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Abstract: Lead is a particularly toxic heavy metal that is present above acceptable levels in the
water of many countries. This article describes a quick detection method of lead(II) ions using a
polyvinyl chloride (PVC)-based ion-selective membrane electrode containing an acridono-crown
ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II)
ions between the concentration range of 10−4 to 10−2 M, and can be used in the pH range of 4–7.
The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under
the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II) ions in
the presence of many additional metal ions.

Keywords: electrochemical sensor; lead detection; crown ether; molecular recognition;
ion-selective membrane

1. Introduction

Lead is a widely used heavy metal. Its use extends to acid batteries, solder, alloys, cable sheathing,
pigments, rust inhibitors, ammunition, glazes, and plastic stabilizers [1], so we must pay close attention
to its effects on the environment and living organisms. In terms of drinking water, the pipes of
plumbing systems contribute to a great degree of contamination [2,3].

Although the neurotoxicity of lead and its adverse effects on almost every organ in the body have
long been known [4,5], many people in developing countries are exposed daily to poisoning due to
water contamination. In untreated wastewater, the lead(II) ion could be present in dangerously high
concentrations over 100 ppm [6,7].

Many spectroscopic methods have been developed so far for heavy metal detection [8–13].
These days, inductively coupled plasma-based optical and mass spectroscopic techniques are the
most commonly used methods for simultaneous multi-element analysis. Although these methods
provide unparalleled sensitivity and low detection limit under laboratory conditions, they require
complicated instrumentation and specially trained personnel. People in developing countries are forced
to monitor the quality of water regularly; therefore, small, portable, user-friendly equipment is needed.

Chemical sensors offer the opportunity for an easy, fast, and selective analysis of a single
chemical species. In the perspective of the above applications, the development of new chemical
sensors is still relevant today. Piroxicam, pyrophosphate, amide, carboxamide, benzoic acid, sulfide
derivatives [14–24] and different types of supramolecular recognition agents (porphyrins, calixarenes,
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etc.) [25–29] have been efficiently used in several cases as electroactive sensing materials in lead
detection. The largest number of lead-selective ionophores found in the literature belongs to the family
of crown ethers [30–40]. In previous studies, acridono-crown ether derivatives (1, 2 and 3, see Figure 1)
were found to be highly selective for lead(II) ions due to the presence of a rigid, heteroaromatic
tricyclic ring [12,41]. We were motivated to synthesize a new, lead-selective acridono-crown ether-type
neutral ionophore, which could be incorporated into a polyvinyl chloride (PVC)-based membrane of a
potentiometric electrode. In order to increase the lipophilicity and simultaneously the solubility of the
ionophore in the PVC membrane [42,43], a decyl chain was incorporated into the macroring (see rac-4
in Figure 1).
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Figure 1. Macrocycles (1–3) possessing lead(II) ion selectivity and the newly synthesized ionophore rac-4.

