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Abstract: Classic core-based instrument transformers are more prone to magnetic saturation.
This affects the measurement accuracy of such transformers and limits their applications in measuring
large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due
to such measurement errors. This paper presents a more accurate method for current measurement
based on a circular magnetic field sensing array. The proposed measurement approach utilizes
multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is
regarded as the final measurement. The calculation model is established in the case of magnetic field
interference of the parallel wire, and the simulation results show that the error decreases significantly
when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when
the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on
the off-center primary conductor is conducted, and a kind of hall sensor compensation method is
adopted to improve the accuracy. The simulation and test results indicate that the measurement error
of the system is less than 0.1%.

Keywords: circular array; magnetic field sensor; current measurement; magnetic interference

1. Introduction

Instrument transformer is one of the key assets in the substations as it affirms the reliability
of the protection and control systems [1–4]. The conventional magnetic core-based transformer is
subject to saturation that limits its ability to measure direct current (DC) [5,6]. On the other hand, an
electronic instrument transformer based on Rogowski coil is widely used in power systems due to
its wide dynamic range and low cost. However, it cannot be used for DC measurement because of
its sensing principle [7–10]. While an optical transformer can measure both alternating current (AC)
and DC signals, the temperature stability and mechanical properties of optical crystals result in the
low measurement accuracy of this instrument [11–16]. Commonly used methods for measuring DC
current include shunt methods, magneto-resistance, and magneto-optical effects. However, the shunt
methods are bulky, which renders them unsuitable for onsite applications. Furthermore, the accuracy
of measurement methods based on giant magneto-resistance and magneto-optical effects is not high as
it depends on the stability of optical and magnetic materials [17–20]. Owing to the rapid development
of semiconductor materials and power electronic technology, magnetic field sensors, especially hall
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sensors, have attracted much attention for DC current measurement [21–27]. As there is no iron core,
the hall sensor is not susceptible to magnetic saturation and can be used to measure large DC currents.

To overcome the deficiency of conventional transformers and improve the accuracy of DC
measurement methods, this paper proposes a current measurement method based on a circular
magnetic field sensing array. Circular magnetic field sensing arrays were previously investigated in
References [28,29]. However, these investigations mainly focused on signal processing algorithms.
When there is the interference of an external current, an algorithm based on spatial Discrete Fourier
Transform (DFT) was proposed to improve the interference rejection in Reference [28], and an algorithm
based on the digital processing of a small set of magnetic field measurements was proposed to reduce
the interference in Reference [29]. The method proposed in this paper is mainly focused on the sensor
array structure and external interference factor, which improve the interference rejection by changing
the number of sensors and the radius of sensor array. Moreover, a compensation method is proposed to
improve the measurement accuracy when the conductor is off-center. The method employs eight hall
sensors that are evenly distributed on a circle, in which the magnetic field strength can be measured
and hence the current can be calculated. The interference from a parallel wire carrying the same current
and an off-center wire are the dominant sources of error in practice. So, by using the average value of
these hall sensors as the final measurement output, we can effectively reduce the external magnetic
field interference and improve the accuracy. The simulation model is established and the simulation
analysis is carried out when there is magnetic field interference from the parallel wire and off-center
wire. The results show that the measurement error is less than 0.06% when the wire spacing is greater
than 2.5 times the radius of the sensor array. By using a kind of compensation method for the hall
sensor, the error generated by the off-center wire can be reduced effectively, and the whole system
error is less than 0.1%.

2. Measurement Accuracy Analysis of Circular Magnetic Field Sensing Array

The measurement method proposes several hall sensors distributed evenly on a circle, as shown in
Figure 1. The average value of all employed hall sensors is considered as the final measurement output.
This arrangement can effectively reduce the external magnetic field interference and improve the
measurement accuracy. The detailed analysis of the magnetic field interference of a parallel conductor
is presented below.
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Figure 1. The magnetic field influence of a parallel conductor on the measurement accuracy of a 

circular hall sensors array: (a) conductor A, conductor B, hg, and hc all are not on the same line; (b) 

conductor A, conductor B, hg, and hc are on the same line. 

