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Abstract: Early identification of failures in rolling element bearings is an important research
issue in mechanical systems. In this study, a reliable methodology for bearing fault detection is
proposed, which is based on an optimal sub-band selection scheme using the discrete wavelet packet
transform (DWPT) and envelope power analysis techniques. A DWPT-based decomposition is first
performed to extract the characteristic defect features from the acquired acoustic emission (AE)
signals. The envelope power spectrum (EPS) of each sub-band signal is then calculated to detect
the characteristic defect frequencies to reveal abnormal symptoms in bearings. The selection of an
appropriate sub-band is essential for effective fault diagnosis, as it can reveal intrinsically explicit
information about different types of bearing faults. To address this issue, we propose a Gaussian
distribution model-based health-related index (HI) that is a powerful quantitative parameter to
accurately estimate the severity of bearing defects. The most optimal sub-band for fault detection
is determined using two dimensional (2D) visualization analysis. The efficiency of the proposed
approach is validated using several experiments in which different defect conditions are identified
under variable, and low operational speeds.

Keywords: fault detection; sub-band analysis; DWPT; health-related index (HI); envelope power
spectrum (EPS); bearing defects

1. Introduction

Induction motors are the most commonly used rotating machines in industrial applications due to
their commercial availability, reliability, and reasonable cost. However, they are often used in extreme
working conditions, which can cause unexpected failures leading to unanticipated interruptions in
industrial production. Hence, the early and accurate detection and identification of various faults
can be helpful in preventing unexpected failures in induction machines. Rolling element bearings
account for more than 50% of faults in rotating machinery [1]. Bearings are critical components in
the motors of wind turbines, helicopters, gearboxes, and automobiles; they help make the relative
movement of elements in systems smoother. Bearing defects are common and often arise due to
adverse conditions in the operating environment, corrosion, problems with lubrication, assembly,
misalignment, and overloading [1]. Consequently, bearing defects are the primary cause of abrupt
mechanical breakdowns in the industry, which can lead to large economic losses or even result in
catastrophic consequences [2]. Therefore, the precise detection of incipient faults in rolling element
bearings is required for reliable condition monitoring and maintenance of industrial machines.

Advanced data acquisition and processing techniques have been developed for effective and
early fault detection and identification in critical systems. In existing approaches, bearing failures have
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been successfully diagnosed using different signal processing methods to extract characteristic defect
features via vibration analysis [3–5], current signature analysis of induction motors [6–8], and stray
flux measurement [9]. These techniques have been extensively applied and have been very effective in
detecting and identifying various bearing faults. Moreover, stray fluxes radiating out of the induction
motor have been used to detect various defects. The stray flux radiated by an induction motor can be
affected by the presence of different faults. The correct measurement and correlation of changes in
stray flux with different faults has been used for the identification of different faults in the induction
motor. However, vibration analysis and stator current signature analysis are effective for bearing
fault diagnosis only at high rotational speeds. These vibration and stator current analysis based
techniques are ineffective at capturing defect symptoms at low rotational speeds. To overcome this
problem, acoustic emission (AE)-based techniques have been exploited for low-speed bearing fault
diagnosis [10,11]. AE signals can be used to capture low-energy fault signatures that are characteristic
of incipient defects at low operating speeds [12,13]. This advantage makes AE-based processing
methods more attractive and useful in many applications. Hence, a reliable technique is presented in
this paper for the diagnosis of incipient bearing defects at low rotational speeds using AE analysis.