2. Experimental Section

2.1. Apparatus and Chemicals

Infrared spectra were recorded on a Bruker Alpha-T FT-IR spectrometer (Bruker Corporation,
Billerica, MA, USA). 1H (500 MHz) and 13C (125 MHz) NMR spectra were obtained on a Bruker
DRX-500 Avance spectrometer (Bruker Corporation, Billerica, MA, USA). Mass spectra were recorded
on an Agilent-1200 Quadrupole LC/MS Instrument (Agilent, Santa Clara, CA, USA) using electrospray
ionization. UV-Vis spectra were recorded on a UNICAM UV4-100 spectrophotometer controlled by
VIZION 3.4 software (ATI UNICAM, Cambridge, UK). During spectrophotometric measurements, the
aqueous solution of the metal salts (50 mM, 50 µL) was added to the ligand and dissolved in acetonitrile
(0.1 mM, 2500 µL). All of the UV-Vis spectra were corrected by the blank sample prepared in the above
way without the metal salts. Elemental analyses were performed in the Microanalytical Laboratory
of the Department of Organic Chemistry, Institute for Chemistry, L. Eötvös University, Budapest,
Hungary. Melting points were taken on a Boetius micro-melting point apparatus, and were corrected.
Starting materials were purchased from Sigma-Aldrich Corporation (St. Louis, MO, USA, owned by
Merck KGaA) and used without further purification, unless otherwise noted. Solvents were dried
and purified according to well-established methods [44]. Silica Gel 60 F254 (Merck KGaA, Darmstadt,
Germany) plates were used for thin-layer cromatography (TLC). Ratios of solvents for the eluents are
given in volumes (mL/mL). Silica Gel 60 (70–230 mesh, Merck) was used for column chromatography.
For potentiometric measurements, a Philips IS-561 (Glasblaserei Moller, Zurich, Switzerland) electrode
body was used with an Ag/AgCl/3 M KCl // 1 M KCl double-junction reference electrode (Metrohm,
Herisau, Switzerland) in a Radelkis OP-208/1 precision pH-meter (Radelkis Ltd., Budapest, Hungary)
in all cases. 10−3 M lead(II) acetate was used as the inner filling solution during calibration, while in
the selectivity measurements, strongly discriminated 10−3 M lithium(I) acetate was applied.

2.2. Synthesis of the Ionophore

The synthesis of the lipophilic intermediate of the new racemic acridono-18-crown-6 ether that was
used as a ligand in the ion-selective membrane was carried out as outlined in Scheme 1. The racemic
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intermediate rac-10 was prepared according to the synthesis method of its pentaethylene glycol
analogue [45]. The diol rac-10 was reacted with 4-toluenesulfonyl chloride to form the ditosylate
ester rac-11. The acridine-4,5-diol (12) was obtained by a reported procedure from 3-methoxy-benzoic
acid [46].
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Scheme 1. Synthesis of racemic, the lipophilic key intermediate rac-11 of the new ionophore rac-4.

The macrocyclization of acridine-4,5-diol (12) and the ditosylate rac-11 in the presence of a weak
base, potassium carbonate in N,N-dimethylformamide (DMF), resulted in the macrocycle rac-4 (see in
Scheme 2).
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Scheme 2. Macrocyclization of the new electroactive ligand rac-4.

2.2.1. 1-(2-Hydroxyethoxy)dodecan-2-ol [rac-7]

1,2-Epoxydecane (10.00 g, 54.30 mmol) was slowly added to a stirred solution of 0.50 g
(22.22 mmol) sodium dissolved in 30.00 g (483.90 mmol) ethylene glycol at 150 ◦C under an Ar
atmosphere. This mixture was stirred at 150 ◦C for two days, and the yellow reaction mixture turned
brown. The mixture was cooled, and the excess ethylene glycol was distilled under reduced pressure.
The residue was dissolved in 100 mL of dichloromethane and 50 mL of 6% aqueous sulfuric acid at
0 ◦C. The organic phase was separated and washed with dichloromethane (4× 100 mL). The combined
organic phase was shaken with 100 mL of sodium hydrogencarbonate and 100 mL of saturated brine,
then dried over magnesium sulfate, filtered, and evaporated. The crude product was a viscous,
light-brown oil, which was purified by column chromatography on silica gel using acetone:hexane
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(1:4) as an eluent to give rac-7 (5.20, 39%) as a white solid. The physical properties of the purified
product concurred with those in the literature [47].

M.p.: 48 ◦C; Rf: 0.42 (SiO2 TLC, acetone:hexane 1:4); 1H-NMR (CDCl3): δ [ppm]: 0.87–0.91(t, J = 7 Hz,
3H); 1.27–1.31 (m, 15H); 1.41–1.48 (m, 3H); 3.34–3.36 (m, 1H); 3.38–3.55 (m, 1H); 3.59–3.78 (m, 2H); 3.80–3.83
(m, 3H); MS: Molecular weight calculated for C14H30O3: 246.22. Found m/z: 247.3 (M + H)+.

