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Abstract: In this paper, we compare six known linear distributed average consensus algorithms on
a sensor network in terms of convergence time (and therefore, in terms of the number of transmissions
required). The selected network topologies for the analysis (comparison) are the cycle and the path.
Specifically, in the present paper, we compute closed-form expressions for the convergence time of
four known deterministic algorithms and closed-form bounds for the convergence time of two known
randomized algorithms on cycles and paths. Moreover, we also compute a closed-form expression
for the convergence time of the fastest deterministic algorithm considered on grids.

Keywords: average consensus algorithms; distributed computation; sensor networks; convergence
time; number of transmissions

1. Introduction

A distributed averaging (or average consensus) algorithm obtains in each sensor the average
(arithmetic mean) of the values measured by all the sensors of a sensor network in a distributed way.

The most common distributed averaging algorithms are linear and iterative:

x(t + 1) = W(t) x(t), t ∈ {0, 1, 2, . . .}, (1)

where:

x(t) =

 x1(t)
...

xn(t)

 (2)

is a real vector, n is the number of sensors of the network, which we label vj with j ∈ {1, . . . , n}, xj(0)
is the value measured by the sensor vj, xj(t) is the value computed by the sensor vj in time t 6= 0 and
the weighting matrix W(t) is an n× n real sparse matrix satisfying that if two sensors vj and vk are not
connected (i.e., if vj and vk cannot interchange information), then [W(t)]j,k = 0. From the point of view
of communication protocols, there exist efficient ways of implementing synchronous algorithms of the
form of (1). (see, e.g., [1]). The linear distributed averaging algorithms can be classified as deterministic
or randomized depending on the nature of the weighting matrices W(t).

1.1. Deterministic Linear Distributed Averaging Algorithms

Several well-known deterministic linear distributed averaging algorithms can be found
in [2] and [3]. Those algorithms are time-invariant and have symmetric weights, that is, the deterministic
weighting matrix W(t) is symmetric and does not depend on t (and consequently, x(t) = Wtx(0)).

In [2], the authors search among all the symmetric weighting matrices W the one that makes (1)
the fastest possible and show that such a matrix can be obtained by numerically solving a convex
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optimization problem. This algorithm is called the fastest linear time-invariant (LTI) distributed
averaging algorithm for symmetric weights. It should be mentioned that in [4], the authors proposed
an in-network algorithm for finding such an optimal weighting matrix.

In [2], the authors also give a slower algorithm: the fastest constant edge weights algorithm.
In this other algorithm, they consider a particular structure of symmetric weighting matrices that
depends on a single parameter and find the value of that parameter that makes (1) the fastest possible.

In [3], another two algorithms can be found: the maximum-degree weights algorithm and the
Metropolis–Hastings algorithm.

For other deterministic linear distributed averaging algorithms, we refer the reader to [5] and the
references therein.

1.2. Randomized Linear Distributed Averaging Algorithms

For the randomized case, a well-known linear distributed averaging algorithm was given in [6].
That algorithm is called the pairwise gossip algorithm because only two randomly-selected sensors
interchange information at each time instant t.

Another well-known randomized algorithm can be found in [7]. That algorithm is called the
broadcast gossip algorithm because a single sensor is randomly selected at each time instant t and
broadcasts its value to all its neighboring sensors. The broadcast gossip algorithm is a linear distributed
consensus algorithm rather than a linear distributed averaging algorithm. However, the broadcast
gossip algorithm converges to a random consensus value, which is, in expectation, the average of the
values measured by all the sensors of the network. If one uses the directed version of the broadcast
gossip algorithm [8] in a symmetric graph, one would converge to the true average.

For other randomized linear distributed averaging algorithms, we refer the reader to [9] and the
references therein. The linear distributed averaging algorithms reviewed in Sections 1.1 and 1.2 are the
most cited algorithms in the literature on the topic.

1.3. Our Contribution

A key feature of a distributed averaging algorithm is its convergence time, because it allows
one to establish the stopping criterion for the iterative algorithm. The convergence time is defined
as the number of iterations t required in (1) until the effective value computed by the sensors,
x(t), has approached the steady state sufficiently close (to a threshold ε). In the literature, we have
not found closed-form expressions for the convergence time of the six linear distributed averaging
algorithms mentioned in Sections 1.1 and 1.2. A mathematical expression is said to be a closed-form
expression if it is written in terms of a finite number of elementary functions (i.e., in terms of a finite
number of constants, arithmetic operations, roots, exponentials, natural logarithms and trigonometric
functions). In the present paper, we compute closed-form expressions for the convergence time of the
deterministic algorithms and closed-form upper bounds for the convergence time of the randomized
algorithms on two common network topologies: the cycle and the path. Observe that these closed-form
formulas give us upper bounds for the convergence time of the considered algorithms (stopping
criteria) on any network that contains as a subgraph a cycle or a path with the same number of sensors.
Specifically, in this paper, we compute:

• a closed-form expression for the convergence time of the fastest LTI distributed averaging
algorithm for symmetric weights on the considered topologies (see Section 2.1); moreover, we also
compute a closed-form expression for the convergence time of this algorithm on a grid;

• a closed-form expression for the convergence time of the fastest constant edge weights algorithm
on the considered topologies (see Section 2.2);

• a closed-form expression for the convergence time of the maximum-degree weights algorithm on
the considered topologies (see Section 2.3);
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• a closed-form expression for the convergence time of the Metropolis–Hastings algorithm on the
considered topologies (see Section 2.3);

• closed-form lower and upper bounds for the convergence time of the pairwise gossip algorithm
on the considered topologies (see Section 3.1);

• closed-form lower and upper bounds for the convergence time of the broadcast gossip algorithm
on the considered topologies (see Section 3.2).

From these closed-form formulas, we study the asymptotic behavior of the convergence time of
the considered algorithms as the number of sensors of the network grows. The obtained asymptotic
and non-asymptotic results allow us to compare the considered algorithms in terms of convergence
time and, consequently, in terms of the number of transmissions required, as well (see Sections 4 and 5).
The knowledge of the number of transmissions required lets us know the energy consumption of
the distributed technique. The knowledge of the energy consumption is a key factor in the design
of a new wireless sensor network (WSN), where one has to decide the number of nodes and the
network topology. It should be mentioned that when designing new WSNs, cycles, paths and grids are
topologies that are considered frequently.