Early bearing faults are mainly detected by analyzing the acquired AE signals for abnormal
symptoms. When a rolling element passes across a defect on the bearing surface, an impulse is
generated. These impulses are generated periodically according to the frequency with which the rolling
elements pass over the defect on the bearing surface, exciting higher frequency bearing resonances
in the process [14]. These higher frequency bearing resonances act as carrier, and are amplitude
modulated by the modulating signal, i.e., the defect signal. The defect signal is the series of periodic
impulses generated when rolling elements of the bearing pass over a defect on the bearing surface.
The AE sensor captures these amplitude modulated signals. The detection of defect signals and hence
the diagnosis of different defects in bearings requires the use of demodulation techniques. Envelope
power analysis is the most effective technique for signal demodulation and hence the detection of
defect frequencies associated with each type of localized bearing defect [15,16]. These modulated
defect frequencies, which can be used to detect incipient bearing defects, can appear in different
sub-bands of the envelope power spectrum (EPS). It is very difficult to directly identify these defect
frequencies as they typically have low amplitudes and are easily disturbed by other noise components.
Therefore, signal-processing approaches, such as short time Fourier transform (STFT) [17], wavelet
transform (WT) [18,19], and band-pass filter banks [20], have been explored along with EPS analysis
for the detection of these defect frequencies and hence localized defects in bearings. In this paper,
discrete wavelet packet transform (DWPT)-based decomposition is first performed on the condition
monitoring AE signals for bearings. Then, the EPS is calculated to detect intrinsic information about
the bearing faults. The DWPT is better than the discrete wavelet transform (DWT) as it provides
uniform resolution in both the high- and low-frequency domains to render a more informative and
efficient description of the original signal [21]. However, there is still no general consensus as to which
sub-band is optimal for reconstruction and the calculation of the EPS, which can then be used for
the diagnosis of different bearing defects. In general, for the EPS obtained from sub-band signals,
kurtogram-based methods have been widely used to discover the appropriate sub-band that contains
useful information intrinsic to various bearing defects [16,22,23]. However, these techniques are not
always effective in identifying the optimal sub-band due to the inclusion of other components, such as
the harmonics of the operating frequency and noise frequencies in their spectra. To overcome this
problem, we present an advanced approach for assessing the severity of defects in bearings by using a
Gaussian distribution model (GDM)-based health-related index (HI). It is computed by calculating the
ratio between defective spectral components and initial spectral components in the EPS. The HI is a
meaningful and effective metric to estimate the severity of bearing defects. Furthermore, an analysis
tool for two dimensional (2D) visualization, which represents the HI value-based fault degrees of
sub-bands, is exploited to select the optimal sub-band for bearing fault detection.
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This paper proposes a reliable fault detection method for rolling element bearings by combining
DWPT decomposition and GDM-based envelope analysis of AE signals. The main contributions of
this paper are:

• A DWPT-based sub-band analysis is performed to extract the characteristic features of different
bearing faults from the acquired AE signals. The symptoms of incipient bearing defects are
detected by calculating the EPS of each sub-band signal at different decomposition levels.
Furthermore, a GDM-based HI calculation is presented for quantifying the severity of defects.

• The HI values of fault components are computed by determining the Gaussian windows around
the characteristic defect frequencies and their harmonics. A 2D visualization tool, representing the
HI values obtained from the EPS, is used to find the most informative sub-band with the highest
HI value for fault detection.

• The efficiency of the proposed bearing fault detection approach is validated using different defect
conditions under low and variable rotational speeds.

The rest of this paper is organized as follows: Section 2 describes the data acquisition and bearing
characteristic frequencies. Section 3 presents the proposed bearing fault detection scheme with optimal
sub-band signal analysis via the proposed GDM-based evaluation of defect severity. Section 4 discusses
the experimental results. Finally, Section 5 concludes this paper.

2. Bearing Fault Data Acquisition System

A machinery fault simulator is set up to study the different defect types in bearings, as illustrated
in Figure 1a. The fault simulator has two shafts, i.e., a drive end shaft and a non-drive end shaft,
which are connected to each other through a gearbox on the inside. Both ends of the shafts are fastened
using FAG NJ206-E-TVP2 (NSK, Seoul, Korea) cylindrical rolling element bearings. In addition,
the non-drive end shaft can be loaded using a fan with two adjustable blades. The fan is connected to
the shaft via a belt and pulley. The acoustic emission (AE) activity generated by the seeded defects in
bearings is captured using an AE sensor, WSα, which is fixed on top of the bearing housing, as shown
in Figure 1a. Moreover, this AE sensor is directly connected to a PCI board system with 2-channels
for data acquisition to digitize the obtained continuous AE signals for further processing. Table 1
lists the detailed specifications of the AE sensor-based data acquisition system. In this paper, the AE
signals related to bearing defects are recorded at a sampling frequency of 250 kHz for a duration of
5 s each. The bearings used in this study are seeded with defects at three different locations on the
bearing surface, i.e., a crack on the outer race (BCO), a crack on the inner race (BCI), and a crack on the
roller (BCR), as illustrated in Figure 1b. Each time a roller strikes a fault on the bearing surface, and an
impulse is generated. Since the rollers rotate at a fixed frequency, these impulses are generated at a
frequency that is characteristic to each defect type. These characteristic defect frequencies are the ball
pass frequency of the outer race (BPFO), ball pass frequency of the inner race (BPFI), two times the ball
spin frequency (2 × BSF), and the fundamental train frequency (FTF) corresponding to the rotational
speed of the cage, as defined in [15]. These defect frequencies can be calculated using Equation (1)
for a bearing of known geometry and rotating at a constant rotational frequency. The values of these
defect frequencies for the bearings used in this study are given in Table 2.

