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Abstract: Conventional GPS acquisition methods, such as Max selection and threshold crossing
(MAX/TC), estimate GPS code/Doppler by its correlation peak. Different from MAX/TC,
a multi-layer binarized convolution neural network (BCNN) is proposed to recognize the GPS
acquisition correlation envelope in this article. The proposed method is a double dwell acquisition
in which a short integration is adopted in the first dwell and a long integration is applied in the
second one. To reduce the search space for parameters, BCNN detects the possible envelope which
contains the auto-correlation peak in the first dwell to compress the initial search space to 1/1023.
Although there is a long integration in the second dwell, the acquisition computation overhead is
still low due to the compressed search space. Comprehensively, the total computation overhead of
the proposed method is only 1/5 of conventional ones. Experiments show that the proposed double
dwell/correlation envelope identification (DD/CEI) neural network achieves 2 dB improvement
when compared with the MAX/TC under the same specification.
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1. Introduction

GPS signal deteriorates greatly in urban environments, and the received signal power often
degrades to −143 dBm or lower, resulting in acquisition difficulties. As the mostly used acquisition
method, the MAX/TC has been thoroughly studied to balance false alarm probability and detection
probability [1–3]. However, increasing the detection probability for weak signals in GPS acquisition is
still an unsolved problem. Currently, there are two ways to improve the detection probability for weak
GPS signals:

• Enhancing the quality of correlation (often characterized by signal–noise-ratio) by extending the
signal integration time;

• Optimizing the acquisition decision strategy by advanced techniques.

However, the performance of the first method is not good enough to acquire weak GPS signals,
since the signal integration time is limited by the transition of modulated navigation data. Conventional
studies of high sensitivity acquisition focus on improving the coherent integration, in which the
coherent integration time has been extended to 10 ms by using large and complex computation
operations [4–7]. Due to the large hypothesis parameter space existing in the cold-start environment,

Sensors 2018, 18, 1482; doi:10.3390/s18051482 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/5/1482?type=check_update&version=1
http://dx.doi.org/10.3390/s18051482
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 1482 2 of 11

the computational overhead of current algorithms is fairly large, which cause them to be impractical
for civilian receivers.

Lacking an efficient processing technique, the correlation envelope feature has been ignored in
GPS acquisition for a long time. In recent years, convolution neural network (CNN) has attracted
attention for its remarkable performance in identification and classification [8]. Motivated by its great
performance, correlation envelope identification (CEI) with CNN has been introduced to compress the
GPS acquisition hypothesis parameter space by identifying the envelope in a low-quality correlation.
With the narrowed hypothesis parameter space, a long integration can be adopted in the follow-up
acquisition to achieve a high-quality correlation. Considering the demand of huge multiplications in
traditional CNN, binarized convolution neural network (BCNN) [9] is used to reduce the number of
multiplications in the proposed algorithm. The BCNN weights are only +1/−1 in the network
training. Moreover, the fully connected layers, which require huge computation, are replaced.
It further simplifies the network complexity and reduces the computation overhead. To the best
of our knowledge, this article introduces CNN to global navigation satellite system (GNSS) signal
acquisition for the first time, and no other researchers have discussed the CNN-based GNSS acquisition
in the past years.

The main contributions of this article are as follows:

• CNN is firstly introduced in GPS correlation envelop identification. Motivated by image
recognition, the GPS acquisition correlation envelop can be detected with CNN.

• The neural network is optimized to binary CNN to reduce the computation overhead. Considering
the huge calculations introduced by CNN, a binary CNN whose weights are constrained by +1/−1
is used in this article.

• The performance of the proposed algorithm is validated by the field test, and it shows that the
acquisition sensitivity is improved by 2 dB under the same specification. On the other hand, in the
case of the same acquisition sensitivity, the computation overhead of the proposed algorithm
is only around 1/5 of conventional ones because the long integration only exists in narrowed
parameter space.

The rest of this article is organized as follows. Section 2.1 states the problem which exists in
conventional acquisition methods. Section 2.2 elaborates the proposed double dwell acquisition
scheme. Section 2.3 presents the correlation envelope identification decision strategy based on BCNN.
The test results are shown in Section 3 and this article is concluded in Section 4.

2. DD/CEI GPS Acquisition Scheme

2.1. MAX/TC Acquisition Method

GPS is a code division multiple access (CDMA) system in which signals are modulated by binary
phase shift key (BPSK). Therefore, GPS signal acquisition is the detection and estimation of code phase
and Doppler frequency based on the cross-ambiguity function (CAF) [10], which is expressed as the
correlation between the incoming signal and the locally generated signal.

