be collected. The maximum sampling
frequency of the data acquisition card is 50 kHz, therefore, it fully meets the conditions of use. In a
complete collection process, the force signals are also recorded as a reference at the same time. When
the drilling bit is idling, the amplitude of the sound signal is small. The moment the drilling bit hits
the bone, the signal amplitude increases dramatically. The moment the drilling bit drills through the
bone, the amplitude of the signal decreases significantly. Based on this, we can select a period of sound
signal from drilling into the outer cortical bone to drilling through the inner cortical bone, and the
selected signal in the time domain during the process is shown in Figure 3.
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Figure 3. The AE signal during bone drilling in time domain, part of the signal in the dashed frame is
used for subsequent signal processing of time t.

It can be seen from Figure 3 that the volume of the AE signal is very large and the distribution of
the data is quite intensive, so the differences between various bone layers can’t been distinguished
easily in the time domain by simple methods. Therefore, the original signal needs to be processed to
obtain certain characteristics for achieving the recognition of different bone layers.
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3. The Algorithm for the State Recognition

3.1. Pre-Processing with FFT

The characteristics of the AE signal in the time domain are not intuitive. To get more information,
the signal needs to be transformed into the frequency domain for analysis. In order to realize real-time
identification of the bone layers, it is necessary to analyze the frequency-domain features at each
moment. Fast Fourier Transform (FFT) is an ideal way to achieve this.

Since the FFT reflects global features that can’t represent the spectral characteristics of features
at each moment, the signal is processed by a recursive FFT. To reduce or eliminate spectral energy
leakage and fence effects, different interception functions, also called window functions, can be used to
truncate the signals. We choose a Hamming window with a frame size of 512 data points and a frame
shift with 100 data points. The chosen area, which is denoted by a red dotted box and contains a certain
number of data points in Figure 3, can be considered as the original data for time t, which is a moment
randomly chosen for further analysis. By referring to the conclusions, which were obtained from many
sets of experiments we conducted, the frequency of the drilling bone process is mainly distributed
in range of 10 kHz and 15 kHz. The signals in the frequency of this range are less affected by noise
interference for the reason that normal noise are not distributed in this frequency range. Further study
of the signals in the selected frequency confirms it can well represent the drilling process. By referring
to force signals collected simultaneously, we chose the moments of the signals for different bone layers
and use the recursive FFT to process them. The frequency distributions of the chosen moments are
shown in Figure 4.
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Figure 4. The distribution of the frequency between 10 kHz and 15 kHz after using the recursive FFT
for different moments, where (a) corresponds to the moments of drilling the cortical bone; (b) is related
to the cancellous bone; (c) is the transition region from cortical bone to cancellous bone and (d) is the
transition region from cancellous bone to the inner cortical bone. In addition, the y-label is energy
intensity distribution at various frequency values.

By comparing the distribution for amplitudes in Figure 4a–d, it can been seen that the amplitude
distribution for cortical bone layer is concentrated in high frequency bands while the distribution for
cancellous bone layer is concentrated in lower frequency bands. However, compared with the former
graphs, the amplitude distribution of the transition region is relatively uniform for the reason that
the local maxima are smaller than the values in the former graphs and the distributions have little
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differences during the changes of values. In another words, the distribution can also be considered as
be concentrated in intermediate frequencies for the transition region. This conclusion can be further
analyzed and some certain characteristics can be found to describe the regularities.

3.2. Analysis of the Energy in Bone Layer

Different bone components have different sound transmissibility, and cortical bone is denser, so it
can form a better reflection even for shorter wavelength signal components, so the transmittance is
poor. Cancellous bone has a loose porous structure, so high-frequency components can be diffused
within the bone through these pores and be attenuated by vibration to achieve better transmittance, so
a medium with low transmittance will reflect more high frequency components, which include greater
energy and can be collected by the sensor. Meanwhile, the medium with better transmittance will
reflect a small amount of any high-frequency components, so the high-frequency energy received by
the sensor is much smaller than the former.

For any moment t, we select a fixed number of sampling points that include the current moment
for the FFT transformation to obtain a frequency spectrum at this moment. The frequencies in the
spectrum are distributed between 0–22,000 Hz. The above analysis shows that the cortical bone
contains more high-frequency energy and the cancellous bone contains more low-frequency energy,
while the energy is evenly distributed in the transitional region. Then we select s frequency between
10 kHz and 15 kHz from the spectrum signal, so k pieces of data corresponding to moment t can be
obtained, that is:

Fi = (x1i x2i . . . xki)
T (1)

where xki are values of the amplitude and Fi is the whole sequence of the moment i. The energy of
bone layers is proportional to the sum of square of the amplitudes.

