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Abstract: In this paper, a multichannel refractive index sensor based on a subwavelength
metal–insulator–metal (MIM) waveguide coupled with tangent-ring resonators is proposed. When two
tangent-ring resonators were placed above the MIM waveguide, Fano resonance with asymmetrical
line shape appeared in the transmission spectrum due to the interference between the light–dark
resonant modes. The sensitivity and figure of merit were as high as 880 nm/RIU and 964, respectively.
Through adding more tangent-ring resonators, multiple Fano resonances with ultrasharp peaks/dips
were achieved in the wavelength range of 800–2000 nm. Besides, negative group delays were
also observed in the Fano resonant dips. Two-dimensional finite-difference time-domain (FDTD)
method was used to simulate and analyze the performances of the proposed structures. These kinds
of multiring structures can find important applications in the on-chip optical sensing and optical
communication areas.
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1. Introduction

Subwavelength metal–insulator–metal (MIM) waveguides based on surface plasmon polariton (SPP),
which is one of the promising methods to control the light transmission at nanoscale, have vigorously
pushed forward the development of integrated photonics circuits [1]. Various nanoscale optical devices
based on MIM waveguides have been proposed and demonstrated, such filters, splitters, sensors,
and so on [2–8]. In particular, Fano resonances [9–12] which were previously demonstrated in
the atom’s system and are caused by the coherent coupling and interference between a discrete
state and a continuous state—have also been investigated in MIM waveguides. Due to the advantages
of asymmetrical ultrasharp line shapes and high figure of merit (FOM), Fano resonances are quite
preferred in the optical sensing, laser, and optical signal detection areas [13–21]. In the MIM
waveguide structures, Fano resonances can be generated by the interference between the dark
mode (corresponding to the discrete excited state) and the radiative bright mode (corresponding
to the continuum state). For example, sharp and asymmetric Fano-line spectra are found in the MIM
waveguides with dual side-coupled slot cavities or dual parallel grooves [22–24]. In the former
researches, single Fano resonance was firstly investigated to obtain the high performances of FOM and
refractive-index sensitivity, and then dual Fano resonance was investigated in the MIM structures to
improve the on-chip integration [25,26]. In this case, more Fano peaks/dips are preferred in the single
MIM structure to satisfy the development of a high-integrated photonic circuit.

In this study, multiple Fano resonances were achieved in a MIM waveguide structure composed of
several tangent-ring resonators. Since the radius of each resonant ring was different, distinct resonant
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modes could generated respectively. According to the interferences between the bright modes and
the dark modes, multiple Fano peaks with asymmetric line shapes were achieved. The results show
that the number of Fano peaks depends largely on the number of coupling loops around the rings.
Although this proposed tangent-ring resonator is a little more complicated than the stubs structures,
which support single Fano resonance [27,28], more Fano channels can be obtained with the proposed
method. This kind of structure can be used as a multichannel on-chip sensor, and it also meets
the development of integrated photonics. Finite-difference time-domain (FDTD) method was employed
to investigate the performance of the proposed structures.

2. Structure and Discussion

The single ring resonator, which is shown in Figure 1a, is a conventional Fabry–Perot (FP) resonator
located at one side of the MIM waveguide. The widths of the MIM waveguide and the ring resonator are
denoted by D and d, respectively. The inner and outer radii of the ring are defined as r and R, respectively.
Thus, the resonant conditions can be approximately given by

λm =
2Re

(
ne f f

)
Le f f

m
, m = 1, 2, 3, · · · (1)

where Le f f = π(r + R) is the effective resonance length, Re(neff) is the real part of the effective refractive
index, and neff obtained from the dispersion equations [29].
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Figure 1. (a) Single ring resonator structure; and (b) transmission spectrum.