2.2.2. 2-(2-{[2-(Carboxymethoxy)dodecyl]oxy}ethoxy)acetic Acid [rac-8]

Intermediate rac-7 (4.50 g, 18.30 mmol) in 15 mL t-butyl alcohol was added to a stirred solution
of 4.00 g (102.15 mmol) potassium in 120 mL of t-butyl alcohol at 80 ◦C under Ar. The mixture was
refluxed for 1 h. Then, previously distilled chloroacetic acid (4.35 g, 45.75 mmol) in 15 mL of t-butyl
alcohol was added dropwise over 30 min. The resulting mixture was stirred and refluxed for three
days. The solvent was evaporated, and the residue was dissolved in 100 mL of water. The aqueous
phase was washed with 200 mL of ethyl acetate. The pH was adjusted to 2, with concentrated HCl
solution at 0 ◦C. The aqueous phase was shaken with ethyl acetate (3× 200 mL). The combined organic
phase was washed with 200 mL of saturated brine, and then dried over magnesium sulfate, filtered,
and the solvent was evaporated under reduced pressure to give 6.50 g brown oil of the product rac-8.
This compound was used without further purification to prepare rac-9.

2.2.3. Methyl 2-(2-{[2-(2-methoxy-2-oxoethoxy)dodecyl]oxy}ethoxy)acetate [rac-9]

The dicarbonic acid rac-8 (6.50 g) was dissolved in 80 mL of methanol. To the stirred solution,
thionyl chloride (15.00 g, 125.50 mmol) was added dropwise over 2 h at 0 ◦C. The mixture was stirred at
room temperature (r.t.) for 24 h; then, the methanol was removed under reduced pressure. The residue
was dissolved in 100 mL of ethyl acetate, then washed with 50 mL of sodium hydrogencarbonate
and 50 mL of saturated brine. The organic phase was dried over anhydrous magnesium sulfate.
The solvent was evaporated, and the crude product was purified by column chromatography on silica
gel adsorbent, using ethyl acetate:hexane (1:4) as eluent. The dimethyl ester rac-9 (5.10 g, 73%) was a
brown oil.

Rf: 0.22 (SiO2 TLC, ethyl acetate:hexane 1:4); 1H-NMR (CDCl3): δ [ppm]: 0.89–0.92 (t, J = 7 Hz, 3H);
1.12–1.40 (m, 15H); 1.52–1.61 (m, 3H); 3.56–3.57 (m, 3H); 3.66–3.67 (m, 2H); 3.72–3.73 (m, 2H); 3.74–3.76
(s, 3H); 3.76–3.78 (s, 3H); 4.17–4.20 (m, 2H); 4.27–4.32 (m, 2H); MS: Molecular weight calculated for
C20H38O7: 390.26. Found m/z: 391.3 (M + H)+.

2.2.4. 2-(2-{[2-(2-Hydroxyethoxy)dodecyl]oxy}ethoxy)ethan-1-ol [rac-10]

Dimethyl ester rac-9 (3.50 g, 8.96 mmol) was dissolved in 30 mL of THF. The solution was slowly
added to a previously prepared, stirred mixture of 0.85 g (22.37 mmol) lithium aluminum hydride
in 30 mL of THF at 0 ◦C under Ar. The resulting mixture was refluxed for three days. The mixture
was cooled to 0 ◦C, and the excess reducing agent was hydrolyzed with a mixture of 1 mL of aqueous
ammonium chloride (20 m/m%) and 2 mL of sodium hydroxide (20 m/m%). The resulting mixture
was further stirred at r.t. for one day, then the precipitate was filtered and washed with diethyl ether
(3 × 100 mL). The filtrate was separated. The aqueous layer was saturated with sodium chloride, and
then extracted with diethyl ether (3 × 100 mL). The combined organic phase was washed with 100 mL
of saturated brine, and then dried over magnesium sulfate, filtered, and the solvent was evaporated.
The crude product was chromatographed on silica gel using ethyl acetate as an eluent. The diol rac-10
(2.13 g, 71%) was a colorless oil.