3.3. Algorithm Based on Frequency Distribution

When drilling different layers of bone, the energy in different frequency bands will have different
distributions, which means a large difference in the energy value of the signal in the selected frequency
range. The most intuitive feature at this point is that the curve composed of Fi differs in the frequency
domain and the shape of the curve varies when the layers of the bone are different. By describing the
shapes of various curves, it is possible to show the characteristics of the curve to a certain extent and
then reflect the energy distribution.

3.3.1. Normalization and Sorting

In order to eliminate the influence of the energy factor in the time domain and to unify different
data on the same scale for subsequent analysis and processing, the number of k data obtained above is
normalized by Equation (2):

Fni =
Fi

max(Fi)
(2)

where Fi is the chosen sequence and max (Fi) is the largest value of Fi, the result Fni is a new sequence
after normalization. To describe the sequence more precisely, a method that sorts the sequence Fni
from small to large in a certain order is discovered in Equation (3):

Uni = sort (Fni) (3)

The result Uni is an ascending curve in the unit domain and it can continuously reflect the relative
distribution of data at various energy levels. After using the proposed method, the curves in Figure 4
can be transformed separately into the curves in Figure 5.

The curve corresponding to y = x, which is also the diagonal of the figure, is defined as an “original
line”. When the energy distribution in the drilling process is relatively uniform, that is, no large
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transmission occurs, the distribution of energy in all frequency bands tends to be uniform as a whole.
The ascending curve is distributed near the “original line”, which corresponds to the curve indicated
by the dark green solid line with dots and the brown dot line in Figure 5.Sensors 2018, 18, x FOR PEER REVIEW  7 of 17 
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For any point (x1, y1) on the curve, the relationship between the two coordinate systems can be
established using Equation (4): 

x1 =
√

x22 + y22 cos(α +
π

4
)

y1 =
√

x22 + y22 sin(α +
π

4
)

α = arctan
y2

x2

(4)

The solutions of Equation (5) are:

(
x2

y2

)
=


√

2
2

√
2

2

−
√

2
2

√
2

2


(

x1

y1

)
(5)

so the relationship between the coordinate C1 and C2 is:

C2 = A ·C1 (6)

where A =

(√
2

2

√
2

2
;−
√

2
2

√
2

2

)
is the transformation matrix between the two coordinates C1 and C2.

By using Equation (6), the ascending curve representing the relationship between the amplitude
and the frequency in Figure 5 can be converted into a new curve, just as Figure 7 shows.
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3.3.3. Fitting Function Selection and Evaluation

As can be seen in Figure 7, the curve is distributed on both sides of x-axis and appears to be in the
shape of a sine curve. Therefore, the fitting function should include a sine term that is across the points
(0, 0) and (1, 0) and try to keep the function in a sine cycle. In addition, the change of coefficient of the
sine function should also be able to control the intersection of curve and x-axis, so the sine function
can be expressed in the form:

y1 = sin[(2π + cx(1− x)) · x] (7)

where c is the coefficient to control the location of the intersection point.
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At a different time t, the amplitude of the function curve will change accordingly. In addition,
the amplitude of the curve increases when the value of x increases, which is more obvious especially
when the value of x is large enough to make the curve be in the lower half of the x-axis, so the amplitude
of the function should also be related to the argument x. An exponential relationship can be found
between the variable x and the amplitude. Thus the fitting function also has an item in form aebx.
Then the most intuitive performance is that the amplitude ratio between the amplitude below and
above the x-axis is related with the coefficient b. To sum up, the function of the form (8) has a good
fitting effect:

y = a · ebx · sin[(2π + cx(1− x))xd] (8)

where a, b, c and d are coefficients of the fitting function, which are determined by the original data
and fitting function together. The coefficients will be used to represent the identifications of different
bone layers.

We selected two groups of data corresponding to different moments which represent the cortical
bone layer and transition region for fitting and then evaluated the fitting process. The curves are
shown in Figure 8, and the results of the judging process and evaluation results are shown in Table 1.
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Figure 8. The original data after sorting and the curve of the fitting functions, where the points
represent the original data and the curves are the fitting functions.

Table 1. The evaluation for the fitting functions.