During the FDTD simulations, the commercial tool “FDTD Solutions” was used. The input light
was defined as a plane light wave, and a monitor was set at the output MIM waveguide, as indicated
in Figure 1a. The perfect matching layers (PMLs) were set around the structure to absorb the escaping
electromagnetic field energy, and the number of layers in x- and y-directions were defined as 64.
The following parameters were unchanged throughout the study: the width of the MIM waveguide
D = 50 nm, the thickness of the ring resonator d = 20 nm, the inner and outer diameters r = 40 nm
and R = 60 nm, respectively. The ring resonator was connected to the MIM waveguide directly
(i.e., the spacing distance was 0 nm). A uniform set of perfect matching layers, which were used
as the absorption boundary condition, was employed in the structure. The metal and dielectric materials
were firstly defined as silver and air, respectively, and the permittivity factors were obtained from the
experimental data [30]. The transmission spectrum for the ring resonator structure is shown in Figure 1b,
which produces a symmetrical Lorentzian line type. This kind of FP resonator can perform as a band-stop
filter, whose forbidden band is generated at 1140 nm. Observed from the corresponding magnetic field at
the center wavelength was a strong magnetic field in the upper half of the ring resonator, and almost
none of the SPP energy was distributed in the output side of the MIM waveguide.

In Figure 2a, a ring with the inner and outer radii of 60 nm and 80 nm, respectively, was added
into the former resonator of Figure 1a. The two rings were aligned with the normal line, while their
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bottoms were tangent. Since the two rings were tangent, “s” parameter was calculated as 20 nm,
according the radii of the rings, and it remained unchanged between the adjacent two rings throughout
the study. According to the FP resonant conditions, different resonant modes were excited in the two
rings, respectively. Specifically, a bright mode with broad bandwidth and a dark mode with narrow
bandwidth will arise in the small ring and large ring, respectively. Due to the interference between
the bright and dark modes, Fano resonance with an asymmetric line shape was generated. The simulation
spectrum, plotted with the red-dotted line, is shown in Figure 2b, which illustrates that a transmission peak
with a transmittance of ~0.7 was generated at 920 nm. A steep dip, which had the lowest transmittance of
~0 at 854 nm, occurred at the left side of the transmission peak. Contrarily, the transmission at the right
side of the peak changed slowly, and the trough arose at 1400 nm. When the insulator was changed to
the one with the refractive index of 1.1, the transmission peak and dip shifted to 1008 nm and 936 nm,
respectively. Subsequently, a high sensitivity S of 880 nm/RIU for the refractive index was achieved based
on Equation (2). This is a promising characteristic for the on-chip sensor.

S =
dλ

dn(λ)
(2)
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Figure 2. (a) Double-ring resonator structure; (b) transmission spectrum; (c) magnetic field at dip
λ = 854 nm trough; and (d) magnetic field at peak λ = 920 nm.

Additionally, figure of merit (FOM) was also significantly factored to evaluate the performances
of the sensor, and it can be expressed as [26]:

FOM = max
(∣∣∣∣dT(λ)/dn(λ)

T(λ)

∣∣∣∣) (3)

where T(λ) is the transmission, and dT(λ)/dn(λ) is the transmittance change at fixed wavelength
induced by a refractive index change. According to Equation (3), it can be concluded that an ultralow
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transmittance followed by a sharp increase induced by the changes in index is preferred for obtaining
a high FOM. In this proposed structure, a high FOM of 964 was achieved at the dip.

Figure 2c, which shows the magnetic field of the dip at 854 nm, indicates that a strong magnetic
field is distributed at the input MIM waveguide and essentially none of magnetic field is presented at
the output waveguide. In addition, strong magnetic fields occur at both side-coupled rings, leading to
a strong resonance and a forbidden band. Figure 2d is the magnetic field distribution corresponding to
the Fano resonance peak at 920 nm. The output waveguide has a strong magnetic field, which is in
accordance with the transmission spectrum. Comparing to Figure 2c, Figure 2d shows that weaker
magnetic fields are distributed in both rings, resulting a transmission peak.