R(τ̃, f̃d) =|
N−1
∑

n=0
c(nTs − τ̃)sinc( f̃dTs)e−j2π f̃dnTs + w(n)| (1)

where N is the integration time, TS is the code period of the signal, c(nTS − τ̃) is the local replica of the
C/A code, τ̃ and f̃d are the code delay and the Doppler shift included in the hypothesis parameter
space, and w(n) is the additive white Gaussian noise (AWGN).

The MAX/TC acquisition method simply selects the largest correlation peak and compares it
with a preset threshold. The acquisition correlations with 2 ms coherent integration for weak GPS
signals are shown in Figure 1. In Figure 1, the round point marks the correlation generated by the
correct parameters, while the tetragon point marks the largest correlation. The correlation peak occurs
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in the correct code phase when the signal power is strong. However, the correlation peak occurs in an
incorrect code phase in the case of weak signals. Therefore, the MAX/TC acquisition method based on
the correlation peak is impractical for weak GPS signals.
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Figure 2. Double dwell acquisition architecture. 
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matrix is processed by the CEI neural network and the 𝑁𝐶𝐴 /𝑁𝑓 possibilities are output. Finally, the 

most likely parameter block including the right parameters is located and the possible parameter 

space is significantly reduced. 

Figure 1. Normalized correlation results in different signal powers.

Although it is a significant method to extend the integration time to promote the performance
of GPS acquisition, a long integration time with a large hypothesis parameter space will introduce
high computation complexity and overhead. Therefore, apart from extending the coherent integration
time, compressing the hypothesis parameter space is the inevitable choice to further improve the
performance of GPS acquisition.

2.2. Double Dwell Acquisition Scheme

As shown in Figure 2, the double dwell acquisition scheme includes two steps:

1. Recognizing the most possible envelope around the correlation peak by using correlation envelope
identify network (CEI) and giving the most possible parameter space;

2. Detecting the signal in the most narrowed parameter space filtered by step 1.
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Figure 2. Double dwell acquisition architecture.

In the first dwell, the received signal is correlated with all the possible parameters to generate the
correlation matrix, whose size is the product of code bins NCA and frequency bins N f . Then, the matrix
is processed by the CEI neural network and the NCA /N f possibilities are output. Finally, the most
likely parameter block including the right parameters is located and the possible parameter space is
significantly reduced.
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In the second dwell, a long coherent integration is generated by correlating between the preferred
hypothesis parameters and the received signal. The most possible parameters are detected by the
MAX/TC method based on the results of the high-quality correlation.

The proposed acquisition method and its conditional probability are described in Figure 3.
The probability PC

D is the recognition probability that the neural network recognizes the correlation
envelope. If the correct envelope is recognized, there are three cases in the second dwell: (1) the real
code/Doppler is detected, and its probability is defined as detection probability in the second dwell,
PM

D1; (2) the fake code/Doppler is detected, and its probability is defined as false alarm probability in
the second dwell, PM

P1; (3) misses: that is, the correlation peak does not exceed the threshold, and its
probability is 1− PM

D1 − PM
P1. If the neural network has recognized the false envelope, there are two

cases in the second dwell: (1) the fake code/Doppler is detected, and its probability is defined as false
alarm probability in the second dwell, PM

F2 ; (2) misses: that is, the correlation peak does not exceed the
threshold, and its probability is 1− PM

F2 .
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From the overall acquisition perspective, the detection probability PD, the false alarm probability
PF, and the missed detection probability PM are presented as follows.

PD = PC
D × PM

D1 (2)

PF = PC
D × PM

F1 + (1− PC
D)× PM

F2 (3)

PM = PC
D × (1− PM

D1 − PM
F1) + (1− PC

D)× (1− PM
D2) (4)

Equations (2)–(4) show that the acquisition performance of the proposed algorithm is dominated
by the performance of its second dwell if the recognition accuracy PC

D is high enough. Obviously,
the second dwell acquisition has a better performance due to a smaller hypothesis parameter
space and the results of the high-quality correlation. The overall computation overhead of the
proposed method is dominated by its first dwell; and, therefore, promoting the recognition probability
and decreasing computation overhead in its first dwell are both efficient methods to improve the
acquisition performance.
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2.3. Correlation Envelope Identify Network

GPS acquisition is a two-dimensional code/Doppler correlation, and the correlation can be
regarded as a grayscale “image” whose brightness represents its correlation value. When local code
and Doppler are aligned with the satellite signal, there is a peak in the correlation and there is a bright
block in the “image”. However, due to the weak signal, the correlation peak is not obvious, and the
block is not bright enough. Conventional acquisition decision strategies only recognize the correlation
peak and ignore the important envelope characteristic around the correlation peak as shown in Figure 4.
In this article, the aim of the proposed neural network decision strategy is to recognize the envelope
(i.e., bright block) in the “image”.
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Figure 4. Cross-ambiguity function (CAF) envelope feature.