Figure 1. The magnetic field influence of a parallel conductor on the measurement accuracy of a circular
hall sensors array: (a) conductor A, conductor B, hg, and hc all are not on the same line; (b) conductor
A, conductor B, hg, and hc are on the same line.

As shown in Figure 1, the distance between the conductors A and B is assumed to be d, while
the currents in both conductors are assumed to be in opposite direction and of values IA and IB,
respectively. Conductor B, in which the current is to be measured, coincides with the center of the
circular hall sensor array. n-hall sensors are evenly distributed on a circle of radius r.

The hall sensors can only measure the magnetic field perpendicular to its sensitive area.
The magnetic field density BAk generated due to a current IA passing in conductor A can be measured
by the kth hall sensor and is given by:

BAk =
µ0 IA

2πlk
· cos θk1 (1)

where:  lk =
√
(d cos θAB + r cos θk)

2 + (r sin θk − d sin θAB)
2

cos θk1 = − lk2+r2−d2

2lkr

(2)

From which cos θk1 can be rewritten as:

cos θk1 = − r + d cos(θk + θ)

lk
(3)

(θk + θ) ∈ (θ, θ + 2π), which means cos(θk + θ) and r + d cos(θk + θ) can be positive or negative;
hence, cos θk1 can be positive or negative. Adopting the average method would reduce the influence
of the current in conductor A on the overall readings of the n hall sensors.

The average magnetic field density value of n hall sensors due to a current in conductor A can be
obtained from (1) and (3), as given below:

BAav = −µ0 IA

2πn

n

∑
k=1

d cos(θk + θ) + r
d2 + r2 + 2dr cos(θk + θ)

(4)
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The average magnetic field density due to a current IB in conductor B can be given as:

BBav =
µ0 IB

2πr
(5)

The measurement error is:

Ie =
BAav
BBav

= − rIA

nIB

n

∑
k=1

d cos(θk + θ) + r
d2 + r2 + 2dr cos(θk + θ)

(6)

The method proposed in Reference [28] is based on a spatial harmonic analysis of the magnetic
field; the main content is about the analysis of the interference rejection algorithm. This method is
useful to reduce the crosstalk relative error. It first calculates the magnetic scalar potential in a polar
coordinate system, then the measurement error can be obtained by spatial Discrete Fourier Transform
(DFT). In this paper, the main content concerns the error analysis of adjacent current, off-center
influence, and the compensation method. From Equation (6), we determine that the measurement error
is the ratio of the magnetic field generated due to the external current and the magnetic field generated
due to the measured current. Moreover, the average method is adopted to reduce the interference of
the external current.

When IA and IB are equal in magnitude:

Ie =
BAav
BBav

= − r
n

n

∑
k=1

d cos(θk + θ) + r
d2 + r2 + 2dr cos(θk + θ)

(7)

In order to simplify the analysis, let the value of θ be 0◦. Then:

Ie =
BAav
BBav

= − r
n

n

∑
k=1

d cos θk + r
d2 + r2 + 2dr cos θk

(8)

where θk =
2kπ

n , k = 1, 2 . . . , n.
The following simulation analysis is based on Equation (8).

2.1. Correlation of the Measurement Error and the Number of Hall Sensors

Considering the physical configuration of two practical conductors, r is assumed to be in the
range of 0.1 m–0.4 m and d in the range of 1 m–3 m. Simulation results for r = 0.1 m and d = 1.5 m are
shown in Figure 2. It can be observed from Figure 2a that measurement error decreases substantially
when the number of hall sensors increases. The error is less than 10−8 when n ≥ 8.
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Figure 2. The measurement error and hall sensors position schematic: (a) the measurement error 
verses the hall sensors number; (b) the hall sensors position schematic. Hall sensors are distributed 
evenly in c and g with n = 2, in a, c, g, e with n = 4, and in a, b, c, d, e, f, g with n = 8. 

