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Abstract: Location-based services (LBSs) assume that users are willing to release trustworthy and
useful details about their whereabouts. However, many location privacy concerns have arisen.
For location privacy protection, several algorithms build a cloaking region to hide a user’s location.
However, many applications may not operate adequately on cloaked locations. For example,
a traditional distance bounding protocol (DBP)—which is run by two nodes called the prover and the
verifier—may conclude an untight and useless distance between these two entities. An LBS (verifier)
may use this distance as a metric of usefulness and trustworthiness of the location claimed by the
user (prover). However, we show that if a tight distance is desired, traditional DBP can refine a
user’s cloaked location and compromise its location privacy. To find a proper balance, we propose
a location-privacy-aware DBP protocol. Our solution consists of adding some small delays before
submitting any user’s response. We show that several issues arise when a certain delay is chosen,
and we propose some solutions. The effectiveness of our techniques in balancing location refinement
and utility is demonstrated through simulation.

Keywords: location verification; location privacy; location refinement; wireless ad-hoc networks

1. Introduction

Distance bounding (DB) is the process that allows an entity called a verifier to estimate a tight
distance from its location to the location of a second entity called the prover. Distance bounding
can become an important cornerstone to face many access control problems requiring not only the
verification of a user’s credentials but also its location (e.g., unlocking an automobile door or igniting a
car engine). Here, the prover—who has a car key or token—needs to be close enough to the car lock
in order to unlock it [1]. Other applications, such as location-based routing, location-aided routing
(LAR) [2], distance routing effect algorithm for mobility (DREAM) [3], and greedy perimeter stateless
routing (GPSR) [4] may be enhanced with DB. These protocols assume that mobile nodes are acting
honestly and are forwarding messages only when they can get messages closer to their destination.
Finally, other examples are location-based services (LBSs), which rely on the trustworthiness of
the location provided by their users. Particularly, new companies like Placecast [5] have focused
their businesses on providing location verification services for location-based marketing companies.
Placecast claims that more than 25% of the location-based advertisements are targeted improperly.

However, several works have highlighted the problem of invading a user’s privacy, since location
information can be used to infer the user’s lifestyle and can present significant privacy and safety
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threats. This problem has actually motivated a series of research on location cloaking [6–14]. The key
idea of these proposed techniques is to reduce location resolution to achieve a desired level of protection.
Instead of its precise location, a node discloses a geographic region as its location. This region,
referred to as a cloaking region, contains the node’s current position and needs to satisfy other
constraints, depending on the risks of concern.

A cloaking region must guarantee that its owner can be located at any position with similar
likelihood. For example, for anonymous uses of location-based services (e.g., [6–8]), a cloaking region
needs to contain at least K different nodes; for location privacy protection (e.g., [9,10,13,14]), a cloaking
region must be visited by K different users at different times; for location safety protection ([11,12]),
node density in a cloaking region must not exceed some threshold.

However, the use of cloaked locations presents many challenges to most of the existing
location-based applications. These services are often designed under the assumptions that the user
(prover) is willing to (1) disclose its exact location and (2) allow the service provider (verifier) to
localize its position as precisely as possible. These assumptions may not hold in reality for traditional
distance bounding protocol. A DBP tries to achieve a tight bounding distance between the prover and
verifier, and we show that this goal can potentially refine a node’s cloaked location.

The problem of distance bounding in wireless networks was initially investigated in [15,16]
without taking cloaked locations into account. In these works, there are two nodes—the verifier (V)
and the prover (P)—exchanging a series of challenges and responses. Based on the Radio Frequency
(RF) propagation delay, the verifier computes a tight circular region containing the prover’s exact
position. This result can be used by V to accept a location claimed by P only if such a location is within
this tight circular region. These initial works also assume that the communication channel between P
and V is reliable, meaning that all messages arrive to their destination. However, authors in [17,18]
study the challenges faced in building a DB protocol when a lossy and noisy communication channel
is present.