These defect frequencies depend upon the rotational speed of the bearing, the bearing geometry,
and fault location, which are defined using the following parameters in Equation (1): the number of
balls (nroller), shaft speed in Hertz (Fr), contact angle of the ball and races (α), roller (or ball) diameter
(Bd), and pitch diameter (Pd). These characteristic defect frequencies can be searched for in the envelope
power spectrum of the AE signal for the detection of corresponding defects in bearings. In this study,
the AE signals for each defect type are recorded under variable rotating speeds.
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Figure 1. (a) AE data acquisition system; and (b) Primary defect conditions of bearing. 

Table 1. Detailed specifications for the AE sensor-based data acquisition. 

AE sensor (WSα) 
+ Peak sensitivity (V/µbar): −62 dB 
+ Operating frequency range: 100–900 kHz 
+ Resonant frequency: 650 kHz 

PCI 2-chanel AE board 
system 

+ ADC: 18-bit 40 MS/s per channel maximum 
+ Frequency response: 1 kHz–3 MHz (at −3 dB points) 
+ Sample rates: 100 KS/s, 200 KS/s, 500 KS/s, 1 MS/s, 2 MS/s, 5 

MS/s, 10 MS/s, 20 MS/s, and 40 MS/s are selectable 
KS/s: Kilo-Samples per second; MS/s: Mega-Samples per second. 

Table 2. The magnitudes of characteristic defect frequencies at various speeds. 

Crack Size (mm) 
Shaft Speed (r/min) 

Defect Frequencies (Hz) 
Length Width Depth BPFO BPFI 2 × BSF FTF 

12 0.49 0.50 
300 26.21 38.79 24.87 2.02 
400 34.95 51.72 33.15 2.69 
500 43.68 64.65 41.44 3.36 

3. The Proposed Methodology for Bearing Fault Detection 

The proposed methodology for bearing fault detection is described in Figure 2. The AE signal 
for each bearing defect is decomposed into a set of sub-bands using the DWPT. These sub-bands are 
then reconstructed using the inverse DWPT, and for each reconstructed signal the envelope power 
spectrum is constructed. The envelope power spectrum is constructed by first calculating the Hilbert 
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transform of the analytic signal is then calculated to get the envelope power spectrum (EPS) of the 
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Figure 1. (a) AE data acquisition system; and (b) Primary defect conditions of bearing.

Table 1. Detailed specifications for the AE sensor-based data acquisition.

AE sensor (WSα)
+ Peak sensitivity (V/µbar): −62 dB
+ Operating frequency range: 100–900 kHz
+ Resonant frequency: 650 kHz

PCI 2-chanel AE board system

+ ADC: 18-bit 40 MS/s per channel maximum
+ Frequency response: 1 kHz–3 MHz (at −3 dB points)
+ Sample rates: 100 KS/s, 200 KS/s, 500 KS/s, 1 MS/s, 2 MS/s,

5 MS/s, 10 MS/s, 20 MS/s, and 40 MS/s are selectable

KS/s: Kilo-Samples per second; MS/s: Mega-Samples per second.

Table 2. The magnitudes of characteristic defect frequencies at various speeds.