Figure 2. The measurement error and hall sensors position schematic: (a) the measurement error verses
the hall sensors number; (b) the hall sensors position schematic. Hall sensors are distributed evenly in
c and g with n = 2, in a, c, g, e with n = 4, and in a, b, c, d, e, f, g with n = 8.

2.2. Correlation of the Measurement Error and the Distance between the Conductors

In this study, r is set to 0.1 m and n is chosen to be 8 based on the investigation of the previous
section. Figure 3 shows the measurement error for a wide range of the distance between the two
conductors (d). As can be seen in the figure, the error is less than 10−8 when the distance between the
conductors is larger than 1 m.
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2.3. Correlation of the Measurement Error and the Circle Radius

This analysis is conducted for d = 1.5 m and n = 8. Results shown in Figure 4 reveal that the
measurement error is less than 0.003% for a circle radius less than 0.4 m and can be neglected.
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2.4. Analysis of the Measurement Error with d and r

In order to facilitate the investigation of the influence of r and d on the measurement accuracy,
Equation (8) is rewritten as:

Ie =
BAav
BBav

= − 1
n

n

∑
k=1

d
r cos θk + 1(

d
r

)2
+ 2 d

r cos θk

(9)

For n = 8, the measurement error as a function of the d/r ratio is shown in Figure 5. It can be seen
that the error is less than 0.05% when d/r > 2.5.
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From the above analysis, it can be seen that the measurement error is less than 0.05% when the
number of sensors n is larger than 8, the distance between the conductors is 2.5 times the radius of
sensor array, and IA and IB are equal in magnitude.

The average value of all hall sensors is used as the final measurement level. In this way, the
effect of the external magnetic field interference can be reduced. Figures 6–8 present the output
results of a single hall sensor for the three cases investigated above. Comparing these results with
the measurement error based on the average of all hall sensors (Figures 3–5) reveals that by using the
average value of the sensor array, the error can be effectively reduced.
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the sensor.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 14 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

the distance between the conductor and a single hall sensor（m）

m
e
a
s
u
re

m
e
n
t 

e
rr

o
r(

%
)

 

Figure 7. The measurement error of a single hall sensor verses the distance between the conductor 

and the sensor. 

     

2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

value of d/r

m
e
a
s
u
re

m
e
n
t 

e
rr

o
r（

%
）

 

Figure 8. The measurement error of a single hall sensor verses the d/r ratio. 

3. Error Analysis of off-Center Distance 

The off-center position of the primary conductor is the most common problem that may lead to 

a significant measurement error when a current transformer is utilized to measure the current. A 

similar issue takes place when hall sensors are employed in this section; therefore, a compensation 

method of the magnetic field strength is proposed to improve the measurement accuracy of the hall 

sensors. The detailed analysis is presented below. 

As shown in Figure 9, eight hall sensors are distributed evenly on a circle of radius r and center 

O at locations a, b, c, d, e, f, g, and h. When the primary conductor is shifted from O to O1, the 

off-center distance is l. 

When the primary conductor is off-center, the magnetic field measured by the sensors at each 

point are Ba, Bb, Bc, Bd, Be, Bf, Bg, and Bh, respectively, and the measured current can be calculated as: 

1

( )
2

8

a b c d e f g hB B B B B B B B
I r

      
   (10) 

Figure 8. The measurement error of a single hall sensor verses the d/r ratio.

3. Error Analysis of Off-Center Distance

The off-center position of the primary conductor is the most common problem that may lead to a
significant measurement error when a current transformer is utilized to measure the current. A similar
issue takes place when hall sensors are employed in this section; therefore, a compensation method
of the magnetic field strength is proposed to improve the measurement accuracy of the hall sensors.
The detailed analysis is presented below.

As shown in Figure 9, eight hall sensors are distributed evenly on a circle of radius r and center O
at locations a, b, c, d, e, f, g, and h. When the primary conductor is shifted from O to O1, the off-center
distance is l.