The phase responses and the group delays are studied in Figure 3. Particularly, the phase changes
between 800 nm and 2000 nm are plotted in Figure 3a, which shows the phase is shifted from 0.75π to
1.25π at the wavelength ranging from 854 to 920 nm, while at the wavelength from 1400 to 1450 nm,
the phase jumps from −0.4π to 0.1π. This indicates that the phase continuity will be broken within
the transmission dip, but the phase changes linearly in other wavelengths. According to the relationship
between the group delay τ and the phase θ, the delay time satisfies the condition: τ(λ) = −λ2dθ/2πcdλ,
respectively. In view of the phase responses in Figure 3a, it can be concluded that abnormal dispersion
will be achieved at the Fano dip. From Figure 3b, we can see that ~−0.13 ps and ~−0.08 ps group
delays are obtained at the two dips, respectively.
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Furthermore, more bottom-tangent-rings were added on the basis of Figure 2a to obtain more
Fano resonant peaks, as shown in Figure 4a–d, where three-, four-, five-, and six-ring resonators
were placed above the MIM waveguide, respectively. The outer radii for the newly added rings were
increased with a step of 20 nm (i.e., 100 nm, 120 nm, 140 nm and 160 nm, respectively), while their widths
were the same, at 20 nm. Usually, single Fano resonance requires a bright mode and a dark mode that
interact with each other and exactly two different tangent rings can support a bright mode and a dark
mode, respectively. In this case, single Fano resonance was achieved in this dual-tangent-ring resonator,
which was investigated as shown in Figure 2. After adding a new ring, one more Fano resonance
could be obtained. Subsequently, more Fano resonances can be seen in Figure 4, and the corresponding
transmission spectra are shown in Figure 5. Three-, four-, five-, and six-ring structures correspond to two,
three, four, and five Fano peaks with asymmetrical transmission line shapes, respectively. Figure 5a–c,
showing transmission spectra in the wavelength range of 800–2000 nm, agree well with the analysis
above. This phenomenon seems not applicable to Figure 5d in this wavelength range. Actually, when
the wavelength is expanded to 800–2600 nm, five Fano peaks can be found. This demonstrates that we can
manipulate the Fano resonances through designing the ring resonators, and then more sensing channels
can be achieved in this proposed on-chip MIM waveguide structure.
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Moreover, the phase responses and the group delays corresponding to the Fano resonances in
Figure 5 are plotted in Figures 6 and 7, respectively. In Figure 6, it can be seen that phase shifts will arise
at all the Fano dips, and therefore, obvious negative group delays are observed within the wavelength
ranges of the dips in Figure 7. Taking Figures 6a and 7a as an example, the phase changes occurred at
810 nm, 1100 nm and 1700 nm, respectively, corresponding to the Fano resonance dips in Figure 5a.
In wavelengths ranging from 810 to 860 nm, 1100 to 1160 nm, and 1700 to 1750 nm, the phases changed
from 1.00π to 1.50π, 0 to 0.50π, and −0.80π to 0, respectively. In the other wavelength ranges, the phases
changed linearly. Subsequently, the group delays could be calculated, and the maximum negative delays
were −0.15 ps, −0.05 ps, and −0.04 ps at 810 nm, 1100 nm and 1700 nm, respectively. More detailed
results were shown in Table 1. It is suggested that, in additional to the sensing application, one can also
use the proposed structure in the fast light communication area.
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Table 1. The phase shifts and the group delays corresponding to Figures 6 and 7.