Crack Size (mm) Shaft Speed (r/min) Defect Frequencies (Hz)

Length Width Depth BPFO BPFI 2 × BSF FTF

12 0.49 0.50
300 26.21 38.79 24.87 2.02
400 34.95 51.72 33.15 2.69
500 43.68 64.65 41.44 3.36

3. The Proposed Methodology for Bearing Fault Detection

The proposed methodology for bearing fault detection is described in Figure 2. The AE signal
for each bearing defect is decomposed into a set of sub-bands using the DWPT. These sub-bands are
then reconstructed using the inverse DWPT, and for each reconstructed signal the envelope power
spectrum is constructed. The envelope power spectrum is constructed by first calculating the Hilbert
transform of each reconstructed signal, and then using it to calculate the analytic signal. The Fourier
transform of the analytic signal is then calculated to get the envelope power spectrum (EPS) of the
reconstructed signal. Finally, for the EPS of each reconstructed signal, a Gaussian distribution model
(GDM)-based health-related index (HI) is calculated. The optimal sub-band is then determined by
the 2D visualization of these HI values. The sub-band with the highest value of HI for its EPS is the
optimal sub-band that contains the most information about different bearing defects. Bearing defects
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are then diagnosed by taking the AE signal, decomposing it into different sub-bands, reconstructing
the signal from the optimal sub-band only and then calculating the EPS of this reconstructed signal.
The optimal EPS is then used for diagnosing different bearing defects. More details of the proposed
method are given below.
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3.1. Envelope Analysis for DWPT-Based Sub-Band Signals

The AE signals are analyzed based on the assumption that they contain information about all of
the possible bearing defects considered in this paper, including BCO, BCI, and BCR. For the purpose
of detecting these fault signatures, envelope analysis is typically used to extract the fault frequency
components from the acquired AE signals. However, intrinsic information about the bearing defects
can occur anywhere in the frequency analysis domain. Therefore, to correctly identify the bearing
fault signatures, envelope analysis is performed on each sub-band signal decomposed by the DWPT.
The sub-bands containing the most useful information about the bearing defects are determined via
the GDM-based HI calculation. The overall process of DWPT-based envelope analysis is illustrated in
Figure 3, where fs is the sampling frequency of the AE signal and Sn,k is the kth sub-band signal at the
nth level.
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First, the DWPT is employed to decompose the 5 s input AE signal into a series of uniform
frequency sub-bands with four levels of decomposition. The Daubechies mother wavelet function
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is frequently utilized as a signal filter due to its effectiveness in analyzing abnormal symptoms of
bearing defects [22,24]. The four-level decomposition using DWPT and the Daubechies 4 (db4) mother
wavelet function is carried out to obtain 25 − 1 sub-band signals. A reconstruction step is then
performed for each sub-band, and the EPS of each reconstructed sub-band signal is calculated using
the Hilbert transform [19,25]. The EPS of each sub-band signal will contain the characteristic defect
frequencies and their harmonics, if there is a defect in the bearing. The precise capturing of the
bearing defect frequencies and their harmonics (BPFO, BPFI, and 2 × BSF) is essential for reliable fault
detection. Therefore, in order to assess the EPS of a given sub-band for the presence and strength these
characteristic defect frequencies, the proposed GDM-based HI is measured by calculating the ratio
between the defective spectral components and the initial spectrum components of the EPS. A detailed
description of the steps involved in the calculation of HI is given in Section 3.2. After obtaining the
HI values for the envelope power spectrum of each sub-band signal, a 2D visualization tool is used
to represent the HI values of all the sub-bands. Through 2D visualization analysis, the highest HI
value is used to determine the most informative sub-band for evaluation, as shown in Figure 3. Hence,
the optimal sub-band signal that is most suitable for detecting the characteristic defect frequencies
associated with outer race, inner race, and roller defects is selected based on the highest HI value.

3.2. Gaussian Distribution Model-Based Calculation of Defect Components

In order to detect the defect frequencies and their harmonics, i.e., BPFO, BPFI, and 2 × BSF,
a GDM-based method is proposed for calculating HI of the EPS. The HI is calculated by using Gaussian
windows around the harmonics of these defect frequencies, i.e., BPFO, BPFI, and 2 × BSF. The steps
involved in the computation of GDM-based HI are illustrated in Figure 4 and described below.
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Stage 1: First, the envelope power spectrum (EPS) of a given sub-band signal is calculated.
The calculation of EPS first requires the computation of the Hilbert transform of the reconstructed
sub-band signal xsb(t) [19], which is defined in Equation (2). The Hilbert transform is used to
demodulate the original signal and to subsequently construct the envelope signal. The calculation of
the envelope signal is necessary for the recovery of the low-frequency defect components from the
high frequency carrier signal. The AE signal recorded by the AE signals is a modulated signal, where
the low magnitude defect frequencies modulate the high magnitude bearing resonances, which act as
carrier frequencies:

x̂sb(t) =
1
π

+∞∫
−∞

xsb(τ)

t− τ dτ (2)