Rf: 0.31 (SiO2 TLC, ethyl acetate); 1H-NMR (CDCl3): δ [ppm]: 0.85–0.88 (t, J = 7 Hz, 3H); 1.12–1.30
(m, 18H); 3.31–3.39 (m, 3H); 3.50–3.55 (m, 4H); 3.66–3.70 (m, 3H); 3.87–4.05 (m, 4H); 4.09–4.22 (m, 1H);
MS: Molecular weight calculated for C18H38O5: 334.27. Found m/z: 335.3 (M + H)+.
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2.2.5. 1-Methyl-4-[(2-{[1-(2-{2-[(4-methylbenzenesulfonyl)oxy]ethoxy}ethoxy)dodecan-2-
yl]oxy}ethoxy)sulfonyl]benzene [rac-11]

To a stirred solution of rac-10 diol (1.75 g, 5.24 mmol) in dichloromethane (15 mL) and potassium
hydroxide solution (20 mL, 50 m/m%), 4-toluenesulfonyl chloride (3.00 g, 15.67 mmol) that had been
dissolved in 15 mL of dichloromethane was added dropwise over 15 min at 0 ◦C. After addition,
the mixture was stirred at r.t. for two days. The pH of the reaction mixture was adjusted to 7 with
aqueous HCl solution (10 m/m%). The phases were separated, and the aqueous phase was extracted
with dichloromethane (3 × 100 mL). The combined organic phase was dried over magnesium sulfate,
filtered, and the solvent was removed under reduced pressure. The crude product was purified by
column chromatography on silica gel using ethyl acetate:hexane (1:4) mixture as an eluent to get rac-11
(2.98 mg, 89%) as a colorless, viscous oil.

Rf: 0.75 (SiO2 TLC, ethyl acetate:hexane 1:1); 1H-NMR (CDCl3): δ [ppm]: 0.85–0.88 (t, J = 7 Hz,
3H); 1.24–1.35 (m, 18H); 2.45 (s, 6H); 3.35–3.41 (m, 3H); 3.49–3.54 (m, 4H); 3.64–3.68 (m, 3H); 3.77–4.10
(m, 1H); 4.11–4.14 (m, 4H); 7.25–7.33 (m, 4H); 7.77–7.79 (m, 4H); 13C-NMR (CDCl3): δ [ppm]: 14.29;
21.80; 21.80; 22.85; 25.56; 29.51; 29.74; 29.80; 29.88; 31.88; 32.08; 67.83; 68.87; 69.45; 69.88; 70.82; 70.90;
74.47; 79.78; 128.13; 129.95; 130.01; 133.18; 133.31; 133.31; 144.85; 144.99; IR (KBr) υmax: 2923, 2854, 1598,
1454, 1355, 1189, 1175, 1120, 1096, 1011, 917, 814, 772, 662, 553 cm−1; MS: Molecular weight calculated
for C32H50O9S2: 642.29. Found m/z: 643.3 (M + H)+; Elemental analyses calculated for C32H50O9S2: C,
59.79; H, 7.84; S, 9.97. Found: C, 59.92; H, 7.81; S, 10.01.

