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Abstract: Estimation of the motion of ball-shaped objects is essential for the operation of ball sport
simulators. In this paper, we propose an estimation system for 3D ball motion, including speed
and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is
comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source
localization, and IR scanning for motion analysis. First, an impulsive sound classification based
on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball
launch sound. An impulsive sound source localization using a 2D microelectromechanical system
(MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position.
The time and position of a ball in 3D space is determined from a high-speed infrared scanning method.
Our experimental results demonstrate that the estimation of ball motion based on sound allows a
wider activity area than similar camera-based methods. Thus, it can be practically applied to various
simulations in sports such as soccer and baseball.

Keywords: 3D ball motion; infrared scanning; sports simulator; acoustic sensor; beamforming;
sound source localization

1. Introduction

The accurate estimation of ball motion including velocity, angle of projection, and spin is essential
for the ball simulation in virtual sports. The recent success of a screen golf system [1] has derived the
development of other simulations in sports such as baseball and soccer [2,3]. Most of the current sport
simulations rely on the computer vision-based techniques [4,5], which adopt multiple ultrahigh-speed
cameras fixed on the high locations. The performance of the image-based estimation is greatly
influenced by the capabilities of cameras in capturing area, angle of view, and sensitivity of illumination
conditions. For example, the golf simulator is generally operated under an indoor environment to
detect a ball motion from a constrained hitting area. Unlike the golf simulator, where the ball trajectory
can be delimited to a narrow and specific area, other multi-player simulators (i.e., baseball and soccer)
require a wider area for striking a ball, which makes the ball motion analysis in 3D space more difficult.

In this paper, we present an estimation system for 3D ball motion based on infrared (IR) and
acoustic sensors. The proposed system is comprised of three steps to estimate 3D ball motion:
sound-based ball firing detection, sound source localization, and IR scanning for 3D motion analysis.
First, to recognize impulsive sound caused by firing a ball, we determine the mel-frequency cepstrum
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coefficients (MFCCs) and use them as input to a feed-forward neural network (FFNN). Once the
ball firing sound is detected, a 2D microelectromechanical system (MEMS) microphones and a
delay-and-sum beamforming method is used to localize a source of impulsive sound. For this,
a parametric method is used to determine the sound time and position. Given the location of ball,
a high-speed IR scanner is utilized to determine the ball trajectory in 3D space. As shown in our
experimental results, the proposed system demonstrates that the sound-based estimation of 3D ball
motion provides a wider activity area than similar camera-based methods while keeping its high
accuracy. Thus, it can be practically applied to various multi-player simulations in sports such as
baseball and soccer.

The classification of sound detections can be performed using different types of features such as
pitch range, the time difference of arrival (TDOA), spectrogram, linear frequency cepstral coefficients,
gammatone frequency cepstral coefficients, and MFCC. Kim et al. utilized three features (pitch range,
TDOA, and spectrogram) to increase the classification accuracy [6]. However, the large size of the
features causes the degradation of the performance. Zhao et al. showed that MFCCs provide a feature
vector with few elements with superior noise robustness [7]. They reduced the execution time of the
FFNN but compromised accuracy compared to the image-based approach, which transforms the sound
data into an artificial neural network to recognize human sound [8]. In our system, MFCC is adopted
to provide a real time performance by reducing the size of input vectors of the neural network.

Based on the type of mapping function, sound source localization methods can be divided
into two types: parametric [9,10] and non-parametric [11]. Acoustic holography [12], one of typical
non-parametric methods, can detect not only the position of the sound source but also the characteristics
of the sound field. However, it requires a long calculation time and many microphones for the source
localization. On the other hand, the parametric method can locate the origin of the sound source faster
than the acoustic holography, by using a parameter of the signal with a relatively small number of
sensors. Some of the previous approaches presented a parameter-based 3D sound source localization
method to estimate the direction and distance in frequency domain [13–15]. However, it is difficult to
distinguish the impulsive sound source such as gun firing and ball kicking sound from the background
noise when its frequency is high due to the lack of a frequency feature for it. Seo et al. presented a
beamforming technique for the impulsive sound source localization [16]. In their system, the spherical
wavefront model is used over the planar one to analyze the sound wave, as the latter is more suitable
for position estimation [17]. Heilmann et al. proposed a method of 3D sound source location with
a large number of expensive microphones arranged in 3D space for the real time performance [18].
In their system, the microphones should be placed precisely in a spherical arrangement. Our system
has adopted a similar parametric method due to the real time performance required for the sports
simulator. However, our time-based beamforming technique relies on the time delay such as TDOA
with the spherical wavefront model to analyze the sound wave.