The input data of the proposed network is the result of the short integration correlation within the
whole hypothesis parameter space, whose size is NCA·N f . Considering the complexity and graininess
of the CEI neural network, correlation generated with N f ·N f parameters is regarded as a basic block,
the CAF envelope is deemed to exist within one of the basic blocks. Thus, NCA/N f output ports are
included in our network, and each output port represents the probability that the CAF envelope exists
within the corresponding basic block. The structure of the envelope identification neural network
is demonstrated in Figure 5. The convolution layer extracts data features by using the convolution
operation between input data and middle layer data. In this article, we use three convolutional layers
to extract the correlation peak due to the CNN powerful noise filtering capability, whose number is the
balance of precision and computation overhead. We also speed up the training convergence by batch
normalization layers in the first and second convolutional layers. It is noteworthy that there is no fully
connected layer in our network: the reason for this we will discuss in the next section. The detailed
design parameters are described in Table 1. The stride controls how the filter convolves around the
input volume, and the stride is set in a way to ensure that the output volume is an integer and not a
fraction. The size and number of convolution kernel are set in a way to ensure that the network obtains
a high precision in the practical test. Finally, padding is the added data around the feature map to
control the size of the output.

Table 1. Envelope recognition binarized convolution neural network (BCNN) parameters.

Name Layer Stride Convolution Kernel Number Padding Convolution Kernel Size

Convolution
Layer

1 1 32 2 5 × 5
2 1 16 1 3 × 3
3 16 1 0 16 × 16

Batch
Normalization

Layer Epsilon Gamma Beta
1 0.0004 1 0
2 0.0004 1 0

Relu
Layer Formal

1
Relu(x) = max(x,0)2
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2.3.1. The Binarized Convolutional Layer

CNN has shown significant performance improvements in several applications including
characteristics identification and computer vision. However, CNN-based recognitions require large
amounts of memory and computational power. Therefore, they are unsuitable for smaller devices
such as cell phones and embedded electronics [11]. BCNN is a network that effectively reduces
the computational complexity and memory overhead. During the forward pass, BCNN drastically
replaces most arithmetic calculations with bit-wise operations, which substantially improves the
power-efficiency [9]. During the training, the weight is binarized to +1 or −1 for the forward pass and
the calculation of gradient during the backpropagation. When updating the weight, the calculation
uses the floating-point format weight. After the update, the weight will be constrained to the range of
[−1, +1] by clipping. As shown in Equation (5), most calculation of the traditional CNN inference is
matrix multiplication, which causes huge computation overhead. With +1/−1 weights, BCNN converts
the multiplication into the XOR operation to reduce the computation overhead.

 W00 · · · W0n
...

. . .
...

Wm0 · · · Wmn

× [x0, x1, . . . , xn]

wb = Sign(w)

= { +1, if x ≥ 0
−1, otherwise

−−−−−−−−−−−−−→
[
∑n

i=0 ± xi

]
(5)

2.3.2. The Batch Normalization Layer

During each stochastic gradient descent (SGD), the corresponding activation is normalized by
the mini-batch. Therefore, the mini-batch data has a mean value of 0 and a variance of 1, which is
called batch normalization. In deep networks, internal covariant shift (ICS) makes training slow and
complex. Batch normalization takes a step towards reducing the ICS, and dramatically accelerates the
training of deep neural networks. It accomplishes this goal via a normalization step that fixes the mean
values and variances of layer inputs. Batch normalization also has a beneficial effect on the gradient
flow through the network, by reducing the dependence of gradients on the scale of the parameters or
of their initial values [12]. Furthermore, batch normalization can reduce the requirement of dropout
operations. The batch normalization’s formula is shown below (Equation (6)). Here, β is the bias
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constant to be trained and the initial value is 0; ε is a very small value used to prevent the denominator
from zero, and the initial value is 0.0001; x is the current batch normalization layer’s input, and y is the
output. During the training, µ and σ2 are defined to be the mean and variance of the current input
mini-batch, and during the inferring, they are replaced with average statistics over the training data.