2.2.6. 10-Decyl-6,9,12,15,18-pentaoxa-25-azatetracyclo[21.3.1.05,26.019,24]heptacosa-1,3,5(26),19(24),
20,22-hexaen-27-one [rac-4]

A mixture of acridine-4,5-diol (7) (0.30 g, 1.32 mmol), decyl-substituted tetraethylene glycol
ditosylate rac-6 (1.01 g, 1.58 mmol), finely powdered anhydrous potassium-carbonate (1.45 mg,
10.50 mmol), and dry DMF (50 mL) were stirred vigorously under Ar at r.t. for 10 min, then kept
at 50 ◦C for a week. The solvent was removed under reduced pressure, and the residue was taken
up in a mixture of ice water (75 mL) and ethyl acetate (150 mL). The phases were shaken well
and separated. The aqueous phase was extracted with ethyl acetate (3 × 100 mL). The combined
organic phase was dried over magnesium sulfate, filtered, and the solvent was evaporated under
reduced pressure. The crude product was purified by column chromatography on silica gel using
methanol:dichloromethane (1:50) mixture as an eluent to give rac-4 (132 mg, 19%) as a white-yellow solid.

M.p.: >360 ◦C; Rf: 0.75 (SiO2 TLC, methanol:dichloromethane 1:10); 1H-NMR (CDCl3): δ [ppm]:
0.79–0.82 (t, J = 7 Hz 3H); 1.17–1.47 (m, 18H); 3.43–3.62 (m, 2H); 3.65–3.95 (m, 9H); 4.17–4.34 (m, 4H);
7.10–7.20 (m, 2H); 7.40–7.90 (m, 2H); 8.20–8.30 (m, 2H); 9.85 (s, NH). 13C-NMR (CDCl3): δ [ppm]: 14.11;
22.69; 25.55; 25.71; 29.33; 29.58; 29.61; 29.71; 31.74; 31.92; 68.53; 69.27; 69.65; 70.44; 70.63; 71.41; 79.50;
79.81; 112.17; 112.53; 118.63; 118.69; 120.76; 120.81; 122.03; 122.03; 131.53; 131.58; 146.90; 147.09; 177.83;
IR (KBr) υmax: 3421, 3070, 3031, 2924, 2851, 1626, 1609, 1533, 1489, 1447, 1360, 1268, 1223, 1120, 1081,
1071, 924, 821, 742, 692, 599 cm−1; MS: Molecular weight calculated for C31H43NO6: 525.31. Found
m/z: 526.4 (M + H)+; Elemental analyses calculated for C31H43NO6: C, 70.83; H, 8.24; N, 2.66. Found:
C, 70.93; H, 8.28; N, 2.69.

2.3. Preparation of Plasticized PVC Membranes

To incorporate the ligand rac-4 into the potentiometric sensor, the following membrane
composition was made: 1 mg of ionophore rac-4, 33 mg of PVC powder (Corvic S 704, ICI), 66 mg
of 2-nitrophenyl-octyl ether (o-NPOE) polar plasticizer, or dioctyl sebacate (DOS) apolar plasticizer,
and either one or two equivalents (regarding the ionophore) potassium tetrakis (4-chlorophenyl)
borate lipophilic ionic additive were dissolved in 2 mL of THF. This solution was placed into a 20-mm
diameter teflon ring. After evaporation of the solvent, a 7-mm diameter disk was cut out from the
membrane and incorporated into the electrode body.
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2.4. Potentiometric Measurement

All of the potentiometric measurements were carried out at room temperature. The electromotive
force (EMF) of the cell was measured by varying the concentration of the stirred test solutions in
the range 1.0 × 10−7 to 1.0 × 10−1 M by serial dilution. During calibration, the EMF values were
recorded both with increasing and decreasing concentrations. Each point of the diagrams is from
three independent measurements. The deviation was below ±0.5 mV in every case except for the
measurements that were out of the working pH range, or over 20% organic content. Between two
different sample solutions, the electrode pair was washed with distilled water, and then wiped
off. All of the pH adjustments were made with concentrated HCl or NaOH. The response time of
the membrane sensors—i.e., the time in which stable and constant potentials were recorded—was
determined by measuring the potentials at different times. The potential values were recorded 10 s
after immersing the electrode into the test solution.