To determine the time and position of a fast-moving ball in 3D space, a laser scanner is adopted
by a baseball simulator such as the Real Yagu Zone system [19]. However, the employed laser devices
have a comparatively lower lifetime than IR scanners, given the high junction temperature of the laser.
In our system, an inexpensive high-speed infrared (IR) scanner is adopted to estimate the position and
timing of the ball [20].

Our system makes two main contributions. First, comparing to the camera-based simulators,
our system is less sensitive to the environmental changes such as lighting and background noises by
utilizing the sound-based sensors. This provides more accurate estimations of ball motion in 3D space,
as shown in our experimental results. Next, our system allows a user to hit a ball without a placement
restriction like the previous system [4]. This increases the applicability of our system to more diverse
sport simulations such as soccer and baseball.

The remainder of this paper is organized as follows. An overview of the proposed system is
introduced in Section 2. In Section 3, we describe the optical and acoustic sensor-based 3D ball
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motion estimation for ball sport simulators. The experimental results are demonstrated in Section 4.
We conclude the paper with a discussion of potential improvements in Section 5.

2. System Overview

Figure 1 shows an overview of the proposed system to estimate 3D ball motion. Prior to the
estimation process, the acoustic sensors should be calibrated, and the two controllers (i.e., acoustic
vector sensor and IR scanning controllers) should be synchronized. The proposed system is comprised
of three steps: sound-based ball firing detection, sound source localization, and IR scanning for motion
analysis. Figure 2 shows the proposed estimation architecture for 3D ball motion. When a ball is fired,
the acoustic vector sensor receives impulsive sound signals, which is emitted whenever the ball is hit
or kicked. The ball hit is detected when a predefined threshold is reached. The acoustic vector sensor
controller recognizes whether the received sound is a ball firing through an MFCC-FFNN algorithm.
The IR scanner detects a ball-shaped object and determines its position on the virtual plane (i.e., the red
plane in Figure 1) when it passes through the designed IR scanning frame. Both controllers transfer
their data containing acoustic and IR light signals to the host processor (i.e., a PC in the proposed
system). Subsequently, the host processor estimates the initial ball position using impulsive sound
source localization method and the ball speed and angle of projection from the output results of both
the sound source localization and the IR scanner.
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Figure 1. Overview of the proposed system: the spherical sound localization using the acoustic. Figure 1. Overview of the proposed system: the spherical sound localization using the acoustic.
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Figure 2. The hardware design for impulsive sound detection using a MFCC-FFNN scheme. 
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training outputs to the embedded system. After analyzing the MFCC and FFNN, we found that the 
MFCC estimation takes much longer than the FFNN execution given the large amount of iterations 
to obtain the Fourier transform and to sum the filter bank energy. Considering the MFCC and FFNN 
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Figure 2. The hardware design for impulsive sound detection using a MFCC-FFNN scheme.

3. D Ball Motion Estimation

3.1. Sound-Based Ball Firing Detection

Figure 3 shows a diagram of the MFCC-FFNN algorithm for the proposed system, where the
MFCCs represent the input feature vector of the FFNN. Inspired by the neural network approach [21],
our system detects and identifies whether an impulsive sound corresponds to ball firing from a
learning-based model. Given that the FFNN training would take a long time on the embedded
microcontroller, we executed this training on the host processor and transferred the weights and
training outputs to the embedded system. After analyzing the MFCC and FFNN, we found that the
MFCC estimation takes much longer than the FFNN execution given the large amount of iterations to
obtain the Fourier transform and to sum the filter bank energy. Considering the MFCC and FFNN
processes, we implemented most of the MFCC estimation using a field-programmable gate array
(FPGA) to improve computational efficiency. Only the logarithmic and discrete cosine transform
stages of the MFCC estimation are conducted at the microcontroller to provide the FFNN inputs.
The parameters of the implemented MFCC-FFNN algorithm are listed in Table 1.
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Table 1. Parameters of the MFCC-FFNN algorithm.