2. Convergence Time of Deterministic Linear Distributed Averaging Algorithms

Different definitions of convergence time are used in the literature. We have found three
different definitions for the convergence time of a deterministic linear distributed averaging
algorithm (see [2,10,11]). In this paper, we consider the definition of ε-convergence time given in [11]:

τ (ε, {W(t)}t≥0) := min
{

t0 :
‖x(t)− Pnx(0)‖2

‖x(0)− Pnx(0)‖2
≤ ε, ∀t ≥ t0, ∀x(0) 6= Pnx(0)

}
, (3)

where ε ∈ (0, 1), ‖ · ‖2 is the spectral norm and Pn := 1
n 1n1>n , with 1n being the n× 1 matrix of ones

and > denoting the transpose. If we replace the spectral norm by the infinity norm in that definition,
we obtain the definition of ε-convergence time given in [10]. If the deterministic matrix W(t) in (1)
does not depend on t, we denote the ε-convergence time by τ(ε, W).

2.1. Convergence Time of the Fastest LTI Distributed Averaging Algorithm for Symmetric Weights

In this section, we give a closed-form expression for the ε-convergence time of the fastest LTI
distributed averaging algorithm for symmetric weights, and we study its asymptotic behavior as the
number of sensors of the network grows. We consider three common network topologies: the cycle,
the grid and the path (see Figure 1).
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Figure 1. Considered network topologies with 16 sensors.
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2.1.1. The Cycle

Let:

◦
Wn(γ) :=



1−2γ γ 0 · · · 0 0 γ

γ 1−2γ γ · · · 0 0 0
0 γ 1−2γ · · · 0 0 0
...

. . . . . . . . . . . .
...

...
0 0 0 · · · 1−2γ γ 0
0 0 0 · · · γ 1−2γ γ

γ 0 0 · · · 0 γ 1−2γ


. (4)

Using (4), Theorem 1 gives the expression of the weighting matrix of the fastest LTI distributed
averaging algorithm for symmetric weights on a cycle with n sensors.

Theorem 1. Let n ∈ N, with n > 3. Then,
◦

Wn(γ0) is the weighting matrix of the fastest LTI distributed
averaging algorithm for symmetric weights on a cycle with n sensors, where:

γ0 =
1

2− cos 2π
n − cos 2π(j0−1)

n

, (5)

with:

j0 =

{
n
2 + 1 if n is even,
n+1

2 if n is odd.
(6)

Proof. See Appendix B.

We now give a closed-form expression for the ε-convergence time of the fastest LTI distributed
averaging algorithm for symmetric weights on a cycle. We also study the asymptotic behavior of this
convergence time as the number of sensors of the cycle grows.

We first introduce some notation: Two sequences of numbers {an} and {bn} are said to be
asymptotically equal, and write an ∼ bn, if and only if limn→∞

an
bn

= 1 (see, e.g., [12] (p. 396)), and,
consequently,

τ(ε,
◦

Wn(γ0)) = Θ(n2 log ε−1). (7)

Let f , g : N → R be two non-negative functions. We write f (n) = O(g(n)) (respectively,
f (n) = Ω(g(n))) if there exist K ∈ (0, ∞) and n0 ∈ N such that f (n) ≤ Kg(n) (respectively,
f (n) ≥ Kg(n)) for all n ≥ n0. If f (n) = O(g(n)) and f (n) = Ω(g(n)), then we write f (n) = Θ(g(n)).

Theorem 2. Consider ε ∈ (0, 1) and n ∈ N, with n > 3. Let
◦

Wn(γ0) be as in Theorem 1. Then,

τ

(
ε,
◦

Wn(γ0)

)
=



 log ε−1

− log 1+cos 2π
n

3−cos 2π
n

 if n is even,

 log ε−1

− log cos π
n +cos 2π

n
2+cos π

n −cos 2π
n

 if n is odd,

(8)

where log is the natural logarithm and dxe denotes the smallest integer not less than x. Moreover,

τ(ε,
◦

Wn(γ0)) ∼
n2 log ε−1

2π2 , (9)

Proof. See Appendix C.
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Since the number of transmissions per iteration on a cycle with n sensors is n for the fastest LTI
distributed averaging algorithm for symmetric weights, the total number of transmissions required for

τ(ε,
◦

Wn(γ0)) iterations is T(ε,
◦

Wn(γ0)) := nτ(ε,
◦

Wn(γ0)). From Theorem 2, we obtain:

T(ε,
◦

Wn(γ0)) ∼
n3 log ε−1

2π2 , (10)

and hence, T(ε,
◦

Wn(γ0)) = Θ(n3 log ε−1).

2.1.2. The Grid

Let:

∼
Wn(α) :=


1− α α

α 1− 2α α
. . . . . . . . .

α 1− 2α α

α 1− α

 (11)

be the n× n matrix for n ≥ 2, and
∼
W1(α) := 1. We define:

�
Wr,c(α) :=

∼
Wr(α)⊗

∼
Wc(α), (12)

where ⊗ is the Kronecker product. Using (12), Theorem 3 gives the expression of the weighting matrix
of the fastest LTI distributed averaging algorithm for symmetric weights on a grid of r rows and
c columns.

Theorem 3. Let r, c ∈ N, with rc > 2. Then, the rc× rc matrix
�
Wr,c

(
1
2

)
is the weighting matrix of the

fastest LTI distributed averaging algorithm for symmetric weights on a grid of r rows and c columns.

Proof. See Appendix D.

We now give a closed-form expression for the ε-convergence time of the fastest LTI distributed
averaging algorithm for symmetric weights on a grid of r rows and c columns. We also study the
asymptotic behavior of this convergence time as the number of rows of the grid grows.

Theorem 4. Consider ε ∈ (0, 1) and r, c ∈ N, with rc > 2. Without loss of generality, we assume r ≥ c. Then,

τ

(
ε,

�
Wr,c

(
1
2

))
=

⌈
log ε−1

− log cos π
r

⌉
. (13)

Moreover,

τ

(
ε,

�
Wr,c

(
1
2

))
∼ 2r2 log ε−1

π2 (14)

and consequently,

τ

(
ε,

�
Wr,c

(
1
2

))
= Θ(r2 log ε−1). (15)

Proof. From [2] (Theorem 1), Theorem A1 and (A64), we obtain (13). The rest of the proof runs as the
proof of Theorem 2.
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Since the number of transmissions per iteration on a grid of r rows and c columns is rc for the
fastest LTI distributed averaging algorithm for symmetric weights, the total number of transmissions

required for τ

(
ε,

�
Wr,c

(
1
2

))
iterations is:

T
(

ε,
�
Wr,c

(
1
2

))
:= rcτ

(
ε,

�
Wr,c

(
1
2

))
. (16)

If r = c =
√

n, from Theorem 4, we obtain:

T
(

ε,
�
Wr,c

(
1
2

))
∼ 2n2 log ε−1

π2 , (17)

and hence, T
(

ε,
�
Wr,c

(
1
2

))
= Θ(n2 log ε−1). Observe that from (13), the optimal configuration for a

grid with n sensors is obtained when r = c =
√

n.