Potentiometric selectivity coefficients were determined by the separate solution method based
on the Nikolsky–Eisenman equation from the EMF data measured for metal (Li+, Na+, K+, Ag+,
Mg2+, Cd2+, Zn2+, Co2+, Ca2+, Cu2+, Pb2+) acetate, Hg2+ chloride or perchlorate salts of protonated
isopropylamine (iPrNH3

+) and 1-(1-naphthyl)ethylamine (NEAH+).
Activity coefficients were calculated using the Debye–Hückel equation, EMF data were corrected

by the diffusion potentials estimated with the Henderson equation.

3. Results and Discussion

3.1. Spectrophotometric Studies of Ionophore rac-4

Due to the presence of the chromophore acridone unit, the complexing ability of the ionophore
rac-4 could be studied using UV-Vis spectroscopy by adding different metal salts in a molar ratio of 10:1
to the solution of the ligand. As shown in Figure 2, the ionophore rac-4 shows an increased absorbance
only in the presence of lead(II) ions. The selectivity of macrocycle 3 (see Figure 1) toward various metal
ions had been previously studied with the same method under the same conditions, and lead(II) ion
selectivity was observed [41]. It can be concluded that the complex formation was not influenced by
the introduction of the decyl group into the macroring of the parent crown ether 3 (Figure 2).
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3.2. Potentiometric Characterization of the Electrode Membranes Containing Ionophore rac-4

Initially, the optimal composition of the membrane was determined following the literature.
Focused on divalent ion selectivity, polar plasticizers are generally preferred [48]. The added lipophilic
salt behaves as a cation-exchanger and provides permselectivity [49]. The optimal amounts of
lipophilic additives depend on both the charge of the primary ion and the ionophore–ion complex
stoichiometry [50–52]. First, the PVC based ion-selective membrane containing ionophore rac-4
was plasticized with o-NPOE. Two equivalents (regarding the ionophore) of potassium tetrakis
(4-chlorophenyl) borate were used.

The electrode was calibrated in different concentrations of lead(II) acetate solutions. The calibration
curve is shown in Figure 3. The lower detection limit was determined according to the definition [48].
To the linear range of the calibration curve (marked with a red line in Figure 3), a linear regression line
(marked with a blue line in Figure 3) was fitted. The coefficient of determination (R2) was over 0.99.
The ordinate value of the intersection of the regression line and the constant potential (marked with a
horizontal blue line in Figure 3) is the detection limit.
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Figure 3. Calibration curve of the membrane electrode containing crown ether ionophore rac-4 and
2-nitrophenyl-octyl ether (o-NPOE) as plasticizer with lead(II) acetate in aqueous solution.

The electrode gives a near-Nernstian response to lead(II) ions with a slope of 26.9 mV/decade in
the concentration range 10 × 10−4 to 10 × 10−2 M with a detection limit of about 7.9 × 10−6 M, and a
low response time of 5 s. The deviation was below ±0.5 mV.

The selectivity of the electrode for various metal ions was assessed by recording the EMF response
in the separate solutions of the measured and interfering ions. The difference in the EMF values
was used to determine the slope of the calibration curve and calculate the potentiometric selectivity.
The potentiometric selectivity coefficients reflect the ratio of the stability constants of the ionophore
with the different ions. The potential response of the electrode was measured using 10−3 M solutions of
metal ions and protonated primary amines. The potentiometric selectivity coefficients of the electrode
for different interfering ions standardized on lead(II) ion are shown in Table 1.

We have found that the new ionophore rac-4 showed good selectivity toward the lead(II) ion.
The mercury(II) ion was the only one that interfered to a significant extent. The macrocycle rac-4
showed significant preference to protonated primary amines, especially aralkylamines, over all the
metal ions, including lead. These results are well correlated with former studies on crown ethers
containing a heterocyclic unit, due to the strong
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Table 1. Potentiometric selectivity of the polyvinyl chloride (PVC)-based electrode membrane
containing ligand rac-4 and o-NPOE as the plasticizer for different metal ions and protonated
primary amines.

