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Abstract: This paper presents an innovative model for integrating thermal compensation of gyro bias
error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity
Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS)
gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional
approach that is realized by cascading bias thermal correction by calibration and traditional Kalman
filtering for bias tracking. This function is very useful when adopted gyros are manufactured using
MEMS technology. These systems have significant limitations in terms of sensitivity to environmental
conditions. They are characterized by a strong correlation of the systematic error with temperature
variations. The traditional process is divided into two separated algorithms, i.e., calibration and
filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper
proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data
as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore,
it saves time and economic resources, simplifying the management of thermal correction process.
In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as
the experimental data set used to test both methods. The performance of the two filters is compared
both in nominal conditions and in the typical case of a residual initial alignment bias. In this last
condition, the innovative solution shows significant improvements with respect to the traditional
approach. This is the typical case of an aircraft or a car in parking conditions under solar input.

Keywords: Zero Velocity Update; integrated inertial navigation; Kalman filter; MEMS inertial sensors;
bias drift; thermal calibration; artificial neural networks

1. Introduction

In recent years, several innovative solutions for transport systems have been developed, such as
Unmanned Aircraft Systems, Unmanned Underwater Systems, Autonomous Ships, Autonomous Land
Vehicles, Micro Satellites, and Space Probes [1–8]. These systems have two main features in common,
such as the need to exploit compact configurations for the onboard equipment and the capability
to perform autonomous operations for a large part of a mission [9]. In addition, new technological
frameworks such as the one determined by mechatronics have also risen the interest in developing new
motion sensing systems [10]. Indeed, autonomous robot systems used for industrial applications may
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have significant requirements in terms of localization and attitude determination accuracy [11]. Inertial
Measurement Units or IMUs [12] are a reference enabling technology for motion sensing that allows
the above reported systems to attain the desired performance in terms of compactness and autonomy.

In recent years, the improvement of advanced micro-fabrication techniques has allowed
the development of Micro Electro-Mechanical Systems or MEMS inertial sensors [13]. These systems
are manufactured by using the same technology of micro-chips [12]. This peculiarity allows them to
be more suitable than traditional inertial sensors to meet compactness and low-power consumption
requirements. Also, the specific manufacturing process can assure a valuable cost reduction in
large scale applications [14]. The use of IMUs based on MEMS technology improves cost and size
performance of more than one order of magnitude with respect to those achievable through Fiber Optic
Gyros or FOG. This is the reason why significant effort has been lavished on developing MEMS-based
IMUs that can be installed on last-generation transport platforms [15]. The advantage in adopting
MEMS-based IMUs can be so relevant in some applications that they are used to retrofit traditional
inertial units in already deployed transport systems [16].

MEMS gyros have significant limitations in terms of sensitivity to environmental conditions [17].
They suffer from the change of temperature, since their output average value, i.e., sensor bias, drifts
with temperature [17]. The thermal effect, for Coriolis gyros, is caused by decoupling vibrating
frequencies on the two axes and by producing distortions on the output of electronic components,
such as amplifiers [18]. The typical bias trend model is strongly non-linear with added hysteresis [19].
The traditional approach to compensate this error is to perform calibration tests in a climatic chamber
over the requested temperature intervals. The goal of the tests is to derive a calibration function that
allows the correction of a large amount of bias. During the real-time operation of the unit, the derived
calibration function is applied to correct the sensor output before any other processing step [20].
Subsequently, a further reduction of bias can be realized by estimating its residual amount within
a data fusion framework, such as a Kalman filter [21]. This filter has an augmented state, since it
includes the bias as a state in addition to errors on attitude, position, and velocity [22,23]. In summary,
the traditional approach to estimate gyro bias is a cascading of calibration and Kalman filtering [21].
This approach has several limitations:

(1) It requires extra processing during the real-time operation of units. Since the Kalman filter is
needed to keep measurement drift under control, calibration must be added as a pre-processing
stage. Moreover, integration of nominal navigation equations have also to be performed, in order
to get the uncorrected state derived by standalone inertial measurements. All the above terms
have to be provided at an output rate that can reach 1000 measurements per second [24];

(2) It does not account for the deterministic effect of the temperature change on bias drift. This effect is
accounted by calibration processing and the residual uncertainty is included in the overall random
uncertainty on bias determination. As a consequence, a larger standard deviation than the one
needed must be used for modelling process noise on bias inside the Kalman filter [21]. This condition
reduces the accuracy on the bias estimated by the filter and increases the settling time.