Method Parameter Value

MFCC

Sampling Rate 192 kHz
Number of samples per frame 1024

Frame overlapping 75%
Number of filter banks 20

Number of frames per feature sound 20 (30.7 ms)

FFNN

Activation function


0, x < −45,
1, x > 45,

1
1+exp(−x) , otherwise

Number of input neurons 400
Number of output neurons 10
Number of hidden layers 1

Number of hidden neurons 500

To achieve high recognition accuracy, the impulsive sound is received at 192 kHz sampling
frequency with 24-bit precision. In addition, since the duration time of the sound is very short (less
than one second [22,23]), 20 frames with the size of 1024 are overlapped by 75%, which improves the
time resolution.

3.2. Sound Source Localization

3.2.1. Estimation of 2D Sound Source Position

Figure 4 shows the wave propagation of an impulsive sound source considering the spherical
wavefront model. We adopted this model to estimate the position when a ball is fired using a
2D MEMS microphone array and delay-and-sum beamforming, similar to a FPGA-based real-time
acoustic camera prototype [24]. The measured signal at time t for each microphone in a free field can
be defined as
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pj(t) =
1
|rs|

s
(

t− |rs|
c

)
, (1)

where s(t) is the signal at the position of the impulsive sound source, |rs| is the location vector between
microphone j and the source, and c is the propagation speed of the acoustic wave. The delay-and-sum
beamforming output with respect to candidate position Ps at sample i is given by

b f (Ps, i) =
1
M

M

∑
j=1

pj
[
i− δj(Ps)

]
, (2)

where pj[i] is the measured sound stream of microphone j at index i from the measured microphone
stream, M is the number of microphones, and δj(Ps) is the sound propagation delay between Ps and Pmj,

which is the position of microphone j, at sampling frequency fs defined by fs
c

∣∣Ps − Pmj
∣∣. The output

intensity of delay-and-sum beamforming for all the candidate positions of an impulsive sound source
can be averaged for L samples, where the number can affect the final result of both the sound source
detection and localization.
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The number of signals regarded as impulsive sounds can be determined by

L = ie − is,

 is := S−O,
√

∑S
i=1 P(i)2 > K× BRMS

ie := E + O,
√

∑S
i=1 P(i)2 < K× BRMS

, (3)

where S is the position of the sample detected by the over-threshold (K × BRMS), E is the position
detected by under-threshold, is and ie are the indexes of the initial and final samples, respectively,
O is the offset number of samples, P(i) is the summation of all the measured microphone signals at
sample i, K is a predefined threshold, and BRMS is the root-mean-square value of background noise.
In the proposed system, O and K are defined as 128 and 3, respectively, based on a heuristic method to
extract the valid samples for the impulsive sound source. Finally, the position of the fired ball can be
estimated as

Pb f = max
Ps

[b f (Ps, i)] (4)



Sensors 2018, 18, 1323 7 of 13

3.2.2. Estimation of Prediction Plane Depth and 3D Localization

Figure 5 shows the estimation of the z-axis value (i.e., the distance between the measurement and
the prediction planes depicted in Figure 4). Variables L1 and L2 represent the sound pressure levels of
the two microphones for depth estimation, r3 is the distance between the microphones, θx is the sound
source direction obtained in Section 4.1, and r1 and r2 are the distances between the sound source and
microphones corresponding to L1 and L2, respectively. The relation among r1, r2, and r3 is defined
according to the law of cosines as

r1
2 = r2

2 + r3
2 + 2r2r3cos(θx) (5)
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From Equation (5), we can estimate the distance between the prediction and measurement
planes as

zx = r2sin(θx), r1 = g·r2, (6)

where g is given by
r1

r2
= g = 10

|L1−L2 |
20 (7)