2.1.3. The Path

Since the path with n sensors can be seen as a grid of n rows and one column, from Theorem 3,

we conclude that
∼
Wn

(
1
2

)
is the weighting matrix of the fastest LTI distributed averaging algorithm

for symmetric weights on a path of n sensors, and from Theorem 4, we conclude that:

τ

(
ε,
∼
Wn

(
1
2

))
=

⌈
log ε−1

− log cos π
n

⌉
. (18)

Moreover,

τ

(
ε,
∼
Wn

(
1
2

))
∼ 2n2 log ε−1

π2 (19)

and consequently,

τ

(
ε,
∼
Wn

(
1
2

))
= Θ(n2 log ε−1). (20)

Finally, from (16), we obtain:

T
(

ε,
∼
Wn

(
1
2

))
∼ 2n3 log ε−1

π2 , (21)

and hence, T
(

ε,
∼
Wn

(
1
2

))
= Θ(n3 log ε−1).

2.2. Convergence Time of the Fastest Constant Edge Weights Algorithm

In [2], the authors consider the real symmetric weighting matrices Wn(ρ) given by:

[Wn(ρ)]j,k :=


ρ if j 6= k, and vj and vk are connected,
1− djρ if j = k,
0 otherwise,

(22)

where dj denotes the degree of the sensor vj (i.e., the number of sensors different from vj connected
to vj).

Observe that the weighting matrices of the fastest LTI distributed averaging algorithms for

symmetric weights given in Section 2.1 for a cycle and a path, namely
◦

Wn(γ0) and
∼
Wn

(
1
2

)
, can be

regarded as Wn(ρ) in (22) taking ρ = γ0 and ρ = 1
2 , respectively. Therefore, the closed-form expression

for the ε-convergence time of the fastest constant edge weights algorithm is given by Theorem 2 on



Sensors 2018, 18, 968 7 of 25

a cycle and by Theorem 4 on a path. That is, the ε-convergence time of the fastest constant edge
weights algorithm and the ε-convergence time of the fastest LTI distributed averaging algorithm for
symmetric weights is the same on a cycle and on a path.

2.3. Convergence Time of the Maximum-Degree Weights Algorithm and of the Metropolis–Hastings Algorithm

For the maximum-degree weights algorithm [3], the weighting matrix considered is the real
symmetric matrix Wn(ρ) in (22) with:

ρ =
1

1 + maxj∈{1,...,n} dj
. (23)

On the other hand, for the Metropolis–Hastings algorithm [3], the entries of the weighting matrix
Wn are given by:

[Wn]j,k =


[A]j,k

1+max{dj ,dk}
if j 6= k,

1−∑h∈{1,...,n}\{j}[Wn]j,h if j = k,
(24)

where A is the adjacency matrix of the network, that is A is the n× n real symmetric matrix given by:

[A]j,k =

{
1 if j 6= k, and vj and vk are connected,
0 otherwise.

(25)

2.3.1. The Cycle

Observe that the weighting matrices of the maximum-degree weights algorithm and the

Metropolis–Hastings algorithm for a cycle with n sensors can be regarded as
◦

Wn(γ) in (4) taking γ = 1
3 .

We now give a closed-form expression for the ε-convergence time of the maximum-degree weights
algorithm and of the Metropolis–Hastings algorithm on a cycle. We also study the asymptotic behavior
of this convergence time as the number of sensors of the cycle grows.

Theorem 5. Consider ε ∈ (0, 1) and n ∈ N, with n > 3. Then:

τ

(
ε,
◦

Wn

(
1
3

))
=

 log ε−1

− log 1+2 cos 2π
n

3

 . (26)

Moreover,

τ

(
ε,
◦

Wn

(
1
3

))
∼ 3n2 log ε−1

4π2 , (27)

and therefore,

τ

(
ε,
◦

Wn

(
1
3

))
= Θ(n2 log ε−1). (28)

Proof. Combining (A29) and (A30), we obtain:∥∥∥∥ ◦Wn

(
1
3

)
− Pn

∥∥∥∥
2
=

1 + 2 cos 2π
n

3
, (29)

and applying [2] (Theorem 1) and Theorem A1, (26) holds. The rest of the proof runs as the proof of
Theorem 2.
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Since the number of transmissions per iteration on a cycle with n sensors is n for both algorithms,

the total number of transmissions required for τ

(
ε,
◦

Wn

(
1
3

))
iterations is T

(
ε,
◦

Wn

(
1
3

))
:=

nτ

(
ε,
◦

Wn

(
1
3

))
. From Theorem 5, we obtain:

T
(

ε,
◦

Wn

(
1
3

))
∼ 3n3 log ε−1

4π2 , (30)

and thus, T
(

ε,
◦

Wn

(
1
3

))
= Θ(n3 log ε−1).

2.3.2. The Path

Observe that the weighting matrices of the maximum-degree weights algorithm and of the

Metropolis–Hastings algorithm for a path with n sensors can be regarded as
∼
Wn(α) in (11) taking α = 1

3 .
We now give a closed-form expression for the ε-convergence time of the maximum-degree weights

algorithm and of the Metropolis–Hastings algorithm on a path. We also study the asymptotic behavior
of this convergence time as the number of sensors of the path grows.

Theorem 6. Consider ε ∈ (0, 1) and n ∈ N, with n > 3. Then:

τ

(
ε,
∼
Wn

(
1
3

))
=

 log ε−1

− log 1+2 cos π
n

3

 . (31)

Moreover,

τ

(
ε,
∼
Wn

(
1
3

))
∼ 3n2 log ε−1

π2 , (32)

and therefore,

τ

(
ε,
∼
Wn

(
1
3

))
= Θ(n2 log ε−1). (33)

Proof. Combining (A63) and [4] (Lemma 1), we obtain:∥∥∥∥ ∼Wn

(
1
3

)
− Pn

∥∥∥∥
2
=

1
3
+

2
3

cos
π

n
, (34)

and applying [2] (Theorem 1) and Theorem A1, (31) holds. The rest of the proof runs as the proof of
Theorem 2.

Since the number of transmissions per iteration on a path with n sensors is n for both algorithms, the

total number of transmissions required for τ

(
ε,
∼
Wn

(
1
3

))
iterations is T

(
ε,
∼
Wn

(
1
3

))
:= nτ

(
ε,
∼
Wn

(
1
3

))
.