SSE R-Square RMSE

0.0632 ± 0.0546 0.94795 ± 0.9757 0.0287 ± 0.0164

In Table 1, SSE is the sum of squares due to error, so the closer the SSE is to zero, the better the
effect of model selection and fitting is, and the more successful the data prediction is. R-square is the
coefficient of determination and is used to characterize the goodness of fit and normality. The range of
values is between 0 and 1, and the closer it is to 1, the better the model at fitting the data. RMSE is
the root mean square error, which is also called fitting standard error of the regression system. It is
the square root of the mean of squares of point errors of the prediction data and the original data.
The smaller the value is, the better the fitting function is. It can be seen from the data in Table 1 that
the chosen fitting function has a good fitting effect and strong ability to explain the original curve.
Therefore, the coefficient of the fitting function can well characterize the changes of the curve.

3.3.4. Analysis of the Algorithm’s Coefficients

The coefficients of the fitting function can well characterize the changes of the curve.
When the drilling bit goes through the cortical bone and cancellous bone, the energy is more
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concentrated. After normalizing and sorting, the distribution of the latter part of the upward curve
is more concentrated, while the distribution of the former part is sparser. Then for the rising curve,
the number of the data above the “original line” is quite small. After the conversion of the coordinate
system, the number of data above the x-axis is small, the most intuitive performance of which is
that the intersection of the curve and x-axis is distributed in the front of the interval [0, 1], and the
amplitude above the x-axis is small while the amplitude ratio mentioned above is quite large.

When the drilling bit is in the transitional region, the energy is distributed in the high-frequency
and the low-frequency part at the same time. After processing, the distribution is scattered and
relatively uniform around the “original line”, leading to the phenomenon that the intersection of the
curve and x-axis is distributed in the middle part of the interval [0, 1] and the amplitude above x-axis
is larger while the amplitude ratio is smaller.

It’s found from the study of fitting function (8) that the coefficients of the fitting function is
mainly used to represent the amplitude of the curve above the x-axis, so when crossing cortical and
cancellous bone, the amplitude above the x-axis is small, leading to a small value a. Meanwhile, when
passing through transitional region, the amplitude above x-axis is larger, resulting in a bigger value a.
The coefficient b shows a significant effect on the amplitude ratio of the curve. Term b is quite large
corresponding to cortical and cancellous bone, while it decreases significantly when it meets with the
transitional region. Coefficients c and d jointly characterize the intersection of the curve with x-axis.
When drilling through cortical and cancellous bones, the intersection meets the front of the interval,
the value of c is large and the value of d is small. In the transition region, the intersection point is in the
middle of the interval where c is small and d is large. The situation of the coefficients corresponding to
different bone layers is shown in Table 2 and changes in shapes of the functions by different coefficients
are displayed in Figure 9.

Table 2. The coefficients for different bone layers.

Bone Layers
Coefficients

a b c d

Cortical bone layer s h h s
Cancellous bone layer s h h s

Transition region h s s h
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Figure 9. Changes in shape of the curve under the influence of coefficients, where (a) shows different
curves when the coefficient a changes in [0.03, 0.20]; (b) is for the coefficient b in [−1, 2]; (c) is for the
coefficient c from −7 to −2 and (d) is for the coefficient d from 0.4 to 0.8.
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In Table 2, “s” represents small and “h” represents large. It can be seen clearly that the
characteristics of the transition region differ a lot from the cortical and cancellous bone, which can be
used as the results of the algorithm for bone layer identification.

Figure 9 indicates that coefficient a mainly controls the amplitude of the curve and coefficient
b shows the ratio of the amplitude, while the coefficients c and d together control the intersection
between the curve and the x-axis.

To sum up, the whole process can be summarized in several simple steps. Firstly, we collect the
AE signals and use the recursive FFT method to transfer the signals into the frequency domain for
analysis. Then, we use the proposed FDB algorithm to deal with and get the sets of coefficients as
results. Lastly, the bone layer identification can be realized by the coefficients. The whole process can
be seen in Figure 10.
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3.4. Neural Network Model and Parameter Setting

In order to avoid accidental result and prove universal significance of the proposed method,
a large amount of experimental data needs to be used to prove it. For the sake of generality, a part
of the experimental data can be trained and then the results of the identification will be obtained by
testing with other untrained data. The result of recognition rate can be used as an index to evaluate
the effectiveness of the algorithm. Among many methods, neural network is a better choice.

When the coefficients of fitting function are taken as inputs and the recognition result of the bone
layer is taken as the output, the input layer of network model has four inputs and the output layer
only has one output. According to selection rules of network nodes, the error back propagation (BP)
neural network with implicit layer containing three neurons is selected. The neural network model
used to train and recognize data collected in experiments, is shown in Figure 11.
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In Figure 11b, x1–x4 are input values of the eigenvectors, wij is the weight corresponding to input xi
and bj is the corresponding threshold or offset value. The weight and threshold value will continuously
change according to the error feedback in the network training process to let the network achieve the
best conditions. The fitting function coefficients are used as eigenvectors. In order to facilitate the
processing and comparison of data, the eigenvectors need to be normalized to make the Euclidean
norm equal to one. For the coefficients a, b, c, d, we use the maximum-minimum normalization (9) to
process the signals:

x′ =
x−minx

maxx−minx
(9)

where x is replaced by the coefficients of the fitting function, respectively. The obtained coefficients are
distributed in the interval [0, 1].