Number Wavelength Range

Phase shifts and
group delays

(a)
810 nm–860 nm 1100 nm–1160 nm 1700 nm–1750 nm

0.5π, −0.15 ps 0.5π, −0.05 ps 0.8π, −0.04 ps

(b)
1050 nm–1100 nm 1400 nm–1470 nm

0.5π, −0.08 ps 0.4π, −0.02 ps

(c)
1030 nm–1080 nm 1310 nm–1380 nm 1650 nm–1720 nm

0.5π, −0.10 ps 0.1π, −0.05 ps 0.3π, −0.02 ps

(d)
1015 nm–1070 nm 1280 nm–1350 nm 1560 nm–1620 nm

0.6π, −0.10 ps 0.3π, −0.05 ps 0.8π, −0.02 ps

To get insight into the details of the mode interactions that lead to Fano resonances, Figure 8 shows
the magnetic field distributions of the six-ring resonator. At the dip wavelengths, the magnetic fields
are almost zero at the bottoms of the rings, as shown in Figure 8b,d,f,h, respectively. In the output
MIM waveguide, there is also almost no SPP energy. Contrary distribution details can be observed in
Figure 8a,c,e,g, which illustrate the magnetic fields at the peak wavelengths. Besides, strong interferences
between the modes are also seen inside the rings, leading to multiple Fano resonances.
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Figure 8. Magnetic field distributions for the six-ring resonator (a) peak at 835 nm, (b) dip at 1015 nm,
(c) peak at 1070 nm, (d) dip at 1275 nm, (e) peak at 1348 nm, (f) dip at 1556 nm, (g) peak at 1623 nm
and (h) dip at 1960 nm.

3. Conclusions

The transmission characteristics of MIM waveguide based on SPPs in multi-tangent-ring resonators
were studied. Fano resonances have been achieved according to the interactions between the dark
modes and bright modes. High sensitivity of 880 nm/RIU and FOM of 964 were achieved. It has been
demonstrated that the Fano resonant channels can be effectively manipulated by adding tangent rings.
In addition, negative group delays were observed in the Fano dips, and one can use the proposed
structure in the fast-light area. The results were investigated by FDTD simulations, and it is believed that
the proposed structure can find wide application in the on-chip optical sensing areas.

Author Contributions: Writing-Original Draft Preparation, and Investigation, Z.G.; Methodology, Conceptualization,
and Project Administration, K.W.; Data Curation, and Writing-Review & Editing, Q.H., W.L., J.L. and Y.F.

Funding: This research was funded by the National Natural Science Foundation of China (Grant numbers:
61405039 and 61475037), Science and Technology Planning Projects of Guangdong Province, China (Grant number:
2016A020223013), the Natural Science Foundation of Guangdong Province, China (Grant number: 2014A030310300),
the State Key Lab of Optical Technologies for Micro-Engineering and Nano-Fabrication of China, the Foundation
for Distinguished Young Talents in Higher Education of Guangdong, China (Grant number: 2014KQNCX066),
and the Research Fund of Guangdong University of Technology (Grant numbers: 16ZK0041, and 13ZK0387).



Sensors 2018, 18, 1348 8 of 9

Acknowledgments: The authors would like to thank the reviewers for their valuable comments and suggestions,
which help improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lal, S.; Link, S.; Halas, N.J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641–648. [CrossRef]
2. Cao, G.; Li, H.; Deng, Y.; Zhan, S.; He, Z.; Li, B. Plasmon-induced transparency in a single multimode stub resonator.

Opt. Express 2014, 22, 25215–25223. [CrossRef] [PubMed]
3. Luo, X.; Zou, X.; Li, X.; Zhou, Z.; Pan, W.; Yan, L.; Wen, K. High-uniformity multichannel plasmonic filter

using linearly lengthened insulators in metal–insulator–metal waveguide. Opt. Lett. 2013, 38, 1585–1587.
[CrossRef] [PubMed]

4. Zhu, B.Q.; Tsang, H.K. High coupling efficiency silicon waveguide to metal–insulator–metal waveguide
mode converter. J. Lightwave Technol. 2016, 34, 2467–2472. [CrossRef]

5. Galvez, F.; Valle, J.; Gomez, A.; Osorio, M.R.; Granados, D.; Pérez de Lara, D.; García, M.A.; Vicent, J.L. Plasmonic
nanodevice with magnetic funcionalities: Fabrication and characterization. Opt. Mat. Express 2016, 6, 3086–3096.
[CrossRef]

6. Zhan, S.P.; Li, H.J.; Cao, G.T.; He, Z.H.; Li, B.X.; Yang, H. Slow light based on plasmon-induced transparency
in dual-ring resonator-coupled MDM waveguide system. J. Phys. D Appl. Phys. 2014, 47, 205101. [CrossRef]