From Theorem 6, we obtain:

T
(

ε,
∼
Wn

(
1
3

))
∼ 3n3 log ε−1

π2 , (35)

and thus, T
(

ε,
∼
Wn

(
1
3

))
= Θ(n3 log ε−1).



Sensors 2018, 18, 968 9 of 25

3. Convergence Time of Randomized Linear Distributed Averaging Algorithms

3.1. Lower and Upper Bounds for the Convergence Time of the Pairwise Gossip Algorithm

In the literature, we have found two different definitions for the convergence time of a randomized
linear distributed averaging algorithm (see [6,7]). In this subsection, we consider the definition of
ε-convergence time for a randomized linear distributed averaging algorithm given in [6]:

τ (ε, {W(t)}t≥0) := sup
x(0) 6=0n×1

inf
{

t : Pr
(
‖x(t)− Pnx(0)‖2

‖x(0)‖2
≥ ε

)
≤ ε

}
, (36)

where ε ∈ (0, 1) and Pr denotes probability.
We prove in Theorem A1 (Appendix A) that the definitions of ε-convergence time in (3) and (36)

coincide when applied to deterministic LTI distributed averaging algorithms with symmetric weights
(in particular, the four algorithms considered in Section 2). For those algorithms, we also obtain from
Theorem A1 that:

τ

(
1
e

, W
)
= dτ′(W)e, (37)

where τ′(W) denotes the definition of convergence time given in [2].
We recall here that in the pairwise gossip algorithm [6], only two sensors interchange information

at each time instant t. These two sensors vjt and vkt are randomly selected at each time instant t, and
the weighting matrix W(t), which we denote by WP(t), is the symmetric matrix given by:

[WP(t)]j,k =


1
2 if j, k ∈ {jt, kt},
1 if j = k /∈ {jt, kt},
0 otherwise,

(38)

for all j, k ∈ {1, . . . , n}.
In [6], a lower and an upper bound for the ε-convergence time of the pairwise gossip algorithm

were introduced. We now give a closed-form expression for those bounds on a cycle and on a path,
and we study their asymptotic behavior as the number of sensors of the network grows.

3.1.1. The Cycle

Theorem 7. Consider ε ∈ (0, 1) and n ∈ N, with n > 3. Suppose that
◦

WP(t) is the weighting matrix of the
pairwise gossip algorithm given in (38) on a cycle with n sensors, where the edge {vjt , vkt} is randomly selected
at each time instant t ∈ N∪ {0} with probability 1

n . Then:

1
2

◦
lP(ε) ≤ τ

(
ε, {

◦
WP(t)}t≥0

)
≤ 3

◦
lP(ε), (39)

with:
◦
lP(ε) =

log ε−1

− log
(

1 + 1
n
(
cos 2π

n − 1
)) . (40)

Moreover,
◦
lP(ε) ∼

n3 log ε−1

2π2 (41)

and:

τ

(
ε, {

◦
WP(t)}t≥0

)
= Θ(n3 log ε−1) = τ

(
ε,
◦

Wn

(
1

2n

))
, (42)
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Proof. The entries of the expectation of
◦

WP(0) are given by:

[E(
◦

WP(0))]j,k =


1

2n if j− k ∈ {−1, 1},
1

2n if j− k ∈ {1− n, n− 1},
1
n (n− 1) if j = k,
0 otherwise,

(43)

for all j, k ∈ {1, . . . , n}. Thus, E(
◦

WP(0)) =
◦

Wn(
1

2n ). Therefore, combining (A29) and [6] (Theorem 3),
we obtain (39). The rest of the proof runs as the proof of Theorem 2.

Since the number of transmissions per iteration on a cycle with n sensors is two for the

pairwise gossip algorithm, the total number of transmissions required for τ

(
ε, {

◦
WP(t)}t≥0

)
iterations is T

(
ε, {

◦
WP(t)}t≥0

)
:= 2τ

(
ε, {

◦
WP(t)}t≥0

)
. From Theorem 7, we obtain

◦
lP(ε) ≤ T

(
ε, {

◦
WP(t)}t≥0

)
≤ 6

◦
lP(ε) and T

(
ε, {

◦
WP(t)}t≥0

)
= Θ(n3 log ε−1).

3.1.2. The Path

Theorem 8. Consider ε ∈ (0, 1) and n ∈ N, with n > 3. Suppose that
∼
WP(t) is the weighting matrix of the

pairwise gossip algorithm given in (38) on a path with n sensors, where the edge {vjt , vkt} is randomly selected
at each time instant t ∈ N∪ {0} with probability 1

n−1 . Then:

1
2

∼
l P(ε) ≤ τ

(
ε, {

∼
WP(t)}t≥0

)
≤ 3

∼
l P(ε), (44)

with:
∼
l P(ε) =

log ε−1

− log
(

1 + 1
n−1

(
cos π

n − 1
)) . (45)

Moreover,
∼
l P(ε) ∼

2n3 log ε−1

π2 (46)

and:

τ

(
ε, {

∼
WP(t)}t≥0

)
= Θ(n3 log ε−1) = τ

(
ε,
∼
Wn

(
1

2n− 2

))
. (47)

Proof. The entries of the expectation of
∼
WP(0) are given by:

[E(
∼
WP(0))]j,k =


1

2n−2 if j− k ∈ {−1, 1},
1− 1

n−1 if j = k, j 6= 1 and j 6= n,
1− 1

2n−2 if j = k, j ∈ {1, n},
0 otherwise,

(48)

for all j, k ∈ {1, . . . , n}. Thus, E(
∼
WP(0)) =

∼
Wn(

1
2n−2 ). Therefore, combining (A63) and [6] (Theorem 3),

we obtain (44). The rest of the proof runs as the proof of Theorem 2.

Since the number of transmissions per iteration on a path with n sensors is two for the

pairwise gossip algorithm, the total number of transmissions required for τ

(
ε, {

∼
WP(t)}t≥0

)
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iterations is T
(

ε, {
∼
WP(t)}t≥0

)
:= 2τ

(
ε, {

∼
WP(t)}t≥0

)
. From Theorem 8, we obtain

∼
l P(ε) ≤

T
(

ε, {
∼
WP(t)}t≥0

)
≤ 6

∼
l P(ε) and T

(
ε, {

∼
WP(t)}t≥0

)
= Θ(n3 log ε−1).