This paper presents an innovative approach to overcome the limitations mentioned above.
The calibration transfer function is exploited within the Kalman filter, with the aim of embedding
the compensation of the thermal effect on bias in the filter itself. The time derivative of the thermal
effect on bias is estimated as a function both of calibration and time derivative of temperature on
the sensor. It is worth noting that this information is made available to users on most inertial units,
since it is needed to apply the calibration function. Therefore, the residual uncertainty is substantially
reduced so that Kalman filter effectiveness can be improved. Moreover, no calibration processing
stage is required, since calibration is performed inside the Kalman filter. This allows the reduction of
the computational burden of the IMU processing software. An important advantage over the traditional
approach can be appreciated when the gyro bias is affected by hysteresis. As the traditional approach
adopts the transfer function as a fixed reference, the presence of hysteresis causes an additive bias.
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On the contrary, the proposed approach exploits the derivative of the calibration transfer function with
temperature. This term tends to be constant on the different lines that form the hysteresis loop [19].

To test the performance of the proposed innovative approach versus the traditional one, a proper
testing framework is designed. Testing the system in dynamic conditions can be misleading because
the output should be affected by motion-induced errors, such as scale factor error and g-sensitivity
error. These errors along with bias and random noise produce a combined effect on navigation state
errors and bias tracking capability, which cannot be distinguished from the one of standalone bias
because of the intrinsic non-linearity of navigation equations [24]. However, the proposed approach
claims a Kalman Filter with sensor data fusion. The best compromise is to use a Kalman Filter that
returns meaningful data when the unit is in stationary condition. This is the case of Zero Velocity
Update or ZUPT filter. It is a filter used to remove residual errors on navigation state terms and bias
at startup for an IMU. It requires that the unit is held fixed with respect to the locally level frame for
some minutes [21], since the assumption that the unit is stationary is the aiding information used by
the Kalman filter, i.e., the filter measurement model. In stationary condition, any form of linear and
angular rate, except the Earth rate, is considered as an error. The ZUPT filter is used to get accurate
initial attitude and inertial sensor bias when tactical grade gyros are available, i.e., gyros that have
a bias instability that is less than 1 degree per hour [12]. In the case non tactical grade gyros are installed
in the IMU, the ZUPT filter is used to estimate just the bias [21]. Indeed, gyro bias cannot be estimated
just by averaging sensor output, since the size of averaging time window could not be coherent with
thermal variations that induce bias drift. Since thermal variations depend on environmental conditions,
nothing is known about their characteristics time. Moreover, when the unit is turned on in stationary
condition no information is provided about how long it is going to stay motionless. For this reason,
the ZUPT filter has a significant practical interest also for IMUs equipped with standard grade gyros,
such as the Attitude and Heading Reference Systems or AHRS installed on aircraft [14] or the Land
Navigators installed on ground vehicles [25]. The paper shows how those applications could benefit
by exploiting the reported innovative augmented Kalman Filter model.

2. Standard ZUPT Filter

2.1. Filter Model

The standard ZUPT filter is accurately described in [21]. After a brief coarse alignment phase,
the INS attitude and the Position, Velocity, Time (PVT) initial solution are “frozen”. Then the inertial
navigation equations are numerically integrated. However, the upgraded attitude and PVT solution
are different from their initial values. Since the host vehicle is at rest and non-rotating, changes in
attitude and in PVT solution can be due only to uncompensated accelerometers and gyroscopes errors.
Measurements of the difference between the INS outputs and the reference are input to a Kalman filter,
which corrects the velocity, attitude, and position. Inertial instrument errors, such as accelerometer
and gyro biases, are estimated as well. Since ZUPT filter can be applied only when the host vehicle is
stationary and non-rotating, it must last only few minutes. Figure 1 shows the block diagram model.

Figure 1. ZUPT filter block diagram model.
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It is worth noting that the standard ZUPT filter needs calibrated gyro data as input. This is
particularly important for MEMS gyros, which are characterized by high levels of noise and poor bias
stability characteristics. In particular, MEMS gyro bias has a strong correlation with temperature
variations [26,27]. The block diagram model is presented in Figure 2. In the ZUPT algorithm,
the filtering step is preceded by thermal calibration of raw gyro data.

In our application, a Back-Propagation Neural Network is used to map the model of the gyro bias
trend with temperature. This trend is highly non-linear and it can have a local abrupt change within
a small temperature range [26]. Back-Propagation Neural Networks guarantee better performance
on mapping than the traditional fitting method based on the application of polynomial fitting [28,29].
In fact, polynomials are not efficient to model these local changes of trend since they have fixed
shapes as a function of their order. Instead, Back-Propagation Neural Networks are self-adaptive in
constructing a mathematical model after several repetitive learning and testing phases.