When the primary conductor is off-center, the magnetic field measured by the sensors at each
point are Ba, Bb, Bc, Bd, Be, Bf , Bg, and Bh, respectively, and the measured current can be calculated as:

I1 =
(Ba + Bb + Bc + Bd + Be + B f + Bg + Bh)

8
× 2πr (10)



Sensors 2018, 18, 1439 9 of 15
Sensors 2018, 18, x FOR PEER REVIEW  8 of 14 

a

b

g

e

Ba

Ba1

Bb

Bd

Bd1

o o1l

α

α

c

df

h Bb1

Bc(Bc1)

Be

Be1

BfBf1

Bh

Bh1

Bg(Bg1)

β

β

γ

γ

 

Figure 9. Schematic of an off-center primary conductor. 

The measurement error is: 

1
1 100%e

I I
I

I


   (11) 

From (10) and (11), the measurement error without any improvement approach can be given as: 

2 2

1 2 22 2 2 2

2 2 2 2 1 1
1

( ) 2 ( ) 2 ( ) 42 ( 2 ) 2 ( 2 )
e

r rl r rl r r
I

r l r l r lr r l rl r r l rl



   

  
              

 

(12) 

Suppose the radius of the circle is r = 0.1 m and the maximum value of the off-center distance l is 

5 mm. Then, the measurement error as a function of the off-center distance can be plotted as shown 

in Figure 10. It can be seen that the error increases as the off-center distance increases. The error is 

larger than 0.6% when the off-center distance is 5 mm. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

off-center distance（m）

m
e
a
s
u
re

m
e
n
t 

e
rr

o
r（

%
）

 

Figure 10. The measurement error verses the off-center distance. 

It is obvious from Figure 10 and Equation (11) that the measured current I1 is less than the real 

current I due to the error introduced by the off-center distance. From Figure 10, one can conclude 

that if the magnetic field strength measured by magnetic field sensors is stronger, the measured 

current I1 will be larger and closer to the real current I. Hence, a compensation method for the 

Figure 9. Schematic of an off-center primary conductor.

The measurement error is:
Ie1 =

I − I1

I
× 100% (11)

From (10) and (11), the measurement error without any improvement approach can be given as:

Ie1 = 1−
(

2r2−
√

2rl
2πr(r2+l2−

√
2rl)

+ 2r2+
√

2rl
2πr(r2+l2+

√
2rl)

+ r
π(r2+l2)

+ 1
2π(r−l) +

1
2π(r+l)

)
× πr

4 (12)

Suppose the radius of the circle is r = 0.1 m and the maximum value of the off-center distance l is
5 mm. Then, the measurement error as a function of the off-center distance can be plotted as shown in
Figure 10. It can be seen that the error increases as the off-center distance increases. The error is larger
than 0.6% when the off-center distance is 5 mm.
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It is obvious from Figure 10 and Equation (11) that the measured current I1 is less than the real
current I due to the error introduced by the off-center distance. From Figure 10, one can conclude that
if the magnetic field strength measured by magnetic field sensors is stronger, the measured current I1

will be larger and closer to the real current I. Hence, a compensation method for the magnetic field
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strength is proposed in this study to improve the measurement accuracy when the primary conductor
is off-center. The detailed analysis is as follows.

As shown in Figure 9, when the conductor is off-center, taking point a as an example, the magnetic
field strength measured at point a is Ba. To make Ba larger and measurement error smaller, we
compensated for the magnetic field strength at point a, turning Ba into Ba1.

As shown in Figure 11, the relationship between Ba and Ba1 is:

Ba1 =
Ba

cos α
(13)
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For the eight points sensors locations in Figure 9, the compensated magnetic fields can be
written as: 

Ba1 = Ba
cos α

Bb1 = Bb
cos β

Bc1 = Bc

Bd1 = Bd
cos β

Be1 = Be
cos α

B f 1 =
B f

cos γ

Bg1 = Bg

Bh1 = Bh
cos γ

(14)

In (13) and (14), the distance l can be obtained by the magnetic field strength at points c and g,
after which the angles of α, β, and γ can be calculated by using the radius r.