The DB problem has also been extended to support multiple provers (known as group distance
bounding) [19] and also to support multiple verifiers (known as secure positioning) [20]. In this latter
scenario, multiple verifiers are used to further narrow down the area where the prover is located.
However in this article, we are considering the original scenario where a single verifier and prover
are present, and a reliable channel is assumed. Thus, we can only achieve distance bounding but not
secure positioning. Moreover, in this paper we assume a wireless propagation radio based on a binary
disk model. That is, an ideal communication channel with circular covering ranges, completely reliable
communication (so, no losses inside the covering range), and propagation times exclusively depending
on the linear distance between the source and the destination.

In this paper, we consider the problem of preventing leaking location details about the prover
when this node runs a DB protocol against only one verifier node. P claims to be inside a cloaking
region, but V’s location is unknown. Node P is willing to run a DB protocol while providing a certain
level of guarantee that its cloaking region will not be refined during the DB process. We consider a
cloaking region as refined if the adversary (e.g., the verifier) can conclude that P must be in some
region whose entropy is smaller than the one provided by its cloaking region. We present a location
refinement attack, named as distance bounding attack (DBA). In this attack, V refines a cloaking region
by measuring the round trip time of its communication with the prover.

An initial idea to tackle this problem is to let node P delay any message from V on purpose to
seem to be further away. However, this approach has at least two drawbacks. Firstly, if node V knows
some lower or upper bound of such a delay, then it can adjust the distance computed from the DBA
and refine P’s cloaking region. Secondly, if such a delay is random but too large, node V may estimate
a useless distance bounding for any location-based application. To overcome the aforementioned
drawbacks, we propose a location-privacy-aware distance bounding protocol that limits the likelihood
a cloaked location is refined. We show its effectiveness against DBA by measuring the number of
successful location refinements when P and V run our protocol.
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To the best of our knowledge, the state-of-the-art research on traditional DB assume some of the
following conditions [21–26]. Node P is willing to disclose its exact location to V, and the adversary
is a third party eavesdropping the communication between P and V. These works [21,22] show that
a location-privacy leakage can arise when the adversary is able to infer location details about the
prover and the verifier from the traffic. Moreover, authors in [22] show that it is not possible to
prevent location-privacy leakage in current DB protocols when multiple third parties are colluded
and eavesdropping the traffic between P and V. However, the same authors claim that such a risk of
leakage can at least be mitigated. Finally, other works [23–26] assume the same adversary model but
they analyze DB protocols against a third party performing a man-in-the-middle attack (i.e., mafia,
terrorist, or distance hijacking attacks).

However, our work is based on different assumptions and restrictions. First, node P is not willing
to disclose an exact location but a cloaking region instead. Second, node P is willing to accept some loss
of location-privacy only if this leakage is not greater than a node P’s threshold. Third, our adversary
model assumes that our attacker is the same node V who wants to obtain more details about P’s
whereabout. Lastly, we are addressing the distance bounding attack (DBA), which is different from
those currently man-in-the-middle attacks studied in the literature.

The remainder of this paper is organized as follows. We discuss DBA in detail and present their
solutions in Section 2. The proposed distance bounding protocol is presented in Section 3. We evaluate
the effectiveness of our solution against DBA in Section 4. Finally, we offer concluding remarks
in Section 5.

2. System Overview

We initially assume that there are two stationary nodes called the prover (P) and the verifier (V).
Node P is honest and does not know any details about node V’s whereabouts. However, the location
of P is represented by a public cloaking region (Rpub). This region includes P’s exact location and must
satisfy the location privacy and/or safety requirements demanded by P. Rpub can have any shape, but
without loss of generality we assume that it is a circle centered at some point Opub and radius rpub.
Many techniques have been proposed to compute a cloaking region [12–14,27,28]. Our work does not
assume that some specific technique should be used, but for the sake of simplicity we assume that
there exists a trustworthy anonymizer (AS) in charge of computing cloaking regions.

Node P claims to be at a certain location (Rpub) and node V runs a distance bounding protocol to
validate this claim. We assume that node P is willing to participate in this process, but it does not want
node V—the adversary—to increase the resolution of its location. We say that P’s location has been
refined if node V can conclude there exists a sub-region where P must be located whose entropy is
smaller than the entropy of Rpub. An entropy of a cloaking region can be computed as suggested by
Nu et al. [13].