Depth zx for the x axis can be rewritten by substituting Equations (5) and (7) into Equation (6):

zx =
b±

√
b2 + 4·r2

3·[g2 − 1]

2·[g2 − 1]
·sin(θx), (8)

where b = 2 r3 cos(θx). Finally, the depth can be obtained from zx and depth for y axis zy as

Z =
√

z2
x + z2

y (9)

3.3. IR Scanning for Motion Analysis

Our system exploited the previous IR scanner [20] for detecting the initial position and estimating
the trajectory of a ball in 3D space. We added a synchronization unit to integrate impulsive sound
source localization and estimated the velocity of a ball based on the time difference between the two
systems as the IR scanning system only detects the position, not the velocity, when the ball passes
through the scanning frames.
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The velocity, elevation, and azimuth of a fired ball is estimated as follows: The ball angle of
projection can be expressed as 

θel = tan−1
(

Psz−Plz
Psy−Ply

)
θaz = tan−1

(
Psx−Plx
Psy−Ply

) , (10)

where Ps(x, y, z) is the position determined from the IR scanning system and Pl(x, y, z) is the estimated
position of the impulsive sound source caused by the ball firing. In our implementation, Psy is constant
because the IR scanning system is installed at a fixed frame.

The velocity of the ball along the x, y, and z axes can be calculated as

vx = Psx−Plx
ts−tl

vy =
Psy−Ply

ts−tl

vz =
Psz−Plz

ts−tl

, (11)

where ts and tl represent the detection time of the IR scanning system and the measured time using the
sound source localization of the ball being fired, respectively. Then, the 3D ball speed is given by

vBall =
√

vx2 + vy2 + vz2 (12)

4. Experimentation

4.1. Experimental Setup

Figure 6 shows the overall system implementation with the connections and interactions between
the components. Figure 7a shows the placement of the MEMS microphone array, where 25 MP33AB01
microphones (S1 to S25 in Figure 6, analog bottom type, STMicroelectronics, Geneva, Switzerland) are
deployed in a 5 × 5 arrangement with distance d of 2 cm between adjacent microphones. The array
gain is proportional to the number of sensors [25]. Therefore, it is advantageous to use many sensors
to reduce the influence of noise and increase the output signal-to-noise ratio to estimate the position
of the impulsive sound source. However, since the large size of microphones will increase the
processing time of the proposed system, we assume that it is appropriate to use 25 sensors. In addition,
we consider the distance appropriate because we designed the sound localization device based on
the spherical wavefront model, which is suitable for the near field between the microphone arrays
placed in the ceiling and the impulsive sound of the ball originated on the ground. The two AUDIX
TM1 condenser microphones (S26 and S27 in Figure 6, Audix Microphones, Wilsonville, OR, USA)
are used to classify the impulsive sound to recognize the ball sound and estimate the depth of the
prediction plane, as described in Section 4.2. These microphones are situated at the sides (left and right)
of the microphone array and far from the center of the microphone array, as illustrated in Figure 1,
to achieve accurate results of triangulation. Since we adopted time-domain based beamforming
techniques, the acoustic signals were sampled at 192 kHz with 24-bit resolution to achieve good
performance [26]. In addition, we implemented an analog-to-digital converter in the FPGA board
using the manufacturer’s development kit [27].
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Figure 7b shows the implemented acoustic sensor controller, which receives acoustic signals
from 27 microphones and synchronizes their phases. It recognizes the sounds produced by the ball
and filters other types of sounds from a single motion-blurred image [28] and transfers the sound
information to the host processor via a USB connection. The controller is mostly implemented on the
cost-effective Artix-7 XC7A100T FPGA (Xilinx, Inc., San Jose, CA, USA) and STM32F microcontroller
(STMicroelectronics, Geneva, Switzerland) to support the final stages of MFCC, the FFNN algorithm,
and communications, as shown in Figure 3.