Figure 2. Standard ZUPT filter: a is the accelerometer output,ωRAW is the raw gyro data,ωCALIBRATED

is the calibrated gyro data and ba and bg are respectively the accelerometer and gyro bias.

2.2. Determination of Filter Process Noise Terms

To realize an accurate ZUPT filter, it is necessary to correctly define the elements of Qk, which is
the 12 × 12 covariance matrix of the process noise, whose elements are defined as follows [21]:

• Qk(1, 1), Qk(2, 2), Qk(3, 3) are related to the accelerometer measurement noise
→
η a.

Qk(1, 1) = Qk(2, 2) = Qk(3, 3) = σ2
VRW (1)

where σVRW is the velocity random walk of the accelerometer measurement.

• Qk(4, 4), Qk(5, 5), Qk(6, 6) are related to the gyro measurement noise
→
η g.

Qk(4, 4) = Qk(5, 5) = Qk(6, 6) = σ2
ARW (2)

where σARW is the angular random walk of the gyro measurement.>

• Qk(7, 7), Qk(8, 8), Qk(9, 9) are related to the accelerometer bias
→
η ba.

Qk(7, 7) = Qk(8, 8) = Qk(9, 9) = σ2
ABI (3)

where σABI is the bias instability of the accelerometer measurement.

• Qk(10, 10), Qk(11, 11), Qk(12, 12) are related to the gyro bias
→
η bg.

Qk(10, 10) = Qk(11, 11) = Qk(12, 12) = σ2
GBI (4)

where σGBI is the bias instability of the gyro measurement.
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The off-diagonal elements of Qk are zero (Qk is a diagonal matrix). The diagonal elements of Qk
have been evaluated through the Allan Variance analysis.

The Allan Variance is a simple and efficient method to identify and characterize different stochastic
processes and their coefficients, allowing estimation of the accidental component of errors that affect
the signal [30,31]. Through some simple operations on the sensor outputs, a characteristic Allan Variance
curve can be obtained and further used to determine the type and magnitude of errors affecting the sensor
data [32]. If N is the number of samples from an inertial sensor with a sample time τ0, a group of n data
points can be created (with n < N/2); each group member is called a cluster τwith size nτ0. If Ω (t) is
the instantaneous output of the sensor, its integration (e.g., for the gyro output) is the angle θ (t) [33]:

θ(t) =
∫
t

Ω(t)dt (5)

The angle is measured at discrete times given by t = kτ0 (for k = 1, 2, 3, ..., N). By using the notation
θ(t) = θ(kτ0) = θk, the average angle between the times kτ0 and (kτ0 + τ) is given by [33]:

θk(τ) =
1
τ

kτ0+τ∫
kτ0

Ω(t)dt, τ = nτ0 (6)

The Allan Variance, estimated from a finite number of samples, is defined as follows [33]:

σ2(τ) =
1

2τ2(N − 2n)

N−2n

∑
n=1

(θk+2n − 2θk+n + θk)
2 (7)

The most attractive feature of this method is the ability to define various error components by
the slope of the root Allan Variance (i.e., the Allan deviation) plot. Typical errors affecting inertial
sensors, which are detectable through the Allan Variance, are the quantization noise, angle random
walk, correlated noise, sinusoidal noise, bias instability, rate random walk, and rate ramp. Correlated
and sinusoidal noises have minor contributions to the total noise, and they appear only at long-time
clusters; all the other errors are believed to have the most impact on MEMS sensors [34].

In the proposed application, the Attitude and Heading Reference System Axitude AX-[ ]TM has
been used, that is depicted in Figure 3. This device is composed by the following sensors [35]:

• Triaxial accelerometer sensor;
• Triaxial gyroscope sensor;
• Triaxial magnetometer sensor;
• Temperature sensor.

The adopted gyroscopes are the CRS05-02TM gyros by Silicon SensingTM (Plymouth, UK) while
the adopted accelerometers are the MS8010TM accelerometers by ColybrisTM (Yverdon-les-Bains,
Switzerland). The error components of interest in our application, obtained by the slope of the Allan
deviation plot, are shown in Tables 1 and 2.

Figure 3. Axitude AX1-[ ]TM.
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Table 1. Angular random walk σARW and gyro bias instability σGBI (TCZUPT filter).

CRS05-02TM Gyro by Silicon SensingTM

σARW σGBI

3.18 degree/
√

h 1.5 × 10−4 degree/s

Table 2. Velocity random walk σVRW and accelerometer bias instability σABI (standard ZUPT filter).