The transfer functions are selected as follows: the log-sigmoid-type transfer function “logsig”,
whose output is between 0 and 1, is selected in hidden layer and the linear transfer function “purelin”,
whose input and output values can take any value, is selected in the output layer. However, since the
output of the hidden layer is the input of the output layer, the output value of the network is between
0 and 1. The “trainlm” function, which represents the “Levenberg–Marquardt” method and has the
fastest training speed in the middle scale of a feed-forward network, is chosen as training function. We
set the number training times of the network at 2000, and 10−6 as the convergence error and 0.001 as
the learning rate. The neural network model can meet the requirements.

In addition, according to the collected force signal, the fitting coefficients at different times after
treatment are marked differently. The time when layers are characterized as cortical or cancellous
bone by force signal and the coefficients is marked as 0 while the other moments are marked as 1 for
transition regions. Due to the fact a linear transfer function is used in output layer, the output value
must be distributed between [0, 1] instead of only 0 and 1 values. In order to have a good measure of
training and recognition results, we select a function to set the values between 0 and 0.1 to 0 and set
the values between 0.9 and 1 to 1.

4. Experiments and Result Analysis

4.1. Materials and Laboratory Equipment

In order to prove the validity of the proposed algorithm and realize the identification of key points,
several experiments on different bone samples were carried out. An existing three-axis Cartesian
robot is used and the drilling bit is mounted at the end of the robot for drilling operations. A 6-DOF
force/moment sensor is also mounted to measure and record thrust force during drilling operations.
In addition, AE signals are captured by an AE detector sensor and the collected data is transmitted to a
PC through a data acquisition card, just as shown in Figure 12. The maximum sampling rate of the
acquisition card is 50 kS/s, which can fully meet the conditions of AE signal acquisition. The lamella
used in the experiments are different fresh bones captured from different samples, which have the same
bone structure and similar physical and mechanical properties like human bones. The typical structures
of bones have cortical and cancellous bone layer, and the trabecular bone, which is an extension of
cortical bone in cancellous bone, can be considered as the transition region. In all experiments, a twist
drill with a diameter of 2.5 mm is chosen. The speed of the drill bit is 20,000 rpm and the feed rate of
the robot end is 1 mm/s.

The AE sensor, which is mounted on the end of the base of the drilling bit, is about 5 cm away
from the tip of the bit during the whole drilling process. The 3D printed device, which is introduced
in Section 2.2, is used to enhance the acquisition of AE signals. In order to achieve the best results,
the background noise needs to be suppressed. The sounds made by people, motion of the robot and
the noise generated when the motors rotate are the main sources of noise generated during the process.
The experiments are carried out in a small glass room without unrelated persons, so the noise factors
can be minimized. In addition, at the beginning of the analysis, the range of the chosen frequency is
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between 10 kHz and 15 kHz, which can’t be reached by normal noise, so the noise is filtered out and
the influence of the noise on the final results can be neglected.
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Figure 12. Experimental setup for the drilling process, the drilling bit is used to drill the lamellar bone
when the experiment starts, the AE sensor is used to collect the original AE signal and the F/T sensor
is used to collect the force and moment signals during the drilling process.

4.2. Experimental Results and Analysis

As described in previous section, the experimental data is divided into two groups, one from
which is used for training while the other is for testing, and ten sets of data are collected. We select one
of the data sets. After using the FDB algorithm for the whole drilling process, we can get four sets of
coefficients characteristics a, b, c and d. In order to display the trends of the coefficients and realize the
bone layer identification by the coefficients, the obtained coefficients are presented in Figure 13.
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Figure 13. The resulting coefficients after processing by the algorithm, where four kinds of lines
represent the different coefficients a, b, c and d, respectively. To make the results more clear, the ranges
of values are omitted in the figure.

When the four coefficients suffer a sudden change in value at the same time, according to the
analysis introduced above, the bone layer can be considered to have changed. The moment for the
sudden change of values, that is, when the bone layer switches from cortical bone to transition region
and from transition region to cancellous bone or vice versa, is marked by the red vertical dotted lines in
Figure 13. For the reason that the red vertical dot line indicates the changes of the bone layer, the times
the lines correspond to can be considered as the boundaries of different bone layers. Times obtained
by the lines are shown in Table 3 for comparison.
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In addition, during the drilling process, the F/T sensor collects force signals for analysis. To verify
the effectiveness of the proposed method, the force signals are subjected to a Kalman filter and the
results are displayed in Figure 14.