Ions logKPb,j

Li+ −4.60
Na+ −4.53
K+ −3.86

Ag+ −3.45
Mg2+ −2.45
Cd2+ −2.34
Zn2+ −2.30
Co2+ −2.27
Ca2+ −2.04
Cu2+ −2.04
Hg2+ −0.56
Pb2+ 0.00

iPrNH3
+ 2.31

NEAH+ 8.84

The ionophore rac-4 was also incorporated into a PVC membrane. In spite of the recommendation
given in the literature [48,50–52], apolar plasticizer dioctyl sebacate and just one equivalent (regarding
the ionophore) of lipophilic ionic additive were used. The calibration diagram can be seen in Figure 4.
The calibration curve is indicated in red. The lower detection limit was determined according to the
definition [48]. The R2 coefficient of the fitted regression line (marked with a blue line in Figure 4) was
over 0.99.
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Figure 4. Calibration diagram of the PVC-based electrode membrane containing crown ether ionophore
rac-4 and dioctyl sebacate (DOS) plasticizer with lead(II) acetate.

The slope of the calibration curve was 28.9 mV/decade. The ideal operating range of concentration is
10 × 10−4 to 10 × 10−2 M, with a detection limit of about 4.0 × 10−6. The deviation was below±0.5 mV.

The selectivity ratios toward monovalent and divalent ions measured using 10−3 M solutions of
metal ions and protonated primary amines are presented in Table 2.

The results show that this ion-selective membrane composition was superior to the previous one
with the o-NPOE plasticizer, as it showed a Nernstian response and the obtained selectivity values
better; however, it has a slower response time of about 30 s. Modification of only one of the two
investigated factors had no significant influence on the membrane characteristics.
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Table 2. Potentiometric selectivity of the PVC-based electrode membrane containing ligand rac-4 and
DOS as a plasticizer for different metal ions and protonated primary amines.

Ions logKPb, j

Li+ −5.11
Na+ −4.98
K+ −4.39

Ag+ −4.08
Mg2+ −2.91
Zn2+ −2.91
Co2+ −2.87
Cd2+ −2.80
Ca2+ −2.56
Cu2+ −2.46
Hg2+ −0.83
Pb2+ 0.00

iPrNH3
+ 3.49

NEAH+ 10.51

3.3. Response and Lifetime

The PVC-based ion-selective electrode membrane containing rac-4 crown ether as ionophore has
similar operating characteristics as other lead(II) ion-selective liquid membrane electrodes reported in
the literature [30–40], except that the membrane, containing o-NPOE plasticizer and two equivalents
of lipophilic ion-exchanger, exhibits an outstandingly low response time of 5 s. Potentials remained
constant for about 1 min, after which a slow drift was observed. The sensor molecule rac-4 is chemically
stable. During the application, the ionophore does not leach out from the membrane due to its
extremely high lipophilicity. For different measurements (calibration, selectivity, determination, etc.),
we did not use the same membrane to avoid disturbing effects. The same membrane was applied
for up to 30 measurements. No change was observed in its characteristics during the investigations.
The membrane could be stored over a period of three months without significant change in the
calibration parameters.

3.4. Effect on pH and Adding Organic Solvents

As the sensor is intended to be used in aqueous medium, further investigations were carried out
to define the optimal pH range of the application. Therefore, the potential response of the electrode
was measured in 10−3 M lead acetate solution while varying its pH. Figure 5 shows the effect of pH on
the response.
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Based on our results, the EMF is independent of the pH within the range of 4–8. We observed
increasing potential values under basic conditions. In our opinion, this phenomenon can be
explained by precipitation, which causes the lead(II) hydroxide adhesion to the membrane surface.
Above neutral pH, the effects of precipitation have an influence on the potential response. Therefore,
the electrode cannot supply reliable data regarding lead(II) ion concentration at pH > 7. It has
been previously demonstrated [53] that a prototropic tautomerization equilibrium takes place during
complex formation in the case of acridono-crown ethers. This equilibrium is probably not independent
of the pH. Therefore, pH can also influence the electrode response by its effect on the sensor molecule.
The upper limit of the working pH range is 7.