7. Chen, Z.; Chen, J.; Yu, L.; Xiao, J. Sharp trapped resonances by exciting the anti-symmetric waveguide mode
in a metal-insulator-metal resonator. Plasmonics 2015, 10, 131–137. [CrossRef]

8. Yan, S.-B.; Luo, L.; Xue, C.Y.; Zhang, Z.D. A Refractive Index Sensor Based on a Metal-Insulator-Metal
Waveguide-Coupled Ring Resonator. Sensors 2015, 15, 29183–29191. [CrossRef] [PubMed]

9. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866–1878.
[CrossRef]

10. Luk’yanchuk, B.; Zheludev, N.; Maier, S.; Halas, N.; Nordlander, P.; Giessen, H.; Chong, C. The Fano resonance in
plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [CrossRef] [PubMed]

11. Roh, S.; Chung, T.; Lee, B. Overview of the characteristics of micro-and nano-structured surface plasmon
resonance sensors. Sensors 2011, 11, 1565–1588. [CrossRef] [PubMed]

12. Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photonics 2017,
11, 543–554. [CrossRef]

13. Shu, C.; Wu, T.; Liu, Y.; Yu, Z.; Peng, Y.; Ye, H. The sensing characteristics of plasmonic waveguide with a
ring resonator. Opt. Express 2014, 22, 7669–7677.

14. Wen, K.H.; Hu, Y.H.; Chen, L.; Zhou, J.Y.; He, M.; Lei, L.; Wu, Y.J.; Li, J.F. Fano resonance based on
end-coupled cascaded-ring MIM waveguides structure. Plasmonics 2017, 12, 1875–1880. [CrossRef]

15. Tang, Y.; Zhang, Z.; Wang, R.; Hai, Z.; Xue, C.; Zhang, W.; Yan, S. Refractive Index Sensor Based on Fano
Resonances in Metal-Insulator-MetalWaveguides Coupled with Resonators. Sensors 2017, 17, 784. [CrossRef]
[PubMed]

16. Zhang, Z.; Luo, L.; Xue, C.; Zhang, W.; Yan, S. Fano Resonance Based on Metal-Insulator-Metal
Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors. Sensors 2016, 16, 642. [CrossRef]
[PubMed]

17. Zafar, R.; Salim, M. Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor.
IEEE Sens. J. 2015, 15, 6313–6317. [CrossRef]

18. Zhao, X.; Zhang, Z.; Yan, S. Tunable Fano Resonance in Asymmetric MIM Waveguide Structure. Sensors 2017, 17,
1494. [CrossRef] [PubMed]

19. Sun, B.; Zhao, L.X.; Wang, C.; Yi, X.Y.; Liu, Z.Q.; Wang, G.H.; Li, J.M. Tunable Fano resonance in e-shape
plasmonic nanocavities. J. Phys. Chem. C 2014, 118, 25124–25131. [CrossRef]

20. Chen, Z.; Yu, L.; Wang, L.L.; Duan, G.Y.; Xiao, J. Sharp asymmetric line shapes in a plasmonic waveguide
system and its application in nanosensor. J. Lightwave Technol. 2015, 33, 3250–3253. [CrossRef]

21. Zhang, Z.; Yang, J.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Han, Y. Plasmonic refractive index sensor with
high figure of merit based on concentric-rings resonator. Sensors 2018, 18, 116. [CrossRef] [PubMed]