The width and height of the IR frame are 4 and 2.5 m, respectively, and it contains 176 pairs of
IR sensors, with every emitter placed at 3 cm apart from each other. This high density of IR sensors
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aims to detect the motion of a baseball sized 7.23 cm. However, there is a tradeoff between accuracy
and the scanning rate, as more sensors reduce the scanning rate. In our system, the scanning rate from
the previous system [20] is improved to approximately 20 kHz, which provides a better processing
rate than the ultrahigh-speed cameras do in the other sports simulators. In addition, our IR scanning
system is mainly used to detect the ball location in 3D space while the previous one is used to detect
the velocity of the flying ball when the ball passes the scanning frame.

4.2. Calibration

Calibration is essential to obtain accurate beamforming results, as we estimate the initial ball
position from the impulsive sound caused by the ball firing based on the sound pressure level.
To retrieve accurate sound pressure measurements, the voltage of the relative sensitivity and phase of
all microphones must be calibrated. Despite being accurately calibrated using specialized equipment,
such as the Type 4231 sound calibrator (Brüel and Kjær Sound and Vibration Measurement A/S,
Nærum, Denmark), MEMS microphones accumulate dust over time, and their properties can be altered,
thus requiring periodic recalibrations. Moreover, to avoid dismounting and mounting the microphone
system for calibration, we adopted the free-field method that uses the spherical characteristic of sound
propagation [29]. This method allows us to calibrate all the microphones without taking them out from
their printed circuit board by using a single Type 4295 omnidirectional loudspeaker (OmniSource™;
Brüel and Kjær Sound and Vibration Measurement A/S, Nærum, Denmark). After calibration,
the proposed system generates a hardware-based trigger signal to the acoustic vector sensor and
IR scanning controllers. When the trigger is activated, the timers of both controllers are reset to zero,
such that the asynchronous controllers share synchronized timing, which is crucial for accurately
estimating the ball speed.

4.3. 3D Ball Motion Estimation

Figure 8 shows the simulation setup used for the estimations of ball motion in 3D space by using
two different sized balls, a baseball (7.23 cm) and a soccer ball (22 cm). Several users (i.e., 10 amateur
players) are hired to perform various swings and kicks in an indoor environment. Any impulsive
sound not from a ball is subdued except background white noises. Each player is given 20 tries to
swing or to hit a ball, producing a ball impulsive sound.
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Figure 9 shows the performance of the proposed ball motion estimation system by comparing
the measured speed of ball motion that is obtained from the previous IR scanning system [19] and
the camera-based smart vision system [4], respectively. The error was determined from the mean
speed of numerous swings and kicks that is measured with a commercial radar gun (the Stalker Pro II
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sports radar gun) [30]. Overall, the error of the proposed system remains below 4% over the entire
measurement range and is comparable to the error of the smart vision system, whereas the error when
using only the IR scanning system increases with the ball speed given its limited scanning rate.Sensors 2018, 18, x  11 of 13 
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5. Conclusions

This paper presents an estimation system of 3D ball motion by using acoustic and IR sensors.
The proposed system demonstrates the sound-based ball firing detection and localization to determine
the initial position of a ball and a high-speed IR scanning method to detect the position of the ball when
it passes through the scanning frames. In our system, the acoustic vector sensor controller classifies
the ball firing sound for impulsive sound recognition based on FFNN algorithm with MFCC as the
input feature vector. It estimates the position and timing of a ball using time-domain beamforming
method, which is based on the spherical wavefront model. Once the ball is located, the high-speed IR
scanning controller estimates ball positions and timings of the ball whenever it passes through the
scanner. As the experimental results show, the accuracy of the proposed system is above 95%, similar
to that of the camera-based smart vision system. The proposed system meets with the requirements of
most screen-based ball sports simulators.

One of the ongoing improvements in our system is adding an extra IR scanner to obtain additional
position information. This way, the ball trajectory could be estimated in a greater accuracy using a
physics engine. Currently, the beamforming process is estimated by CPU, which can be implemented
into FPGA for a real time recognition of ball motion.
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