y =
x− µ√
σ2 + ε

+ β (6)

2.3.3. The Rectified Linear Unit and Fully Connected Layer

We refer to neurons with this nonlinearity as rectified linear units (ReLUs). The rectifier
function is rectifier (x) = max (0, x). The activation function allows a network to easily obtain
sparse representations [13]. Usually, a typical CNN network contains a few fully connected layers.
Compared with the convolutional layer, the weight of the fully connected layer is not shared.
The parameter size grows with the feature map size in a square relationship. In the problem of
correlation envelope identification, the size of the feature map is one hundred thousand orders of
magnitude, which will lead to huge memory overhead. In this work, we directly use the convolution
layer instead of the fully connected layer as the output layer because the output probability is equivalent
to the relative value of the feature vector in envelope identification, which significantly reduces the
weight size and computation complexity.

2.3.4. The Training Process

In this work, 20,000 randomly generated correlation results are used as input data for training,
and 8000 correlation results are used as the test dataset. This work uses the SGD to update the network
weight. During the forward pass and the calculation of gradient, the weight is binarized to +1 or −1,
while the weight is updated in floating point form. The weights are initialized using the Glorot weight
initialization method, which is proposed in work [14]. The pseudo code of the training process is
shown below.

Algorithm 1. Pseudocode of the training process.

Input: Training period p;
Output: Network’s test accuracy; network’s test loss
1: Let datasettraining denote the signal data generated for training;
2: Let datasettest denote the signal data generated for test;
3: Let Wreal denote the network’s weight which initialized randomly;
4: for i = 1 to p do

Wbinary = Binarized (Wreal);
loss = ForwardProcess (datasettraining, Wbinary);
grad = BackforwardProcess (loss, Wreal);
Wnew_real = UpdateWeight (Wreal, grad);
Wbinary = ClipWhileExceed (Wnew_real);

5: Wbinary = Binarized (Wreal);
6: [accuracy, loss] = TestForward (Wbinary, datasettest);
7: return accuracy and loss

To decrease the computation overhead in the first dwell, 2 ms coherent integration is adopted
for the envelope recognition. In order to make the trained neural network suitable for different GPS
signal scenes, the training set in our study is GPS signals with random power, Doppler frequency,
and code phase.

With the trained weights, a set of correlation results of −146 dBm GPS signal with 2 ms coherent
integration is inferenced with the envelope identification and its feature map is shown in Figure 6.
Obviously, the input correlation data is a low-quality data set, and its regularity cannot be recognized.
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With the noise reduction of our proposed network, the local feature occurs in its last layer feature
map, which reveals the essential reason that the proposed network can recognize the envelope from
low-quality correlation results.
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3. Performance Validation

Several field tests were conducted to evaluate the performance of the proposed CEI neural
network and its acquisition method, and one of them is selected in this article for illustration purposes.
The parameters of correlation and signal model are presented in Table 2. Considering the environment
of weak signals, the code bin is 1/16 chip for high sensitivity GPS acquisition. In the first dwell,
the Doppler bin is 500 Hz and the coherent integration time is 2 ms for envelope identification. In the
second dwell, the Doppler bin is narrowed to 100 Hz and the coherent integration time is 10 ms for
acquisition. The length of GPS navigation data is 20 ms. When the coherent integration time is no
more than 10 ms, navigation data transition has a small influence on the envelope characteristics of
GPS signals. This research uses the coherent integration time of 2 ms and 10 ms to avoid the effect of
bit jump on the acquisition results. Therefore, navigation data transition does not affect our proposed
acquisition algorithm. The CEI neural network was trained by Adam with the batch size of 32 examples
whose data was from the signal model. The learning rate was initialized at 0.001 and decayed every
epoch where decay rate was 0.98. We trained the network for roughly 30 epochs through the training
set, which took about one day on one NVIDIA Tesla K80.

Table 2. Signal and correlation parameters.