Each node is equipped with an RF network interface operating with only one omni-directional
antenna. An interface is used to either broadcast or receive a message. Due to the characteristics of
this antenna, neither node P nor node V are able to determine the direction of an incoming message.
Finally, we assume there is no collusion among nodes and a node’s processing time can be negligible
with respect to the propagation time. Rasmussen et al. [29] design a network interface for DB which
can achieve processing time smaller than one nanosecond.

Although the goal of this paper is not to prevent location-privacy leakage when a third party is
colluded with others, many complimentary techniques can be used to mitigate this attack. For example,
either using low-power transmission to reduce the region where a message can be listened [30],
or using any scheme based on either FHSS (frequency-hopping spread spectrum) [31] or DSSS [21]
(direct sequence spread spectrum). By using FHSS, the prover and the verifier can select a secret and
pseudo random sequence of frequency channels beforehand. When a DB protocol is run, V and P can
switch between these channels to prevent interception. Another alternative is by using DSSS, since any
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signal transmitted either by the prover or the verifier is spread over a large frequency band, then any
third party might not been able to distinguish it from the channel background noise.

2.1. A Distance Bounding Attack

Suppose that nodes V and P exchange a series of challenge–response messages. Every time
P replies immediately to a challenge, it may put its location privacy at risk. Node V measures the
round-trip time between a challenge and its response, and concludes with an upper-bound on the
distance to P. This upper-bound distance (d̃VPmax) is computed as half of the average round trip time
multiplied by the speed of light. To conclude this attack, V overlaps a distance bounding circle, which
is a circle centered at its position and radius d̃VPmax, with P’s cloaking region, and concludes with
more details about P’s location.

For example, consider the scenario represented by Figure 1. In this case, P replies immediately
to a challenge sent from V, and this latter node can conclude that all possible locations for P are all
points over the perimeter of V’s distance bounding circle (1) that are also within P’s cloaking region.
If P had added an intentional delay (δ) to look more distant, then V would have computed a longer
distance bounding circle (2). Since V does not know the amount of delay added by P, this node can
only conclude that all locations within the colored area are the only feasible locations for P. We say
that node V in Figure 1 has been able to refine node P’s location if the entropy of RFpub is smaller than
the entropy of Rpub.

RFpub

P′s Distance
Bounding Circle

(1) (2)

V

P

Opub

rpub

Rpub

δ
d̃VPmax

Figure 1. A distance bounding attack (DBA).

2.2. Thwarting a DBA

Since P wants to prevent location refinement when receiving a challenge from V, it can broadcast
any reply only after having waited for a short time. There are many ways to choose this delay.
One approach is to choose it to be equal to the maximum distance from V to the perimeter of Rpub (dmax).
P might think it can defeat DBA, however, since dmax ≥ rpub, then V might still be able to refine Rpub

by subtracting rpub from d̃VPmax.
Another alternative way is to allow node P to uniformly choose a secret random delay from an

interval [0, Λ]. Galdames et al. [32] proved that Λ can be computed as a function of the maximum
probability of refinement tolerated by P. However, the closer to zero this probability is, the larger
d̃VPmax becomes. If node V demands a tight upper-bound for d̃VPmax, it can happen that P’s maximum
probability of refinement may not be achieved.

Our idea to overcome the aforementioned drawbacks is to allow node P to request to the AS a
second cloaking region denoted as Rpriv. Node P must demand from the AS that knowledge of Rpub
does not release any clue about the location and shape of Rpriv. The only known fact is that Rpriv is
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entirely located within Rpub. Without loss of generality, we assume Rpriv is a circle centered at some
point Opriv and radius rpriv.

Now, we say that P’s location has not been compromised or refined if and only if RFpub and Rpriv
have similar location anonymity and privacy features. Formally, we say that node P’s location has
been successfully refined if and only if the entropy of RFpub is smaller than the entropy of Rpriv.

In summary, a suitable location-privacy-aware DBP must ensure it completely covers Rpriv and
gives the minimum possible information to V, so Rpriv cannot be refined.