MS8010TM Accelerometer by ColybrisTM

σVRW σABI

0.05 m/(s
√

h) 2 m/(sh)

3. Modified ZUPT Filter

As explained in Section 2.1, the traditional process is time consuming and expensive, since
the ZUPT filter needs thermal calibrated gyro data as input. This paper proposes an innovative ZUPT
filter, i.e., the Thermal Compensated ZUPT (TCZUPT) filter, that needs raw gyro data as input by
unifying the two steps of thermal calibration and filtering (Figure 4).

Figure 4. TCZUPT filter: a is the accelerometer output,ωRAW is the raw gyro data and ba and bg are
respectively the accelerometer and gyro bias.

The proposed method assumes a different model for the gyro bias with respect to the standard
ZUPT filter, in which the bias time derivative is modelled as a zero-mean Gaussian noise:

.
→
b gZUPT(t) =

→
η bg(t) (8)

where
→
η bg(t) is a zero-mean Gaussian noise.

In the TCZUPT filter, instead, it is modelled as the combination of two terms, such as a temperature
dependent component and a stochastic component:

.
→
b gTCZUPT(t) =

d
→
b g(T(t))

dt
+
→
η
′
bg(t) (9)

where
→
η
′
bg(t) is the stochastic component, modelled as a zero-mean Gaussian noise (

→
η
′
bg(t) <

→
η bg(t)

of Equation (8)) and d
→
b g(T(t))

dt is the temperature dependent component, defined as follows:

d
→
b g(T(t))

dt
=

∂
→
b g

∂T
· dT

dt
(10)
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where ∂
→
b g

∂T is the partial derivative of gyro bias with respect to temperature and dT
dt is the time derivative

of temperature. These two terms can be obtained as follows:

• Back-Propagation Neural Networks are used to estimate the derivative of gyro bias with respect
to temperature.

• The algorithm proposed in [36] is used to evaluate the time derivative of temperature data
obtained by the temperature sensor inside the AHRS. In every time-point, it takes into account
the time-history of the derivative.

Therefore, in the TCZUPT filter, the gyro bias propagation in the prediction step is:

b−g, k =
(

I3x3 + Fg,k·Ts

)
·bg,k−1 +

dbg,k

dtk
·Ts (11)

where I3x3 is the 3 × 3 identity matrix, Fg,k is the 3 × 3 null matrix, Ts is the sample period,
dbg,k
dtk

is
the discrete-time derivative of gyro bias and η′bg,k is the zero-mean Gaussian noise.

Also in the TCZUPT filter, it is necessary to correctly define the elements of the covariance
matrix of the process noise Qk (Equations (1)–(4)). The accelerometer and gyro error components are
presented in Tables 3 and 4. It is worth noting that the velocity random walk σVRW and accelerometer
bias instability σABI are the same of the standard ZUPT filter, as well as the gyro angular random walk
σARW . The only different term is the gyro bias instability σGBI , since the TCZUPT filter receives as
input raw gyro data, which have a higher bias instability than the calibrated data used in the standard
ZUPT filter.

Table 3. Angular random walk σARW and gyro bias instability σGBI (TCZUPT filter).

CRS05-02TM Gyro by Silicon SensingTM

σARW σGBI

3.18 degree/
√

h 5 × 10−4 degree/s

Table 4. Velocity random walk σVRW and accelerometer bias instability σABI (TCZUPT filter).

MS8010TM Accelerometer by ColybrisTM

σVRW σABI

0.05 m/(s
√

h) 2 m/(sh)

In conclusion, it is worth noting that the TCZUPT filter requires a simplified configuration with
respect to the standard ZUPT filter, which needs two processing phases, one for thermal calibration
and the other for filtering.

In this paper, the proposed model has been implemented in the error-states Kalman Filter.
However, it is worth noting that it can be also valid in the total-states approach. Ref. [37] describes
the different fusion schemes and their performance. In many applications, it is convenient to use
a total-states instead of the error states Kalman Filter.

4. Experimental Test Setup

Two thermal tests have been performed to determine MEMS gyro bias under different temperature
points. These tests have been carried out at the laboratory of the Generale Meccatronica Applicata
(G.M.A.), located in Giugliano in Campania (Italy). As described in Section 2, the AHRS used in our
application is the Axitude AX1-[ ]TM (Figure 3).

The test equipment used to perform thermal tests consists of the following components:
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• A Heraus-HT7057 climatic chamber, which has a nominal temperature range from−70 ◦C to +180 ◦C;
• A power supply for the AHRS (24–28 V);
• A personal computer with a RS-232 interface connected to the AHRS and the climatic chamber;
• A software data logger that communicates with the AHRS through the serial interface 232, using

a Baud Rate of 115,200 bps;
• Two external temperature sensors, one attached to the device, the other attached to the inner wall

of the climatic chamber. These supplementary sensors are used to control temperature variations
during the tests;

• A data acquisition/switch unit connected to another PC to acquire measurements from the two
supplementary sensors.