3.2. Lower and Upper Bounds for the Convergence Time of the Broadcast Gossip Algorithm

We begin this subsection with the definition of ε-convergence time for a randomized linear
distributed averaging algorithm given in [7] (Equation (42)):

τ (ε, {W(t)}t≥0) := sup
x(0) 6=Pnx(0)

inf
{

t : Pr
(
‖x(t)− Pnx(t)‖2

‖x(0)− Pnx(0)‖2
≥ ε

)
≤ ε

}
, (49)

where ε ∈ (0, 1).
It can be proven that the definitions of ε-convergence time in (36) and (49) coincide when

applied to algorithms in which the matrix W(t) satisfies W(t)Pn = PnW(t) = Pn for all t ∈ N ∪ {0}
(in particular, the pairwise gossip algorithm and deterministic LTI distributed averaging algorithms
with symmetric weights).

Observe that (49) is actually a definition for the convergence time of linear distributed consensus
algorithms, not only of linear distributed averaging algorithms.

We recall here that in the broadcast gossip algorithm, a single sensor broadcasts at each time
instant t. This sensor vjt is randomly selected at each time instant t with probability 1

n , and the
weighting matrix W(t) is given by:

[W(t)]j,k =


1 if j = k and [A]j,jt = 0,
ϕ if j = k and [A]j,jt = 1,
1− ϕ if k = jt and [A]j,jt = 1,
0 otherwise,

(50)

for all j, k ∈ {1, . . . , n}, where ϕ ∈ (0, 1) and A is the adjacency matrix of the network. We denote by
WB(t) the weighting matrix in (50) when ϕ is the optimal parameter: ϕ0 (see [7] (Section V)).

In [7], a lower and an upper bound for the ε-convergence time of the broadcast gossip algorithm
were introduced. We now give a closed-form expression for ϕ0 and for those bounds on a cycle and
on a path. We also study the asymptotic behavior of the bounds as the number of sensors of the
network grows.

3.2.1. The Cycle

Theorem 9. Consider ε ∈ (0, 1) and n ∈ N, with n > 3. Suppose that
◦

WB(t) is the weighting matrix in (50)
when the network is a cycle with n sensors and ϕ is the optimal parameter:

◦
ϕ0. Then:

◦
ϕ0 = 1− n

2
(
n + cos 2π

n − 1
) (51)

and:
◦
lB(ε) ≤ τ

(
ε, {

◦
WB(t)}t≥0

)
≤ 6

◦
lB(ε), (52)

with:
◦
lB(ε) =

log ε−1

−2 log
(

n+2 cos 2π
n −2

n+cos 2π
n −1

) . (53)

Moreover,
◦
lB(ε) ∼

n3 log ε−1

4π2 , (54)
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and:

τ

(
ε, {

◦
WB(t)}t≥0

)
= Θ(n3 log ε−1) = τ

(
ε,
◦

Wn

(
1− ◦ϕ0

n

))
. (55)

Proof. See Appendix E.

Since the number of transmissions per iteration on a cycle with n sensors is one for the broadcast

gossip algorithm, the total number of transmissions required for τ

(
ε, {

◦
WB(t)}t≥0

)
iterations is

T
(

ε, {
◦

WB(t)}t≥0

)
:= τ

(
ε, {

◦
WB(t)}t≥0

)
. From Theorem 9, we obtain

◦
lB(ε) ≤ T

(
ε, {

◦
WB(t)}t≥0

)
≤

6
◦
lB(ε) and T

(
ε, {

◦
WB(t)}t≥0

)
= Θ(n3 log ε−1).

3.2.2. The Path

Theorem 10. Consider ε ∈ (0, 1) and n ∈ N, with n > 3. Suppose that
∼
WB(t) is the weighting matrix in

(50) when the network is a path with n sensors and ϕ is the optimal parameter:
∼
ϕ0. Then:

∼
ϕ0 = 1− n

2
(
n + cos π

n − 1
) (56)

and:
∼
l B(ε) ≤ τ

(
ε, {

∼
WB(t)}t≥0

)
≤ 6

∼
l B(ε), (57)

with:
∼
l B(ε) =

log ε−1

−2 log
(

n+2 cos π
n−2

n+cos π
n−1

) . (58)

Moreover,
∼
l B(ε) ∼

n3 log ε−1

π2 , (59)

and:

τ

(
ε, {

∼
WB(t)}t≥0

)
= Θ(n3 log ε−1) = τ

(
ε,
∼
Wn

(
1− ◦ϕ0

n

))
. (60)

Proof. See Appendix F.

Since the number of transmissions per iteration on a path with n sensors is one for the

broadcast gossip algorithm, the total number of transmissions required for τ

(
ε, {

∼
WB(t)}t≥0

)
iterations is T

(
ε, {

∼
WB(t)}t≥0

)
:= τ

(
ε, {

∼
WB(t)}t≥0

)
. From Theorem 10, we obtain

∼
l B(ε) ≤

T
(

ε, {
∼
WB(t)}t≥0

)
≤ 6

∼
l B(ε) and T

(
ε, {

∼
WB(t)}t≥0

)
= Θ(n3 log ε−1).

4. Discussion

As in this paper we have used the same definition of converge time for both deterministic and
randomized linear distributed averaging algorithms (namely, the one in (49)), the results given in
Sections 2 and 3 allow us to compare the considered algorithms on a cycle and on a path in terms
of convergence time and, consequently, in terms of the number of transmissions required, as well.
In particular, these results show the following:
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• The behavior of the considered deterministic linear distributed averaging algorithms is as good as
the behavior of the considered randomized ones in terms of the number of transmissions required
on a cycle and on a path with n sensors: Θ(n3 log ε−1).

• For a large enough number of sensors and regardless of the considered distributed averaging
algorithm, the number of transmissions required on a path is four times larger than the number of
transmissions required on a cycle.