3. Protocol Proposal

For our protocol, we propose the use of two cloaking regions: First, a private region Rpriv,
which will be only known by P; and second, a public region Rpub which is sent from P to V as its
claimed location. Additionally, the answering time of P to the challenge of V is modified by adding
a certain delay δ selected in an interval such that d(δ) ∈ [dmaxpriv, 2rpriv], where d(δ) is the distance
traveled by the electromagnetic signal at time δ, dmaxpriv denotes the longest distance between P and
Rpriv’s perimeter, and rpriv is Rpriv’s radius. Node V runs a DBA against P to verify P’s claimed position.

As is exemplified in Figure 2, simple modifications to DBA allow V to determine a region C
consisting of a ring-like region centered at V and with width equal to Rpub’s diameter, within which P
should be located. By intersecting C and Rpub, a first level of refining can be performed, determining a
(refined) region RFpub where P should be located.

C

V
P

Opriv

rpriv

Opub

rpub

d̃VPmax

d̃VPmin

Figure 2. Attack of refinement that determines the region C, color region, in which P and the region
RFpub, color region within the major circumference, must be found.

3.1. Metrics

The participation of P in the protocol is subject to the level of refinement of region R, which must
be evaluated, and should not exceed a given tolerance factor τ. To that, we define the metric ΥH as the
ratio between the entropy of RFpub and the entropy of Rpriv, as described by Equation (1):

ΥH =
H ( RFpub )

H ( Rpriv )
. (1)

For simplification purposes, said metric is simplified to the ratio between the areas of RFpub and
Rpriv, as the probability of P being in any place of Rpriv is considered equally likely. Since P does not
know the location of V, it assumes the worst situation of refinement to decide its participation in the
DBP; i.e., V is located at the maximum possible distance from P on the axis intersecting the position of
P and the center of Rpub, with Opub between both nodes.

Node P considers ΥH , τ, and the condition of maximum possible refinement in deciding whether
or not to participate in the protocol; that is, P will answer to V’s challenge if ΥH ≥ τ, as described by
Equation (2):
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ΥH =
Area o f RFpub−min

Area o f Rpriv
≥ τ, (2)

where the Area of RFpub−min is determined by P considering the condition of maximum
possible refinement.

3.2. Protocol

The determination of the cloaking regions may require some information which is not available
to P; therefore, we consider that such information is provided by an AS.

Given all of the above, we introduce the Distance Bounding Protocol Aware of Location Privacy
(DBP-ALP) for static users, which is summarized in Figure 3 and considers DBA as a procedure for V
to estimate its distance to P.

1. User P determines the privacy and security criteria for the cloaking regions Rpriv and Rpub.
With those, it asks the AS entity to create both regions.

2. The AS answers P with the regions Rpriv and Rpub.
3. User P determines the refinement level τ.
4. With the information of regions Rpriv y Rpub, user P randomly selects the distance which defines

the delay δ on the interval [dmaxpriv, 2rpriv].
5. For the case of maximum possible refinement, user P decides to continue participating with V if

condition ΥH(P, δ, Rpriv, Rpub) ≥ τ is satisfied.
6. If the protocol is continued, P sends region Rpub to V.
7. V determines if region Rpub satisfies a practical minimum precision, and decides if it will continue

with the protocol.
8. Through a DBA, V determines region C. During that process, P delays its answer by a given

time δ.
9. V determines the region were P must be by intersecting regions Rpub and C.

User

Prover

AS User

Verifier

requirements

P, requirements

Rpriv, Rpub

τ, δ

ΥH ≥ τ

Rpub

Opub ⇒ ru

3rpub ≤ ru

Start of rapid bit exchange

αi

en f orce δ
βi

End of rapid bit exchange

DBA⇒ C
RFpub = C ∩ Rpub

Figure 3. Distance Bounding Protocol Aware of Location Privacy (DBP-ALP) for static users. AS:
trustworthy anonymizer.
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4. Results and Discussion

The proposed protocol is compared against several baseline and improved approaches:

1. Solution with a delay equal to maximal distance (SMD), which is implemented with a cloaking region
and a delay based on the maximum distance within the cloaking region.