In more acidic medium, the electrode shows deviation in its behavior due to the protonation of
the sensor molecule.

We have investigated the potential response of the electrode in aqueous/organic solvent mixtures
as well at 10−3 M lead(II) acetate concentration. The application of the electrode in a non-aqueous
medium is feasible below 20% organic content (investigated with acetone or methanol); above this
limit, shifting of the potential values takes place.

3.5. Analytical Application of the Membrane Electrode under Competitive Conditions

In practical applications, it is hard to find monocomponent systems. Despite this, studies on
applications under competitive conditions are rarely found in the literature. To demonstrate the
utility of the sensor, further measurements were investigated by using the electrode under competitive
conditions for a realistic multicomponent sample. Solutions contaminated by heavy metal ions usually
contain various mineral salts, and the cations of these salts influence the results.

The chosen test sample was mineral water, which reportedly contained the following ions at these
concentrations: Na+ (19 mg/L), Mg2+ (23 mg/L), and Ca2+ (59 mg/L). The mentioned concentrations
are about 10−3 M, which concur with the functional concentration range of the electrode. During the
experiment, lead(II) ion was added to the mineral water in different concentrations, and changes in the
EMF were recorded. The results are shown in Figure 6, “Measured data”, curve (c). Curve (a) shows
the calibration curve in the aqueous solution of lead, while line (d) indicates the potential response of
the mineral water. The deviation was below ±0.5 mV in all of the cases.Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 
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It is possible to accurately predict the potential response of ion selective electrodes, even in
mixtures of metal ions with different charges. The equation below describes the mixed ion response
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behavior of polymeric membrane-based ion-selective electrodes containing lipophilic ionophores and
optimal amounts of other additives [54,55].
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where the selectivity coefficient Kpot

I,i is given by the following equation, where I represents the primary
ion, and i represents the monovalent and divalent interfering ions.

Kpot
I,i = KI/K

zI/zj

i

We have used this equation to predict the response of our electrode in the mineral water at
different added concentration levels of lead(II) ion. The obtained values are plotted in Figure 6 curve
(b). The predicted response is in a good agreement with the measured values in the concentration
range between 10−4 and 10−2 M. The response of the electrode containing the optimized membrane is
predictable within a 5% error limit with the equation above in the working concentration range.

In the concentration range of 10−4 to 10−2 M, the sensor is suitable for the selective and
quantitative analysis of lead(II) ions, despite the presence of interfering ions.

4. Conclusions

We have synthesized and characterized a new crown ether rac-4 with the aim of using it as an
electroactive ionophore in potentiometric sensing. We have demonstrated by UV-Vis spectroscopy
that the presence of the decyl chain attached to the macroring had no influence on complexation of
the macrocycle.

The new sensor molecule was incorporated into a plasticized PVC membrane using different
membrane compositions. The linearity and the selectivity of the ion-selective electrode toward different
metal and protonated primary amines were investigated. The values of the selectivity coefficient show
that the electrode is highly selective to lead(II) ion, even in the presence of potentially interfering
metal ions, but altogether has a significant preference for protonated primary amines. The linear
concentration range is from 10−4 to 10−2 M, and the working pH range is from 4 to 7. The allowed
upper limit of organic solvents in the solutions of samples is 20%. Under these conditions, the sensor
is able to perform selective and quantitative analysis of lead(II) ions with a low response time of
5 s. The applicability of the sensor for the quantitative determination of lead has been demonstrated
in mineral water, which is a multicomponent sample containing relatively high levels of possible
interfering ions.
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