Furthermore, regarding the cycle, from (10), (30), (41) and (54), we obtain the following
enlightening asymptotic equalities:

◦
lB(ε) ∼

T(ε,
◦

Wn(γ0))

2
∼
◦
lP(ε)

2
∼

T
(

ε,
◦

Wn

(
1
3

))
3

, (61)

and regarding the path, from (21), (35), (46) and (59), we obtain:

∼
l B(ε) ∼

T
(

ε,
∼
Wn

(
1
2

))
2

∼
∼
l P(ε)

2
∼

T
(

ε,
∼
Wn

(
1
3

))
3

. (62)

5. Numerical Examples

For the numerical examples, we first consider a cycle and a path with five and 10 sensors.
For each network topology, we present a figure: Figure 2 for the cycle and Figure 3 for the path.
Figure 2 (resp. Figure 3) shows the number of transmissions of the fastest LTI distributed averaging

algorithm for symmetric weights T(ε,
◦

Wn(γ0)) (resp. T(ε,
∼
Wn(1/2))) and of the Metropolis–Hastings

algorithm T(ε,
◦

Wn(1/3)) (resp. T(ε,
∼
Wn(1/3))) with ε ∈ (10−15, 1). The figure also shows the lower

bound,
◦
lP(ε), and upper bound, 6

◦
lP(ε), given for the number of transmissions of the pairwise gossip

algorithm, and the lower bound,
◦
lB(ε), and upper bound, 6

◦
lB(ε), given for the number of transmissions

of the broadcast gossip algorithm (resp.
∼
l P(ε), 6

∼
l P(ε),

∼
l B(ε) and 6

∼
l B(ε)). Furthermore, the figure

shows the average number of transmissions of the pairwise gossip algorithm, T̂(ε, {
◦

WP(t)}t≥0), and

of the broadcast gossip algorithm, T̂(ε, {
◦

WB(t)}t≥0), (resp. T̂(ε, {
∼
WP(t)}t≥0) and T̂(ε, {

∼
WB(t)}t≥0)),

that we have computed by using Monte Carlo simulations. In those simulations, we have performed
1000 repetitions of the corresponding algorithm for each ε ∈ (10−15, 1), and we have considered that
the values measured by the sensors, xj(0) with j ∈ {1, . . . , n}, are independent identically distributed
random variables with unit-variance, zero-mean and uniform distribution.
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Figure 2. (a) A cycle with five sensors; (b) a cycle with 10 sensors.
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Figure 3. (a) A path with five sensors; (b) a path with 10 sensors.

In this section, we present another two figures: Figures 4 and 5. Unlike in Figures 2 and 3,
in Figures 4 and 5, we have fixed ε instead of the number of sensors n of the network. Specifically,
we have chosen ε = 10−3 and ε = 10−6 with n ∈ {5, . . . , 30}.

In the figures, it can be observed that the Metropolis–Hastings algorithm behaves on average
better than the pairwise gossip algorithm in terms of the number of transmissions required on the
considered networks. It can also be observed that the broadcast gossip algorithm behaves on average
approximately equal to the fastest LTI distributed averaging algorithm for symmetric weights in terms
of the number of transmissions required on those networks. However, we recall here that the broadcast
gossip algorithm converges to a random consensus value instead of to the average consensus value,
and it should be executed several times in order to get that average value in every sensor.

The figures also bear evidence of the asymptotic equalities given in (61) and in (62).
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Figure 4. A cycle: (a) ε = 10−3; (b) ε = 10−6.
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Figure 5. A path: (a) ε = 10−3; (a) ε = 10−6.

6. Conclusions

In this paper, we have studied the convergence time of six known linear distributed averaging
algorithms. We have considered both deterministic (the fastest LTI distributed averaging algorithm
for symmetric weights, the fastest constant edge weights algorithm, the maximum-degree weights
algorithm and the Metropolis–Hastings algorithm) and randomized (the pairwise gossip algorithm
and the broadcast gossip algorithm) linear distributed averaging algorithms. In the literature, we have
not found closed-form expressions for the convergence time of the considered algorithms. We have
computed closed-form expressions for the convergence time of the deterministic algorithms and
closed-form upper bounds for the convergence time of the randomized algorithms on two common
network topologies: the cycle and the path. Moreover, we have also computed a closed-form expression
for the convergence time of the fastest LTI algorithm on a grid. From the computed closed-form
formulas, we have studied the asymptotic behavior of the convergence time of the considered
algorithms as the number of sensors of the considered networks grows.

Although there exist different definitions of convergence time in the literature, in this paper,
we have proven that one of them (namely, the one in (49)) encompasses all the others for the algorithms
here considered. As we have used the definition of converge time in (49) for both deterministic
and randomized linear distributed averaging algorithms, the obtained closed-form formulas and
asymptotic results allow us to compare the considered algorithms on cycles and paths in terms of
convergence time and, consequently, in terms of the number of transmissions required, as well.

We now summarize the most remarkable conclusions:

• The best algorithm among the considered deterministic distributed averaging algorithms is
not worse than the best algorithm among the considered randomized distributed averaging
algorithms for cycles and paths.

• The weighting matrix of the fastest LTI distributed averaging algorithm for symmetric weights
and the weighting matrix of the fastest constant edge weights algorithm are the same on cycles
and on paths.

• The number of transmissions required on a path with n sensors is asymptotically four-times larger
than the number of transmissions required on a cycle with the same number of sensors.

• The number of transmissions required grows as n3 on cycles and on paths for the six algorithms
considered.

• For the fastest LTI algorithm, the number of transmissions required grows as n2 on a square grid
of n sensors (i.e., r = c =

√
n).

A future research direction of this work would be to generalize the analysis presented in the paper
to other network topologies. In particular, networks that can be decomposed into cycles and paths
could be studied.
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Appendix A. Comparison of Several Definitions of Convergence Time

We begin by giving a property of the spectral norm. Its proof is implicit in the Appendix of [1].

Lemma A1. Let B and P be two n× n real symmetric matrices with BP = P (or equivalently, PB = P).
Suppose that P is idempotent. Then:

1. BtP = P for all t ∈ N.
2. Bt − P = (B− P)t for all t ∈ N.
3. ‖Bt − P‖2 = ‖B− P‖t

2 for all t ∈ N.

We recall that an n× n matrix A is idempotent if and only if A2 = A. An example of idempotent
matrix is Pn with n ∈ N, since

[
P2

n
]

j,k = ∑n
h=1[Pn]j,h[Pn]h,k = ∑n

h=1
1
n

1
n = 1

n = [Pn]j,k for all j, k ∈
{1, . . . n}.

The following result gives an eigenvalue decomposition for the matrix Pn for all n ∈ N.

Lemma A2. If n ∈ N, then Pn = Vndiag(1, 0, . . . , 0)V∗n , where Vn is the n× n Fourier unitary matrix.

Proof. From [13] (Lemma 2) or [14] (Lemma 3), we obtain that Vndiag(1, 0, . . . , 0)V∗n is a circulant
matrix with:

[Vndiag(1, 0, . . . , 0)V∗n ]j,1 =


1√
n

Vn


1

0
...
0




j,1

=
1√
n

n

∑
k=1

[Vn]j,k




1

0
...
0




k,1

=
1√
n
[Vn]j,1 =

1
n

(A1)

for all j ∈ {1, . . . n}. Therefore, Vndiag(1, 0, . . . , 0)V∗n = Pn.

We finish this subsection with a result regarding the ε-convergence time.