2. Solution with an interval of possible delays (SID), which is considered a cloaking region and a delay
chosen at random from ([0, Λ]).

3. Solution with a delay equal to maximal distance with double cloaking regions (SMD-DCR), where two
cloaking regions are considered and a delay based on the maximum distance within Rpriv.

4. Solution with an interval of possible delays with double cloaking regions (SID-DCR), where two cloaking
regions are considered and a selected delay chosen at random from (d(δ) ∈ [dmaxpriv, 2rpriv]).

5. Solution with an interval of possible delays with double cloaking regions and entropy usage (SID-DCR-E);
it considers a location privacy leakage only if the entropy of the refined regions is smaller than
the entropy of Rpriv.

The refinement conditions for the proposed protocol, along with the other studied solutions, have
been implemented and simulated. Simulation results, considering both users P and V as static entities
and a level of refinement, are presented in Figure 4, SMD-DCR presents a second level of refinement,
as it delivers information by selecting the delay over the maximum distance. The graphic shows (1) the
percentages of participation in the entire protocol (i.e., when both users participate in the rapid bit
exchange) and (2) the percentages of times in which there is a refinement; both of them are functions of
the ratio rpub/rpriv.
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Figure 4. (a) Percentage of full participations and (b) percentage of refinements over the number
of full participations in the DBP-ALP. SID: solution with an interval of possible delays; SID-DCR:
solution with an interval of possible delays with double cloaking regions; SID-DCR-E: solution with
an interval of possible delays with double cloaking regions and entropy usage; SMD: solution with a
delay equal to maximal distance; SMD-DCR: solution with a delay equal to maximal distance with
double cloaking regions.
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As shown in Figure 4, we can observe the following characteristics of the proposed protocol: (1) it
provides full protection (i.e., there is no possible refinement) against refinement attempts when is given
that rpub ≥ 2rpriv; and (2) when it is given that

√
2 ≤

(
rpub/rpriv

)
< 2, such a protection presents an

average participation greater than 96%, along with a low percentage of refinement cases (under 5%).
In both cases, the maximum possible refinement agrees with the tolerance factor τ defined by P.

5. Conclusions

This paper introduces a Distance Bounding Protocol Aware of the Location Privacy (DBP-ALP).
The protocol allows participation in a distance bounding process between a prover P and a verifier V,
along with consideration of a cloaking region protected against DBA refinements.

DBP-ALP allows both users P and V to leave the protocol execution if their participation
conditions are not satisfied. On one hand, P may exit the protocol if its maximum refinement restriction
is not satisfied. Such a decision is proposed to consider a metric concerning the relation between the
entropies of the involved regions. On the other hand, V may leave the protocol if the cloaking region
provided by P exceeds a usefulness size.

From the results, DBP-ALP provides full protection against refinement attempts when the radius
of the public region exceeds twice the private region radius. Besides, participation average of both
users are ensured in 96% when the ratio between the public and private radii exceeds

√
2. These results

show that DBP-ALP is suitable for protecting the prover location privacy, along with respecting its
refinement tolerance and a maximum distance criterion accepted by the verifier.

Our future efforts will be focused on the following points: to minimize the possibility that the
user P tries to validate a false location and to modify DBP-ALP in order to face a new adversary model
consisting of a third party. This new party may perform either a mafia fraud attack or terrorist fraud
attack [23–26]. Finally, a three-dimensional case subject to more real propagation models needs to be
considered. Further studies will be focused on this challenging issue, as it represents a more realistic
application scenario.

Author Contributions: Authors contributed equally to the development of this work. Cristián Molina-Martínez
contributed with the design and implementation of the final protocol presented in this article, and performed
experiments. Patricio Galdames and Cristian Duran-Faundez contributed with experiences and ideas for the
definition of the proposed approach, related works analysis as well as with support and general validation of the
ideas presented. All authors contributed to the writing of the manuscript and performed revisions.

Acknowledgments: This work was supported in parts by the University of the Bío-Bío, under grant DIUBB GI
150115/EF and grant DIUBB 184615 1/I.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Ford. Safe and Secure SecuriCodeTM Keyless Entry. Available online: https://www.ford.com.pr/en/
technology/securicode-keyless-entry-keypad/ (accessed on 12 March 2018).