The original time-domain sub-band signal xsb(t) is combined with the Hilbert transformed signal
x̂sb(t) to generate the analytical signal s(t):

s(t) = xsb(t) + j.x̂sb(t),with j =
√
−1 (3)

The envelope signal xenv(t) is basically the magnitude of the analytic signal s(t), which can be
determined as follows:

xenv(t) = |s(t)| =
√

xsb(t)
2 + x̂sb(t)

2 (4)

Finally, the fast Fourier transform (FFT) of the envelope signal F{xenv(t)} is computed, and the
EPS xeps(t) of the sub-band signal xsb(t) is collected by squaring the absolute FFT values.

Stage 2: Next, based on GDM analysis, an appropriate window is generated to capture the
characteristic defect frequencies in the EPS. The GDM-based window size w(j) is defined, as follows:

w(j) =


3
∑

i=1
exp

(
− 1

2

(
α
(j−Pi)

M/2

)2
)

0, Otherwise
, Pi − frange ≤ j ≤ Pi + frange (5)

Here, j is the index of each frequency bin in the signal spectrum and Pi is the ith harmonic of a
bearing defect frequency component (i = 3 in this study). In addition, M is the number of frequency
bins around each harmonic of BPFO, BPFI, and 2× BSF, in the specified range of [Pi− frange, Pi + frange],
which is calculated as follows:

M = 2.frange/fresolution (6)

Here, frange defines the frequency range for calculation of the GDM-based window values and
fresolution is the frequency resolution (fresolution = 0.2 Hz). Likewise, the parameter α, representing
the distribution of Gaussian random variables in Equation (7), is the inverse relation to the standard
deviation, which is estimated as follows:

α =
M
N

.
√
−2 lnβ (7)

Here, β is a fixed constant to ensure the convergence of the window, and is in the range from
0 to 1 (β = 0.1 in this paper). The number of considered frequency bins correctly containing the
characteristic defect components around their harmonics is denoted by N, as in Stage 2 of Figure 4:

Nouter = 2ε× BPFO× 1
fresolution

Ninner = (nsideband.Fr + ε.(2BPFI + nsideband.Fr))× 1
fresolution

Nroller = (nsideband.FTF + ε.(4BSF + nsideband.FTF))× 1
fresolution

(8)

Here, the number of considered sidebands appearing around the harmonics of defect components
BCI and BCR is determined by nsideband = 4. Additionally, Fr is the operating frequency or shaft
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speed in Hz (Fr = speedshaft/60). Nouter, Ninner, and Nroller represent the sizes of frequency bins for outer
race, inner race and roller defects. Furthermore, the random variation ε = 2% of the defect frequency
calculation is also considered to enhance the accuracy when estimating the severity of defects.

Stage 3: Next, the GDM-based window w(j) is multiplied by the initial EPS signal xeps(j) to capture
only the frequency components appearing around the harmonics of the characteristic frequencies of
BPFO, BPFI, and 2 × BSF, as shown in Figure 4. This is defined as:

D(j) = xeps(j)×w(j), 1 ≤ j ≤ fs/fresolution (9)

Here, D(j) is the magnitude of the jth frequency bin in the defect frequency range obtained from
the Gaussian window and fs is the sampling rate.

Stage 4: Finally, after identifying the defect frequency components in Step 3, the GDM-based HI
for the assessment of a given sub-band is calculated using Equation (11):

EO(i) =
M
∑

j=1
O2

i,j

ED(i) =
N
∑

j=1
D2

i,j

(10)

HI =

3
∑

i=1
ED(i)

3
∑

i=1
EO(i)

, with 0 ≤ HI ≤ 1 (11)

Here, Oi,j is the magnitude of the jth frequency bin around the ith harmonic of the characteristic
defect frequency from the initial EPS signal and its corresponding energy EO(i). Similarly, Di,j is
the amplitude of the jth frequency bin around the ith harmonic of the characteristic defect frequency
obtained from Step 3 and its corresponding energy ED(i).