The inertial unit is installed inside the climatic chamber in stationary conditions. This chamber
allows for performing controlled thermal solicitations on the unit by assigning proper temperature
profiles. Two thermal tests have been performed:

• The first is a soak test, where gyro temperature varies from −20.53 ◦C to 48.08 ◦C, with steps of
5 ◦C. In this test, the gyro temperature is continuously stabilized at certain temperature points [17].
The soak time for each temperature point is two hours and a half. Figure 5 shows the output trend
with temperature.

• The second is a ramp test, where gyro temperature varies from 27.28 ◦C to 34.08 ◦C. In this test,
the temperature of the thermal chamber is continuously linearly increased or decreased, without
stabilizing the gyro temperature at certain temperature points [17]. The ramp rate is 2 ◦C per
minute. This is a typical condition for gyros installed on the AHRS considered in this paper, which
is generally used for aeronautical applications. Figure 6 shows the output trend with temperature,
for the ramp test.

The AHRS sensor data are transmitted as packages of data on a fixed binary format over a RS232
serial communication interface [35]. In this process, temperature is the reference environmental term
considered. Temperature and static gyro output are measured in real-time to observe the bias drift
phenomenon when temperature variations are commanded. It is worth noting that both data sets have
been filtered by using the low-pass filter usually adopted in avionic certified AHRS versions to remove
out of band noise. It is a second order linear filter with cutoff frequency of 30 Hz.

5. Derivation of Calibration Function

Data obtained from the soak test are used to train the Back-Propagation Neural Network on a wide
temperature range, whereas data obtained from the ramp test are used to test the ZUPT and TCZUPT
filter. These filters have both been coded by using MATLABTM (Natick, MA, USA). The MATLAB
Neural Network toolboxTM helps to assess the best Back-Propagation Neural Network structure that
can model the bias or bias derivative evolution versus temperature for each specific gyro. In this
paper, Back-Propagation Neural Networks have been trained by using the Levenberg-Marquardt
algorithm [38]. It is an iterative three-step process including training, validating, and testing.
This algorithm needs to share the dataset among three different uniformly distributed subsets, such as:

• 65% of samples for training;
• 20% of samples for validating;
• 15% of samples for testing.

To select the most suitable Neural Network structure, we have taken into account the theorem
presented in [39]. According to this theorem an adequate solution can be obtained with a tractable
network size by using more than three layers [39]. In our application, Back-Propagation Neural
Networks composed by four layers (an input layer, two hidden layers and an output layer) have
been implemented.
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To select the number of hidden layer neurons, the performance parameter Sr, defined in
Equation (12), has been evaluated [29]. The same number of processing neurons has been selected for
the two hidden layers, since this is the minimum condition for proper use of network:

Sr (n) =
√

res(n)2
1 + res(n)2

2 + res(n)2
3 (12)

In Equation (12), res(n)1, res(n)2 and res(n)3 are the residuals for the triaxial gyroscope sensor,
for a generic Neural Network composed by two n-neurons hidden layers.

The standard ZUPT filter needs calibrated gyro data as input. Therefore, the developed
Back-Propagation Neural Network has been used to calibrate the testing data sets presented in
Figure 6 (obtained by the ramp test), before the filtering process. In the TCZUPT filter, instead,
thermal calibration and filtering are simultaneously performed. Therefore, it needs raw gyro data as
input. During the execution of the filtering process, Back-Propagation Neural Networks trained on
the derivative of the training data sets presented in Figure 5 are used to estimate the derivative with
respect to temperature of the testing data sets presented in Figure 6.

Figure 5. Gyro output (ωx, ωy, ωz) vs. temperature for the soak test.

Figure 6. Gyro output (ωx, ωy, ωz) vs. temperature for the ramp test.

In the standard ZUPT and TCZUPT filter, Back-Propagation Neural Networks with two hidden
layers of two neurons have been used. From Figures 7 and 8, which present the trend of the performance
parameter with the number of hidden layers neurons, it is evident that the selected structures can
provide a satisfactory convergence effect in both methods.
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Figure 7. Performance parameter SrZUPT vs. number of hidden layers neurons (standard ZUPT filter).

Figure 8. Performance parameter SrTCZUPT vs. number of hidden layers neurons (TCZUPT filter).