22. Lu, H.; Liu, X.; Mao, D.; Wang, G. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators.
Opt. Lett. 2012, 37, 3780–3782. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nphoton.2007.223
http://dx.doi.org/10.1364/OE.22.025215
http://www.ncbi.nlm.nih.gov/pubmed/25401555
http://dx.doi.org/10.1364/OL.38.001585
http://www.ncbi.nlm.nih.gov/pubmed/23632560
http://dx.doi.org/10.1109/JLT.2016.2535490
http://dx.doi.org/10.1364/OME.6.003086
http://dx.doi.org/10.1088/0022-3727/47/20/205101
http://dx.doi.org/10.1007/s11468-014-9786-0
http://dx.doi.org/10.3390/s151129183
http://www.ncbi.nlm.nih.gov/pubmed/26610491
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1038/nmat2810
http://www.ncbi.nlm.nih.gov/pubmed/20733610
http://dx.doi.org/10.3390/s110201565
http://www.ncbi.nlm.nih.gov/pubmed/22319369
http://dx.doi.org/10.1038/nphoton.2017.142
http://dx.doi.org/10.1007/s11468-016-0457-1
http://dx.doi.org/10.3390/s17040784
http://www.ncbi.nlm.nih.gov/pubmed/28383510
http://dx.doi.org/10.3390/s16050642
http://www.ncbi.nlm.nih.gov/pubmed/27164101
http://dx.doi.org/10.1109/JSEN.2015.2455534
http://dx.doi.org/10.3390/s17071494
http://www.ncbi.nlm.nih.gov/pubmed/28672828
http://dx.doi.org/10.1021/jp4105882
http://dx.doi.org/10.1109/JLT.2015.2432041
http://dx.doi.org/10.3390/s18010116
http://www.ncbi.nlm.nih.gov/pubmed/29300331
http://dx.doi.org/10.1364/OL.37.003780
http://www.ncbi.nlm.nih.gov/pubmed/23041857


Sensors 2018, 18, 1348 9 of 9

23. Chen, J.; Li, Z.; Zou, Y.; Deng, Z.; Xiao, J.; Gong, Q. Coupled-resonator-induced fano resonances for plasmonic
sensing with ultra-high figure of merits. Plasmonics 2013, 8, 1627–1631. [CrossRef]

24. Wen, K.H.; Hu, Y.H.; Chen, L.; Zhou, J.Y.; Lei, L.; Guo, Z. Fano resonance with ultra-high figure of merits
based on plasmonic metal-insulator-metal waveguide. Plasmonics 2015, 10, 27–32. [CrossRef]

25. Wang, G.; Shen, A.; Zhao, C.; Yang, L.; Dai, T.; Wang, Y.; Li, Y.; Jiang, X.; Yang, J. Fano-resonance-based
ultra-high-resolution ratio-metric wavelength monitor on silicon. Opt. Lett. 2016, 41, 544–547. [CrossRef] [PubMed]

26. Wen, K.H.; Hu, Y.H.; Chen, L.; Zhou, J.Y.; Lei, L.; Meng, Z.M. Single/dual Fano resonance based on plasmonic
metal-dielectric-metal waveguide. Plasmonics 2016, 11, 315–321. [CrossRef]

27. Piao, X.; Yu, S.; Park, N. Control of fano asymmetry in plasmon induced transparency and its application to
plasmonic waveguide modulator. Opt. Express 2012, 20, 18994–18999. [CrossRef] [PubMed]

28. Huang, Y.; Min, C.; Veronis, G. Subwavelength slow-light waveguides based on a plasmonic analogue of
electromagnetically induced transparency. Appl. Phys. Lett. 2011, 99, 143117. [CrossRef]

29. Dionne, J.A.; Sweatlock, L.A.; Atwater, H.A. Plasmon slot waveguides: Towards chip-scale propagation with
subwavelength-scale localization. Phys. Rev. B 2006, 73, 035407. [CrossRef]

30. Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11468-013-9580-4
http://dx.doi.org/10.1007/s11468-014-9772-6
http://dx.doi.org/10.1364/OL.41.000544
http://www.ncbi.nlm.nih.gov/pubmed/26907419
http://dx.doi.org/10.1007/s11468-015-0056-6
http://dx.doi.org/10.1364/OE.20.018994
http://www.ncbi.nlm.nih.gov/pubmed/23038539
http://dx.doi.org/10.1063/1.3647951
http://dx.doi.org/10.1103/PhysRevB.73.035407
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Structure and Discussion 
	Conclusions 
	References