2. Ko, Y.; Vaidya, N.H. Location-Aided Routing (LAR) Mobile Ad Hoc Networks. In Proceedings of the 4th
Annual ACM/IEEE International Conference on Mobile Computing and Networking, Dallas, TX, USA,
25–30 October 1998; pp. 66–75.

3. Royer, E.; Perkins, C.E. Multicast Operation of the Ad-hoc On-Demand Distance Vector Routing Protocol.
In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, Seattle, WA, USA, 15–19 August 1999; pp. 207–218.

4. Karp, B.; Kung, H.T. GPSR: Greedy Perimeters Stateless Routing for Wireless Network. In Proceedings
of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, USA,
6–11 August 2000; pp. 243–254.

5. Placecast. Location Verification. 2017. Available online: http://placecast.net/location-verification.html
(accessed on 3 April 2018).

https://www.ford.com.pr/en/
technology/securicode-keyless-entry-keypad/
http://placecast.net/location-verification.html


Sensors 2018, 18, 1337 9 of 10

6. Ghinita, G.; Kalnis, P.; Skiadopoulos, S. PRIVE: Anonymous location-based queries in distributed mobile
systems. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada,
8–12 May 2007; pp. 371–380.

7. Xu, T.; Cai, Y. Location Anonymity in Continuous Location-based Services. In Proceedings of the 15th
Annual ACM International Symposium on Advances in Geographic Information Systems, Seattle, WA, USA,
7–9 November 2007; pp. 300–307.

8. Hu, H.; Xu, J. Non-Exposure Location Anonymity. In Proceedings of the IEEE 25th International Conference
on Data Engineering, Shanghai, China, 29 March–2 April 2009; pp. 1120–1131.

9. Xu, T.; Cai, Y. Exploring Historical Location Data for Anonymity Preservation in Location-based
Services. In Proceedings of the IEEE 27th Conference on Computer Communications, Phoenix, AZ, USA,
13–18 April 2008; pp. 547–555.

10. Xu, T.; Cai, Y. Feeling-based Location Privacy Protection for Location-based Services. In Proceedings of the
16th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9–13 November 2009;
pp. 348–357.

11. Xu, T.; Cai, Y. Location Cloaking for Safety Protection of Ad Hoc Networks. In Proceedings of the
IEEE International Conference on Computer Communications, Rio de Janeiro, Brazil, 19–25 April 2009;
pp. 1944–1952.

12. Xu, T.; Cai, Y. Location safety protection in ad hoc networks. Ad Hoc Netw. 2009, 7, 1551–1562. [CrossRef]
13. Niu, B.; Li, Q.; Zhu, X.; Cao, G.; Li, H. Achieving k-anonymity in Privacy-Aware Location-Based Services.

In Proceedings of the 33rd Conference on Computer Communications (INFOCOM’14), Toronto, ON, Canada,
27 April–2 May 2014.

14. Niu, B.; Gao, S.; Li, F.; Li, H.; Lu, Z. Protection of location privacy in continuous LBSs against adversaries with
background information. In Proceedings of the International Conference on Computing, Networking and
Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; pp. 1–6.

15. Brands, S.; Chaum, D. Distance-Bounding Protocols (Extended Abstract). In Workshop on the Theory and
Application of Cryptographic Techniques (EUROCRYPT’93); Springer: Berlin/Heidelberg, Germany, 1993;
pp. 344–359.

16. Hancke, G.P.; Kuhn, M.G. An RFID Distance Bounding Protocol. In Proceedings of the 1st International
Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05),
Athens, Greece, 5–9 September 2005; pp. 67–73.

17. Singelée, D.; Preneel, B. Distance bounding in noisy environments. In Security and Privacy in Ad-Hoc and
Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4572, pp. 101–1115.

18. Hoda, J.; Abolfazl, F. Achieving an appropriate security level for distance bounding protocols over a noisy
channel. Telecommun. Syst. 2015, 58, 219–231.
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