6. ZUPT Filter Comparative Performance Analysis

Gyro data obtained by the ramp test have been used to test both the standard ZUPT and TCZUPT
filter. However, as explained in the previous sections, the standard ZUPT filter requires calibrated
gyro data as input, whereas the TCZUPT filter needs raw gyro data. Figures 9 and 10 show the input
data of the standard ZUPT and TCZUPT filter. To highlight the different trends of the two data sets,
a second order low-pass filter with cutoff frequency of 1 Hz has been used to remove out of band noise
in representing data. However, it is worth noting that the ZUPT filter has been tested on data filtered
by using the second order low-pass filter with cutoff frequency of 30 Hz, which is usually adopted
in avionic certified AHRS versions. In both cases, before applying the ZUPT filter, the initial zeroing
procedure has been performed in a time-frame of 60 s.

To compare the standard ZUPT and TCZUPT filter performance, a benchmark must be defined.
In this application, the considered benchmark is the moving average of raw and calibrated gyro data.
This processing step returns an array of local mean values, where each mean is calculated over a sliding
window of 30 s across neighboring elements of the input vector. Table 5 presents the mean of residuals
of the moving averages, which can be considered an estimator of the true bias of the system, with an
accuracy given by the corresponding residual. The level of residuals is adequate to justify their use as
a reference benchmark for the filter.
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Figure 9. Input data of the standard ZUPT filter.

Figure 10. Input data of the TCZUPT filter.

Table 5. Mean value of residuals of the moving average.

Axis Calibrated Gyro Data Non-Calibrated Gyro Data

x 1.68 × 10−6 rad/s 9.53 × 10−6 rad/s
y 2.98 × 10−6 rad/s 6.80 × 10−6 rad/s
z 3.43 × 10−6 rad/s 1.03 × 10−5 rad/s

The standard ZUPT and TCZUPT filter have been tested under two sets of conditions:

• Nominal condition. Figures 11–13 present the comparison of the true bias of the system, estimated
by the moving averages and the bias computed by the standard ZUPT and TCZUPT filter.
Table 6 presents the root mean squared error (rms) of both methods, in the initial 30 s and over
the entire interval.

• Residual bias after rough initial alignment of 15 degree/h. Since the considered gyro is not
tactical grade, this residual error is compatible with its performance. Figures 14–16 present
the comparison of the true bias of the system, estimated by the moving averages and the bias
computed by the standard ZUPT and TCZUPT filter. Table 7 presents the root mean squared error
(rms) of both methods, in the initial 30 s and over the entire interval.
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Figure 11. Gyro output bias (nominal condition, x-axis).

Figure 12. Gyro output bias (nominal condition, y-axis).

Figure 13. Gyro output bias (nominal condition, z-axis).
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Table 6. Root Mean Squared Error (nominal conditions).

Initial 30 s

Axis Standard ZUPT Filter TCZUPT Filter

x 1.24 × 10−5 rad/s 3.78 × 10−5 rad/s
y 3.17 × 10−5 rad/s 3.46 × 10−5 rad/s
z 2.11 × 10−5 rad/s 7.88 × 10−6 rad/s

Entire Interval

Axis Standard ZUPT Filter TCZUPT Filter

x 4.15 × 10−5 rad/s 5.33 × 10−5 rad/s
y 7.48 × 10−5 rad/s 2.97 × 10−5 rad/s
z 6.07 × 10−5 rad/s 3.30 × 10−5 rad/s

Figure 14. Gyro output bias (residual error of 15 degree/h, x-axis).

Figure 15. Gyro output bias (residual error of 15 degree/h, y-axis).
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Figure 16. Gyro output bias (residual error of 15 degree/h, z-axis).

Table 7. Root Mean Squared Error (residual error of 15 degree/h).

Initial 30 s

Axis Standard ZUPT Filter TCZUPT Filter

x 6.66 × 10−5 rad/s 4.09 × 10−5 rad/s
y 5.07 × 10−5 rad/s 4.60 × 10−5 rad/s
z 1.01 × 10−4 rad/s 8.16 × 10−5 rad/s

Entire Interval

Axis Standard ZUPT Filter TCZUPT Filter

x 3.98 × 10−5 rad/s 4.13 × 10−5 rad/s
y 9.72 × 10−5 rad/s 3.88 × 10−5 rad/s
z 8.17 × 10−5 rad/s 3.01 × 10−5 rad/s

To assess the statistical significance of the variations between the results for the x, y, and z axes,
the testing data set has been divided in 5 data sets corresponding to 5 min of acquisition. Then,
the ZUPT and TCZUPT filters have been tested on these data sets. Table 8 presents the root mean
squared error (rms) of both methods in nominal conditions and Table 9 shows the mean and standard
deviation of the results. Table 10 presents the root mean squared error (rms) of both methods in case of
a residual initial alignment error of 15 degree/h and Table 11 shows the mean and standard deviation
of the results. ZUPT and TCZUPT filters performance is slightly different for the three axes, since each
gyro has different characteristics, even if all of the three gyros are of the same type (CRS05-02TM gyros
by Silicon SensingTM). However, the small values of the standard deviation (Tables 9 and 11) indicate
that, for each axis, the performance of the ZUPT and TCZUPT filters is stable.