In rolling element bearings, the outer race is a fixed component and a defect on the outer race
suffers the same impact force both in and outside the load zone. Hence, the EPS of signals for outer
race faults has sharp peaks. Defects on the moving parts of bearing, i.e., the inner race and rollers,
experience different amounts of forces when they enter and leave the load zone. This results in
modulation effects. For inner race faults, the BPFI is modulated by the shaft frequency, as a defect on
the inner race enters and leaves the load zone at the same speed as that of the rotating shaft. Whereas,
the characteristic frequency of roller faults, i.e., 2 × BSF, is modulated by the cage frequency. Thus,
these defects include the sidebands around their fault frequencies, which are the result of amplitude
modulation caused by the movement of the defect in and out the load zone. As a result, the EPS for
defect components BCI and BCR has a bell shape due to the presence of sidebands in the signal spectra.
Therefore, a narrow Gaussian window with frequency range frange = 1/4BPFO is used to evaluate the
outer failure, while a large Gaussian window with frequency range frange = 1/2BPFI or BSF is used
to evaluate inner and roller failures. After assessing different sub-bands using the GDM-based HI
calculation, the optimal sub-band containing explicit information about the bearing defects, which
yields the highest HI value, is chosen for reliable bearing fault detection.

4. Experimental Results

This paper presents a comprehensive methodology for early detection of the defect frequency
components of BCO, BCI, and BCR based on envelope analysis using a GDM-based window to capture
intrinsic information about the failure. The 5 s AE signals of each bearing fault condition are first
decomposed into sub-band signals using the DWPT. Then, the bearing defects can be identified by
calculating the EPS of 25 − 1 sub-bands from four-level DWPT with the Db4 mother wavelet function.
However, abnormal signatures that are characteristic of bearing defects can be present in any sub-band.
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Figure 5 shows the original time-domain AE signals for different bearing faults at variable rotational
speeds and their initial EPS signals. Each fault condition, i.e., outer race, inner race and roller fault,
has a unique waveform. Defects on the outer race of a bearing remain stationary, and hence same
amount of force is experienced in each rotation, making them less prone to interference by other
components. Moreover, if the AE sensor is aligned with the outer race defect and placed directly
above it, the acoustic emissions from the outer race defect show the least amount of attenuation since
they travel directly to the AE sensor via the smallest path. In contrast, acoustic emissions from roller
and inner race defects show more attenuation, as they travel longer distances and are involved in
more interference from other components. In Figure 5, the time domain AE signal for BCO condition
shows similar attenuation with BCI and BCR. This means that the outer race defect is not aligned
with the AE sensor, and hence acoustic emissions from this defect are relatively greater attenuation
at low speeds because it travels a longer distance. Based upon the envelope analysis of the raw AE
signals, it is difficult to correctly evaluate the defect severity in bearings because the characteristic
defect frequencies are not clearly distinguishable in the envelope signal spectra of the raw AE signals.
Thus, the signal is decomposed into different sub-bands, and an optimal sub-band is selected using
the proposed GDM-based HI for evaluating the EPS to clearly distinguish the different bearing defects.
The proposed GDM-based HI is a quantitative metric used in this study for efficient sub-band analysis.
As the periodic impulses generated around the harmonics of the defect frequency components of
BPFO, BPFI, and 2 × BSF become clearer, the HI value increases. Afterward, the optimal sub-band
signal that yields the highest HI value is chosen for extracting the most useful information about the
bearing defects. Figure 6 shows the 2D visualization analysis for the HI values obtained from each
sub-band, in which three EPS signals related to BCO, BCI, and BCR from the three most informative
sub-bands are used for reliable fault detection.

The performance of the proposed approach is validated through experiments involving the
detection of bearing defects caused by cracks on the outer race, inner race, and roller of a bearing.
Moreover, these three types of bearing defects are diagnosed under variable rotational speeds of
300 r/min, 400 r/min, and 500 r/min in order to verify the effectiveness of the proposed method in
capturing intrinsic information about bearing defects at different speeds. For each defect type, 90 AE
signals are acquired at each of the three different rotational speeds. The duration of each AE fault
signal is 5 s and is sampled at a frequency of fs = 250 kHz. The optimal sub-band is determined by
calculating proposed GDM-based HI for each of the 31 reconstructed sub-band signals. Using the
proposed evaluation scheme, the three most informative sub-bands that clearly show the characteristic
defect frequencies of BPFO, BPFI, and 2 × BSF around their harmonics are appropriately selected,
as shown in Figure 6, by 2D visualization analysis of the calculated HI values based on the envelope
signals. Figure 7 illustrates a series of EPS signals for each bearing defect component of BCO, BCI,
and BCR, collected from the optimal sub-bands, when the rotation speed is 500 r/min. The abnormal
symptoms of bearing defects are accurately identified in the EPS computed from the most informative
sub-band. Thus, the proposed GDM-based HI calculation provides an effective metric for measuring
periodic impulse protrusion in the EPS, which is precisely proportional to the severity of bearing
defects. Accordingly, the proposed approach only captures useful information about failure from the
acquired AE signals; this enhances its effectiveness for fault identification in bearings.
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The performance of the proposed method in diagnosing different bearing defects i.e., BCO, BCI,
and BCR, at different rotational speeds is quantitatively measured using the accuracy (Acc) metric,
which is calculated as follows:

Acc =
Teps

Teps + Feps
× 100% (12)

Here, Teps is the number of true EPS signals that correctly show characteristic defect frequency
components of the bearing, whereas Feps is the number of false EPS signals that do not represent clear
signatures of bearing defects. Teps and Feps are determined by observing a series of 90 EPS signals
obtained from the optimal sub-bands for each failure condition.

Comparisons of the diagnostic performance of the proposed approach and a state-of-the-art
method based on kurtosis are provided in Tables 3–5. It can be observed that the kurtosis-based
method does give satisfactory performance in identifying bearing defects at 500 r/min. However, its
diagnostic performance especially for BCI and BCR is much lower as compared to the performance of
the proposed method, especially, at 300 r/min and 400 r/min. This decrease in performance is caused
by the inability of kurtosis analysis in identifying the appropriate sub-band for carrying out envelope
analysis. This is due to the impact of the harmonics of the operation frequency and noise frequency in
the signal spectra. Alternatively, the proposed methodology is suitable for evaluating the severity of
bearing defects because it uses GDM-based HI calculations, which are highly efficient in sub-band
analysis for correctly detecting the characteristic defect frequencies of bearings. As illustrated in the
experimental results, the proposed fault detection approach reaches average accuracies of 95.93%,
98.13%, and 100% at rotational speeds of 300 r/min, 400 r/min, and 500 r/min, respectively.

Table 3. The accuracy of bearing defect detection with 300 r/min.

Proposed Kurtosis Analysis [22]

Bearing Defects BCO BCI BCR BCO BCI BCR

Teps 86 90 83 85 87 67
Feps 4 0 7 5 3 23

Acc(%) 95.6 100 92.2 94.4 96.7 74.4



Sensors 2018, 18, 1389 13 of 14

Table 4. The accuracy of bearing defect detection with 400 r/min.

Proposed Kurtosis Analysis [22]

Bearing Defects BCO BCI BCR BCO BCI BCR

Teps 90 90 85 87 87 75
Feps 0 0 5 3 3 15

Acc(%) 100 100 94.4 96.7 96.7 83.3

Table 5. The accuracy of bearing defect detection with 500 r/min.

Proposed Kurtosis Analysis [22]

Bearing Defects BCO BCI BCR BCO BCI BCR

Teps 90 90 90 90 90 88
Feps 0 0 0 0 0 2

Acc(%) 100 100 100 100 100 97.8

5. Conclusions

This paper presented an effective and reliable fault detection methodology for rolling element
bearings based on AE analysis under different rotational speeds. The proposed approach successfully
exploited the advantages of DWPT-based signal decomposition and envelope analysis for capturing
the characteristic defect frequencies in bearings. The performance of envelope analysis based bearing
fault diagnosis hinges on the identification of an appropriate sub-band for carrying out demodulation
or calculating the envelope signal. This optimal sub-band clearly shows bearing defect signatures in
the resultant EPS. An effective assessment measure was, therefore, proposed for the selection of an
optimal sub-band based on GDM-based HI calculation. Consequently, the most informative sub-band,
as determined by the highest HI value, was used for calculating the EPS. The resultant EPS was
highly effective in highlighting different bearing defect frequencies. The diagnostic performance of the
proposed method was compared to a state-of-the-art method based on kurtosis analysis. The results
clearly indicated that the proposed method outperformed the conventional approach in terms of
detection accuracy for three types of bearing defects, i.e., BCO, BCI, and BCR, at three different
rotational speeds.
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