Theorem A1. Let B be an n× n real symmetric matrix with B 6= Pn and Bt → Pn. If ε ∈ (0, 1), then:

min
{

t0 ∈ N :
‖Btx− Pnx‖2

‖x− Pnx‖2
≤ ε, ∀t ≥ t0, ∀x 6= Pnx

}
= max

x 6=0n×1
min

{
t ∈ N :

‖Btx− Pnx‖2

‖x‖2
≤ ε

}
(A2)

=

⌈
log ε−1

− log ‖B− Pn‖2

⌉
. (A3)

Proof. Let t ∈ N. We first prove that the following statements are equivalent:

1. ‖Btx−Pnx‖2
‖x−Pnx‖2

≤ ε for all x 6= Pnx.

2. ‖Btx−Pnx‖2
‖x‖2

≤ ε for all x 6= 0n×1.
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1⇒2 Fix x 6= 0n×1. If x 6= Pnx, applying Lemma A2 yields:

‖Btx− Pnx‖2
‖x‖2

≤ ε‖x− Pnx‖2
‖x‖2

=
ε‖ (In − Pn) x‖2

‖x‖2
≤ε ‖In − Pn‖2 =ε ‖VnV∗n −Vndiag(1, 0, . . . , 0)V∗n ‖2 (A4)

= ε ‖Vn InV∗n −Vndiag(1, 0, . . . , 0)V∗n ‖2 = ε ‖Vndiag(0, 1, . . . , 1)V∗n ‖2 = ε, (A5)

where In is the n× n identity matrix. If x = Pnx, from Lemma A1 and [2] (Theorem 1), we obtain:

‖Btx− Pnx‖2

‖x‖2
=
‖BtPnx− Pnx‖2

‖x‖2
=
‖Pnx− Pnx‖2

‖x‖2
= 0 < ε. (A6)

2⇒1 If x 6= Pnx, then:

‖Btx− Pnx‖2

‖x− Pnx‖2
=
‖Btx− Pnx− Pnx + Pnx‖2

‖x− Pnx‖2
=
‖Btx− BtPnx− Pnx + P2

n x‖2

‖x− Pnx‖2
(A7)

=
‖Bt(x− Pnx)− Pn(x− Pnx)‖2

‖x− Pnx‖2
≤ ε. (A8)

Consequently,

min
{

t0 ∈ N :
‖Btx− Pnx‖2

‖x− Pnx‖2
≤ ε, ∀t ≥ t0, ∀x 6= Pnx

}
(A9)

= min
{

t0 ∈ N :
‖Btx− Pnx‖2

‖x‖2
≤ ε, ∀t ≥ t0, ∀x 6= 0n×1

}
(A10)

= min
{

t0 ∈ N : max
x 6=0n×1

‖Btx− Pnx‖2

‖x‖2
≤ ε, ∀t ≥ t0

}
(A11)

= min
{

t0 ∈ N : ‖Bt − Pn‖2 ≤ ε, ∀t ≥ t0
}

(A12)

= min
{

t0 ∈ N : ‖B− Pn‖t
2 ≤ ε, ∀t ≥ t0

}
(A13)

= min
{

t0 ∈ N : ‖B− Pn‖t0
2 ≤ ε

}
(A14)

= min
{

t0 ∈ N : log(‖B− Pn‖t0
2 ) ≤ log ε

}
(A15)

= min {t0 ∈ N : t0 log ‖B− Pn‖2 ≤ log ε} = min
{

t0 ∈ N : t0 ≥
log ε

log ‖B− Pn‖2

}
(A16)

= min
{

t0 ∈ N : t0 ≥
log ε−1

− log ‖B− Pn‖2

}
=

⌈
log ε−1

− log ‖B− Pn‖2

⌉
. (A17)

To prove (A10). we have used the equivalence 1⇔2. To show (A12) and (A13), we have applied
the definition of the spectral norm (see, e.g., [15] (pp. 603, 609)) and Assertion 3 of Lemma A1,
respectively. To prove (A14), we have used [2] (Theorem 1) (‖B− Pn‖2 < 1).

As:

min
{

t0 ∈ N :
‖Btx− Pnx‖2

‖x− Pnx‖2
≤ ε, ∀t ≥ t0, ∀x 6= Pnx

}
= min

{
t ∈ N : ‖B− Pn‖t

2 ≤ ε
}

(A18)

= min
{

t ∈ N : ‖Bt − Pn‖2 ≤ ε
}

, (A19)

we only need to show that T1 = T2 to finish the proof, where:

T1 = min
{

t ∈ N : max
x 6=0n×1

‖Btx− Pnx‖2

‖x‖2
≤ ε

}
(A20)

and:
T2 = max

x 6=0n×1
tx, (A21)
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with:

tx = min
{

t ∈ N :
‖Btx− Pnx‖2

‖x‖2
≤ ε

}
. (A22)

Since:
‖BT1 x− Pnx‖2

‖x‖2
≤ ε ∀x 6= 0n×1 (A23)

we have tx ≤ T1 for all x 6= 0n×1 and, consequently, T2 ≤ T1. If
{
‖Btx−Pnx‖2
‖x‖2

}
is a decreasing sequence

for all x 6= 0n×1, then:

‖BT2 x− Pnx‖2

‖x‖2
≤ ‖B

tx x− Pnx‖2

‖x‖2
≤ ε ∀x 6= 0n×1 (A24)

and therefore,

max
x 6=0n×1

‖BT2 x− Pnx‖2

‖x‖2
≤ ε (A25)

and T1 ≤ T2. Thus, if we prove that these sequences are decreasing, the proof is complete. Given x 6=
0n×1, from Lemma A1 and [2] (Theorem 1), we conclude that:

‖Bt+1x− Pnx‖2
‖x‖2

=
‖(B− Pn)t+1x‖2

‖x‖2
≤ ‖(B− Pn)‖2‖(B− Pn)tx‖2

‖x‖2
≤ ‖(B− Pn)tx‖2

‖x‖2
=
‖Btx− Pnx‖2
‖x‖2

(A26)

for all t ∈ N. To prove the two equalities in (A26), we have used Assertion 2 of Lemma A1. To show the
first inequality in (A26), we have applied a well-known inequality on the spectral norm (see, e.g., [15]
(p. 611)), and to prove the second inequality in (A26), we have used [2] (Theorem 1) (‖B− Pn‖2 < 1).

Appendix B. Proof of Theorem 1

Let B(γ1, . . . , γn) be the n× n real symmetric matrix given by:

1−γ1−γn γ1 0 · · · 0 0 γn

γ1 1−γ1−γ2 γ2 · · · 0 0 0
0 γ2 1−γ2−γ3 · · · 0 0 0
...