As reported by Table 7, in the first 30 s the rms error of the TCZUPT filter is smaller than
the corresponding value of the standard ZUPT filter. Indeed, in the case of a residual initial alignment
error of 15 degree/h both methods converge to the true bias of the system, but the TCZUPT filter is
faster. This is due to the TCZUPT filter is not based on direct correction of thermal bias (as the standard
ZUPT filter), but on the estimation of the derivative of bias as a function of temperature. Therefore, it
is faster in mapping significant bias variations. Table 12 presents the convergence time of the standard
ZUPT and TCZUPT filter in case of residual error of 15 degree/h. A threshold of 1.00 × 10−05 rad/s
has been considered in defining the convergence time.
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Table 8. Root Mean Squared Error (nominal conditions, 5 data sets).

Data Set Axis Standard ZUPT Filter TCZUPT Filter

1st
x 4.25 × 10−5 rad/s 5.35 × 10−5 rad/s
y 2.65 × 10−5 rad/s 1.96 × 10−5 rad/s
z 5.03 × 10−5 rad/s 4.48 × 10−5 rad/s

2nd
x 2.63 × 10−5 rad/s 4.53 × 10−5 rad/s
y 3.17 × 10−5 rad/s 2.12 × 10−5 rad/s
z 4.89 × 10−5 rad/s 4.74 × 10−5 rad/s

3rd
x 2.99 × 10−5 rad/s 3.91 × 10−5 rad/s
y 5.03 × 10−5 rad/s 3.43 × 10−5 rad/s
z 3.76 × 10−5 rad/s 3.81 × 10−5 rad/s

4th
x 4.26 × 10−5 rad/s 4.44 × 10−5 rad/s
y 3.54 × 10−5 rad/s 3.17 × 10−5 rad/s
z 4.94 × 10−5 rad/s 3.28 × 10−5 rad/s

5th
x 2.99 × 10−5 rad/s 5.29 × 10−5 rad/s
y 3.53 × 10−5 rad/s 2.48 × 10−5 rad/s
z 3.21 × 10−5 rad/s 3.16 × 10−5 rad/s

Table 9. Mean and Standard Deviation (nominal conditions, 5 data sets).

Standard ZUPT Filter

Axis Mean Standard Deviation

x 3.42 × 10−5 rad/s 0.77 × 10−5 rad/s
y 3.58 × 10−5 rad/s 0.89 × 10−5 rad/s
z 4.36 × 10−5 rad/s 0.82 × 10−5 rad/s

TCZUPT Filter

Axis Mean Standard Deviation

x 4.70 × 10−5 rad/s 0.61 × 10−5 rad/s
y 2.63 × 10−5 rad/s 0.65 × 10−5 rad/s
z 3.89 × 10−5 rad/s 0.70 × 10−5 rad/s

Table 10. Root Mean Squared Error (residual error of 15 degree/h, 5 data sets).

Data Set Axis Standard ZUPT Filter TCZUPT Filter

1st
x 6.27 × 10−5 rad/s 4.11 × 10−5 rad/s
y 8.08 × 10−5 rad/s 4.61 × 10−5 rad/s
z 7.49 × 10−5 rad/s 3.27 × 10−5 rad/s

2nd
x 5.95 × 10−5 rad/s 3.27 × 10−5 rad/s
y 8.88 × 10−5 rad/s 5.14 × 10−5 rad/s
z 7.42 × 10−5 rad/s 3.84 × 10−5 rad/s

3rd
x 5.37 × 10−5 rad/s 3.18 × 10−5 rad/s
y 1.02 × 10−4 rad/s 5.43 × 10−5 rad/s
z 6.35 × 10−5 rad/s 3.12 × 10−5 rad/s

4th
x 7.27 × 10−5 rad/s 4.14 × 10−5 rad/s
y 7.94 × 10−5 rad/s 3.25 × 10−5 rad/s
z 6.36 × 10−5 rad/s 3.00 × 10−5 rad/s

5th
x 7.60 × 10−5 rad/s 4.33 × 10−5 rad/s
y 9.31 × 10−5 rad/s 4.49 × 10−5 rad/s
z 8.18 × 10−5 rad/s 3.60 × 10−5 rad/s
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Table 11. Mean and Standard Deviation (residual error of 15 degree/h, 5 data sets).