Parameter Value

Sample Frequency (MHz) 16.368
Noise Bandwidth (MHz) 4.092

Doppler Bin (Hz) 500/100
Frequency Channel (Nf) 16

Code Bin (Chip) 1/16
Code Channel (NCA) 16,368

The training data was generated uniformly, with its signal power typically ranging from
−143 dBm to −148 dBm. The accuracy of training is 94.17%. To check the performance in the
real environment, the proposed method is validated by a field test in which the signal data was
collected from Spirent GPS Constellation Simulator. With 2 ms integration in the first dwell, the
recognition accuracy of the proposed CEI BCNN is shown in Table 3. It shows that the recognition
accuracy is high enough for the second dwell, which is 98.7%@−143 dBm and 82.4%@−148 dBm.
It also can be seen that the network maintains a certain accuracy under different noises, which means
the network has good generalization ability.



Sensors 2018, 18, 1482 9 of 11

Table 3. Performance of BCNN decision policy.

Signal Power (dBm) PC
D (%)

−143 98.7
−144 97.3
−145 96.0
−146 94.2
−147 89.5
−148 82.4

For simplicity, the MAX/TC acquisition method was adopted in the second dwell, whose coherent
integration was 10 ms. Since the conventional double dwell acquisition method uses the second dwell
to verify the first dwell acquisition result, it leads to a low false alarm rate with weak signals. Thus, the
conventional MAX/TC acquisition method was validated simultaneously by the same experimental
environment, which adopts the 10 ms coherent integration time. Results of both methods are shown in
Figure 7.
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In the test, the proposed DD/CEI acquisition method adopted the same constant false alarm
threshold criterion as the conventional method. Thus, the false alarm probability of this method was
similar to the conventional one. When the GPS satellite signal power was −143 dBm, the detection
probability of this method and the traditional method were both close to 100%. When the GPS satellite
signal power was −146 dBm, the detection probability of the proposed method was 82%, which was
double of the traditional method. Without loss of generality, the definition of acquisition sensitivity was
the satellite power level in which its detection probability was equal to missed detection probability,
that was the curve cross point of detection probability vs. missed detection probability. Therefore,
the DD/CEI scheme at the condition of 2 ms integration achieved −147.6 dBm which was 2 dB
improvement when compared to the MAX/TC acquisition method.

Benefit from the deep optimization on the proposed DD/CEI, the computation overhead brought
by CEI neural network is from the addition of binarized convolution. In this network, the current
feature map value is from the convolution of last feature map. Thus, the addition number of each
feature map is the multiplication of feature map size, convolution kernel size, and the convolution
kernel number. The addition number of our network is given as follows.

Sadd =
3

∑
k=1

KSk
2 · KNk · FNk · N f · NCA (7)
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where KSk
2 is the kth convolution kernel size, KNk is the kth convolution kernel number, FNk is value

number of the kth feature map, and Sadd is about 5k·N f ·NCA.
In the traditional GPS acquisition, its computation overhead is from the integration of signal,

in which the multiplication is replaced XOR. Therefore, the computation overhead of integration is the
addition and the computation overhead of the coherent integration is expressed as follows:

Sadd = Fs · Tint · NCA · N f (8)

where Fs is the sampling rate and Tint is the integration time, and Sadd is 1.6M·N f ·NCA for typical
weak signal acquisition. Therefore, the computation overhead of integration in the traditional GPS
acquisition is far more than the proposed CEI neural network.

Moreover, the computation overhead of the second dwell signal integration can be ignored when
compared to its first dwell as the second dwell parameter number is only 1/1023 of the first dwell.
Therefore, the total computation overhead of the proposed method is mainly decided by the first dwell,
which is only 1/5 of conventional MAX/TC method as shown in Figure 8.
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Predictably, the proposed method will achieve a better acquisition performance if a longer
integration is used for its second dwell, which will not significantly increase the computation overhead
due to its small hypothesis parameter space.

4. Conclusions

This article proposed a novel DD/CEI neural network for high sensitivity GPS acquisition to
reduce the acquisition computation overhead and promote the acquisition sensitivity. The hypothesis
parameter space was significantly narrowed by the proposed neural network in the first dwell.
Then, the long integration and conventional MAX/TC decision strategy were applied to the narrowed
hypothesis space in its second dwell to improve the acquisition accuracy. Since the short integration
was conducted on the initial hypothesis space, the computation overhead was significantly decreased.
Moreover, the extra computation overhead brought by neural network was greatly reduced by weight
binarization and structure optimization. Finally, field tests were conducted to evaluate the performance
of the proposed algorithm. Experiment results showed that the proposed method could promote
the acquisition sensitivity by 2 dB when compared with the MAX/TC under the same specification,
and the computation overhead of the proposed algorithm was only around 1/5 of the MAX/TC under
the same sensitivity.
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