By using this compensation method, the improved equation for the measured current can be
given as:

I2 =
(Ba1 + Bb1 + Bc1 + Bd1 + Be1 + B f 1 + Bg1 + Bh1)

8
× 2πr (15)

The measurement error is:
Ie2 =

I − I2

I
× 100% (16)

From (15) and (16), the measurement error using the proposed improvement approach can be
given as:

Ie2 = 1− πr
4 ×

 1
π
√

l2+r2 +
1

π

√
(
√

2
2 r−l)

2
+(
√

2
2 r)

2
+ 1

π

√
(
√

2
2 r+l)

2
+(
√

2
2 r)

2
+ 1

2π(r−l) +
1

2π(r+l)

 (17)

Figure 12 shows a comparison of the measurement error as a function of the off-center distance
with and without the proposed compensation approach. By adopting the proposed compensation
approach, the measurement error can be effectively reduced to a level less than 0.1%, even with a
maximum off-center distance.
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4. Performance Test

To assess the robustness of the proposed approach, a circular magnetic field sensor array with a
radius of 0.1 m and eight hall sensors distributed evenly on a circle was developed and subjected to
the below analysis. The type of the hall sensor employed was EQ-730L, produced by AKM, Tokyo,
Japan, which has wide range of measurement and high sensitivity.

4.1. Influence of Magnetic Field due to a Parallel Conductor

The developed sensor array was utilized to measure a current of 600 A. The overall measured
value and the measurement error for various distances between the two conductors are shown in
Figure 13. It can be seen that when the distance was larger than 0.237 m, i.e., when d/r was larger
than 2.37, the measurement error was less than 0.1%. In the actual situation, the distance between
the two conductors is much larger than 0.237 m, so the accuracy can meet the requirements of the 0.1
accuracy class.Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 
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4.2. Off-Center Conductor Analysis

Figure 14 shows the possible alignment of the primary conductor that could be perfectly aligned
at the center of the sensor array or off-center. Measurements were conducted when the primary
conductor was off-center, and the results are listed in Table 1. Without the proposed compensation
approach, it can be seen that the measurement error was larger than 0.6%; however, it was reduced to
0.1% by the proposed approach.
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Figure 14. A schematic diagram for the primary conductor alignment with respect to the sensor array:
(a) primary conductor is on the array’s center; (b) primary conductor is off-center.

Table 1. Measurement results for various off-center distances before and after improvement.

Current of
Primary

Conductor (A)

Off-Center
Distance (mm)

Measurement
Results before

Improvement (A)

Measurement
Results after

Improvement (A)

Measurement
Error before

Improvement (%)

Measurement
Error after

Improvement (%)

600 1 599.85 599.99 0.025 0.001
600 2 599.34 599.93 0.110 0.012
600 3 598.74 599.89 0.210 0.019
600 4 597.42 599.78 0.430 0.036
600 5 596.16 599.63 0.640 0.062

4.3. Basic Accuracy Test

A basic accuracy test of the proposed current measurement method was carried out to measure
the wide range of current levels. Figure 15 shows that the measurement error was less than 0.1% when
the range of current was 20% to 120% of the investigated rated current (600 A).

Uncertainty in the measurements can be calculated as: s =

√
N
∑

k=1
(Iεk−Iε)

2

N−1
u = s√

N

(18)

where s is the experimental standard deviations, N is the number of tests, Iεk is the measurement error
of the kth test, Iε is the average of the all measurement errors, and u is the measurement uncertainty.

Measurements of the 600 A current were repeated 10 times, and the uncertainty in the
measurements was found to be only 0.033%.
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5. Conclusions

In order to overcome the deficiency of conventional transformers and improve the accuracy of DC
measurements, this paper proposes a current measurement method based on a circular magnetic field
sensing array. By employing eight hall sensors distributed evenly on a circle and using the average value
of these hall sensors as the final measured value, the interference generated by the external magnetic field
can be effectively reduced and the measurement accuracy can be improved. Also, a kind of hall sensor
compensation method is adopted to reduce the measurement error to less than 0.1%.
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