Standard ZUPT Filter

Axis Mean Standard Deviation

x 6.49 × 10−5 rad/s 0.92 × 10−5 rad/s
y 8.88 × 10−5 rad/s 0.92 × 10−5 rad/s
z 7.16 × 10−5 rad/s 0.79 × 10−5 rad/s

TCZUPT Filter

Axis Mean Standard Deviation

x 3.81 × 10−5 rad/s 0.54 × 10−5 rad/s
y 4.58 × 10−5 rad/s 0.84 × 10−5 rad/s
z 3.36 × 10−5 rad/s 0.35 × 10−5 rad/s

Table 12. Convergence time of the standard ZUPT and TCZUPT filter in case of residual error of
15 degree/h.

Axis Standard ZUPT Filter TCZUPT Filter

x 140 s 65 s
y 345 s 127 s
z 85 s 53 s

This is an important result for many applications that require a very fast ZUPT process, like
missile systems. The TCZUPT filter also presents better performance in the overall interval. This result
can be useful in the case of stationary condition for long timeframe, e.g., the aircraft in parking stall for
a time longer than the usual in a sunny day.

It is worth noting that, although the standard ZUPT and the TCZUPT filters have been tested on
a MEMS-based IMU, also IMUs based on FOG technology can benefit from the advantages of TCZUPT
filter. These higher-grade gyros provide high-precision information for navigation and control systems.
Thus, they can be used for a wide range of tactical and commercial applications, such as Unmanned
Underwater Vehicles (UUVs) and Unmanned Air Vehicles (UAVs), torpedoes, camera and antenna
stabilization, land navigation, AHRS, gyrocompasses, and oil drilling [40]. However, IMUs based
on FOG technology are subjected to various environmental disturbances. In particular, temperature
variation is the major factor that affects FOG performance [41]. Several research efforts have been
made to reduce this effect [41–45]. Since TCZUPT filter can be directly applied on raw data, it allows
to simplify the management of thermal correction process also for IMUs based on FOG technology,
saving time and economic resources.

An important advantage of the proposed procedure is that only a single software component is
needed to estimate the attitude during real-time operation of the unit, i.e., the TCZUPT algorithm.
In standard operation, the processing schedule requires that two different components must operate
in cascading conditions, such as pointwise calibration software and standard ZUPT filter. Of course,
this type of architecture has a negative impact on software development and maintenance. Moreover,
the TCZUPT algorithm operates on raw sensor data so that no further modification can be performed
that changes error terms before applying the filter. In the standard ZUPT filter, the change of calibration
method would determine modifications that could alter the filter performance, such as modification of
the spectral distribution of correction.

In the case of nominal conditions, the standard ZUPT and TCZUPT filter have similar performance.
Indeed, it is worth noting from Figures 11–13 that both methods converge to the true bias of the system.
The bias estimated by the standard ZUPT and TCZUPT filter respectively converge to the bias of
calibrated gyro output and non-calibrated gyro output.

7. Conclusions

This paper presents an innovative model for integrating thermal compensation of gyro bias error
into an augmented state Kalman filter to improve performance of inertial units manufactured by
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exploiting MEMS gyros. Despite the advantages of low-cost, light-weight, high reliability and low
power consumption, MEMS gyros are characterized by a strong correlation of the systematic error with
temperature variations. Thus, the traditional ZUPT filter should be preceded by thermal calibration of
raw gyro data. However, this process is time consuming and expensive.

This paper proposes an innovative method that unifies the two steps of thermal calibration and
filtering, so that the ZUPT filter can be directly applied on raw gyro data. The main difference with
respect to the standard method is the gyro bias time-model. In the standard ZUPT filter, it is modelled
as a zero-mean Gaussian noise, instead, in the TCZUPT filter, it is modelled as the composition of
two terms: a temperature dependent component and a stochastic component, which is modelled as
a zero-mean Gaussian noise.

The analytical description as well as the comparison of the standard ZUPT and TCZUPT filters are
presented in the paper. Also, the process to determine the filter terms and the experimental test setup
are accurately described. The performance of the two filters is compared in nominal conditions and in
the case of a residual error of 15 degree/h. In the case of a residual error of 15 degree/h, the TCZUPT
filter guarantees a faster convergence to the true bias of the system and better performance in the overall
interval. Furthermore, it is possible to notice that the TCZUPT filter requires a simplified configuration
with respect to the standard ZUPT filter, which needs two processing stages, one for thermal calibration
and the other for filtering. Thus, the TCZUPT filter allows simplifying the real-time processing of
inertial systems by exploiting a single processing function.
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which everyone contributed to develop the proposed method. In particular, R.F. and D.A. developed the TCZUPT
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supervised the work and revised the paper.
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