Since the signal is selected at the moment when the bit touches the cortical bone, the signal at
time 0 corresponds to the cortical bone being drilled. The results obtained by the above methods are
shown in Table 3 for comparison and analysis.

The bone drilling feed rate is 0.5 mm/s, so the result of the proposed FDB algorithm corresponds
to the data obtained from the force signal. For the reason that we can hardly distinguish the small
differences between the transition region visually, and the threshold values of the force signal between
two different layers are hard to determine very precisely, the results obtained by direct measurement
and the force signals may not be as precise as expected. In contrast, the bone layers determined by the
proposed method are more accurate and detailed. The experimental results show that at the moments
4.11 s–5.85 s and 10.18 s–11.9 s, which correspond to the transition region, the values of coefficients a
and d are larger and those of b and c are smaller than in the other bone layers. The conclusions given
by the coefficients, which are obtained by the FDB algorithm, coincide exactly with those of the above
theoretical analysis.
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Figure 14. Force signal for bone layer identification. The blue line represents the original data and the
red line is the signal after processing by the Kalman filter, which is smoother. Different bone layers for
different times are listed in the figure.

Table 3. Data of the three methods used for the bone layer identification.

Methods
Bone Layer

Cortical Bone Cancellous Bone Transition Region

By FDB algorithm 0–4.11 s
11.9–14 s 5.85–10.18 s 4.11–5.85 s

10.18–11.9 s

By force signal 0–4.2 s
12.1–14 s 5.9–10.2 s 4.2–5.9 s

10.2–12.1 s

4.3. Network Training and Result Analysis

Firstly, the fitting coefficients of the ten marked data sets are taken as input values, and the
mark is used as output value to the neural network for training. Due to the uneven thickness of
the selected lamellar bone, the times required to penetrate the bone are slightly different. The data
volume of each group varies slightly from 600 to 800, so the amount of data in the training set is
sufficient. After obtaining the trained network, the second group of twenty sets of data are taken
as input and tested with the trained neural network. The obtained output result is compared with
the marked value to obtain the recognition rates of the sets of data. For the reason that training set
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does not intersect with the test set and each test set is tested separately, the results obtained have a
certain credibility. The recognition rates of the twenty sets of data are shown in Table 4, where it can be
seen that the recognition rates are distributed between 75% and 84.2%. For the reason that internal
structure of the bone layer is not composed of a single substance and the sound signal acquisition will
be influenced by the upper bone media as the depth of the bone increases, the characteristic coefficients
of these moments will be affected to varying degrees. To some extent, this influence may lead to
wrong identification. Overall, this recognition rates are still quite satisfactory, which also proves the
effectiveness of the proposed algorithm.

Table 4. The recognition rate of the test data.

Data Set 1 2 3 4 5
Recognition rate 81.2% 83.4% 79.1% 75.0% 78.2%

Data set 6 7 8 9 10
Recognition rate 83.3% 84.0% 82.2% 79.9% 77.5%

Data set 11 12 13 14 15
Recognition rate 83.2% 84.2% 82.5% 79.6% 78.8%

Data set 16 17 18 19 20
Recognition rate 82.1% 82.9% 78.4% 79.2% 80.8%

5. Conclusions

In this paper, a bone layer recognition method based on AE signals for orthopedic robots is
proposed. In this method, the AE signal collected during the drilling process is processed by FFT,
and the status of the bone drilling is characterized by the features obtained by the FDB algorithm.
From the result data obtained by this algorithm, the algorithm can distinguish the transitional region
between two layers of cortical and cancellous bone and the features are clear and intuitive. Compared
with force signals, which are intuitive and consistent with the characterization of bone layers, this
algorithm can provide a more elaborate description of the transitional region. The feature quantity
obtained from the algorithm and values of marking bone layer according to the corresponding force
signal are used as training set to train the neural network, and another twenty sets of irrelevant
data are selected for testing. The recognition accuracy reaches 84.2%, indicating that the algorithm
has a good recognition effect. This research method highlights the superiority of AE signals in the
recognition of bone layers and the sensitivity advantage of this method is unmatched by force signals.
The next step of our research will mainly focus on real-time control of drilling robots. The main content
involves applying the proposed algorithm to the real-time control of robot systems and verifying the
effectiveness and accuracy of the method with more experiments.
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