. . . . . . . . . . . .
...

...
0 0 0 · · · 1−γn−3−γn−2 γn−2 0
0 0 0 · · · γn−2 1−γn−2−γn−1 γn−1

γn 0 0 · · · 0 γn−1 1−γn−1−γn


. (A27)

Observe that the matrix in (A27) satisfies B(γ1, . . . , γn)Pn = Pn.
We define the function f : Rn 7→ [0, ∞) as f (γ1, . . . , γn) := ‖B(γ1, . . . , γn)− Pn‖2. We next prove

that: ∥∥∥∥ ◦Wn(γ0)− Pn

∥∥∥∥
2
≤ ‖B(γ1, . . . , γn)− Pn‖2 ∀γ1, . . . , γn ∈ R (A28)

Observe that
◦

Wn(γ0) = B(γ0, . . . , γ0). As
◦

Wn(γ) is circulant, its eigenvalues are (see, e.g., [16]
(Equation (3.7)) or [17] (Equation (5.2))):

aj := 1 + 2γ

(
cos

2π(j− 1)
n

− 1
)

, j ∈ {1, . . . , n} (A29)
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Let Vn = (v1| · · · |vn) be the n × n Fourier unitary matrix. It is well known (see, e.g., [16]

(Equation (3.11)) or [17] (Lemma 5.1)) that vj is an unit eigenvector of
◦

W(γ) associated with the
eigenvalue aj for all j ∈ {1, . . . , n}. From Lemma A2:∥∥∥∥ ◦Wn(γ)− Pn

∥∥∥∥
2
= max{|aj| : j ∈ {2, . . . , n}}. (A30)

Case 1: Assume that n is even. Then,∥∥∥∥ ◦W(γ0)− Pn

∥∥∥∥
2
= a2 = −a n

2 +1 = an =
1 + cos 2π

n

3− cos 2π
n
∈ (0, 1). (A31)

Therefore, y2 =
√

2
2 (vn + v2) and yn =

√
2

2
√
−1

(vn − v2) are unit eigenvectors of
◦

W(γ0) associated
to a2 = an. As:

[y2]j,1 =

√
2
n

cos
2π(j− 1)

n
, (A32)

[yn]j,1 =

√
2
n

sin
2π(j− 1)

n
, (A33)[

v n
2 +1

]
j,1

=

√
1
n
(−1)j−1 (A34)

for all j ∈ {1, . . . , n}, from [4] (Theorem 1), we obtain three subgradients of f at (γ0, . . . , γ0) ∈ Rn,
namely g1, g2 and g3, given by:

[g1]j,1 = − 2
n

(
cos

2π(j− 1)
n

− cos
2π j

n

)2

, (A35)

[g3]j,1 = − 2
n

(
sin

2π(j− 1)
n

− sin
2π j

n

)2

, (A36)

[g2]j,1 =
4
n

(A37)

for all j ∈ {1, . . . , n}. If µ = 1
3−cos 2π

n
, we have that µg1 + µg2 + (1− 2µ)g3 = 0n×1, where 0n×1 is the

n× 1 zero matrix. The result now follows from [18] (p. 12) and the fact that a convex combination of
subgradients of f at (γ0, . . . , γ0) is also a subgradient of f at (γ0, . . . , γ0).

Case 2: Assume that n is odd. Then,∥∥∥∥ ◦W(γ0)− Pn

∥∥∥∥
2
= a2=−a n+1

2
=−a n+3

2
= an =

cos 2π
n + cos π

n

2− cos 2π
n + cos π

n
∈ (0, 1). (A38)
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Therefore, y2 =
√

2
2 (vn + v2) and yn =

√
2

2
√
−1

(vn − v2) are unit eigenvectors of
◦

W(γ0) associated

with a2 = an, and y n+1
2

=
√

2
2 (v n+1

2
+ v n+3

2
) and y n+3

2
=

√
2

2
√
−1

(v n+1
2
− v n+3

2
) are unit eigenvectors of

◦
W(γ0) associated with a n+1

2
= a n+3

2
. As:

[y2]j,1 =

√
2
n

cos
2π(j− 1)

n
, (A39)

[yn]j,1 =

√
2
n

sin
2π(j− 1)

n
, (A40)[

y n+1
2

]
j,1

=

√
2
n
(−1)j−1 cos

π(j− 1)
n

, (A41)[
y n+3

2

]
j,1

=

√
2
n
(−1)j−1 sin

π(j− 1)
n

(A42)

for all j ∈ {1, . . . , n}, from [4] (Theorem 1), we obtain four subgradients of f at (γ0, . . . , γ0) ∈ Rn,
namely g1, g2, g3 and g4 given by:

[g1]j,1 = − 2
n

(
cos

2π(j− 1)
n

− cos
2π j

n

)2

, (A43)

[g2]j,1 = − 2
n

(
sin

2π(j− 1)
n

− sin
2π j

n

)2

, (A44)

[g3]j,1 =
2
n

(
cos

π(j− 1)
n

+ cos
π j
n

)2

, (A45)

[g4]j,1 =
2
n

(
sin

π(j− 1)
n

+ sin
π j
n

)2

(A46)

for all j ∈ {1, . . . , n}. If µ = 1
2

1+cos π
n

2−cos 2π
n +cos π

n
, we have that µg1 + µg2 + ( 1

2 − µ)g3 + ( 1
2 − µ)g4 = 0n×1.

The result now follows from [18] (p. 12) and the fact that a convex combination of subgradients of f at
(γ0, . . . , γ0) is also a subgradient of f at (γ0, . . . , γ0).

Since ‖
◦

W(γ0)− Pn‖2 < 1, applying [2] (Theorem 1) and Theorem A1, Theorem 1 holds.

Appendix C. Proof of Theorem 2

From [2] (Theorem 1), Theorem A1, (A31) and (A38), we obtain (8).
To finish the proof, we only need to show (9) and (7).
We begin by proving (9). Applying Taylor’s theorem (see, e.g., [19] (p. 113)), there exist two

bounded functions f , g :
(

0, π
2
]
→ R such that:

− log
1 + cos x
3− cos x

=
x2

2
+ f (x)x3 (A47)

and:

− log
cos x

2 + cos x
2 + cos x

2 − cos x
=

x2

2
+ g(x)x3 (A48)

for all x ∈
(

0, π
2
]

. Therefore, from (A31) and (A38), we have:

log ε−1

− log ‖
◦

W(γ0)− Pn‖2

=
log ε−1

( 2π
n )

2

2 + yn
( 2π

n
)3

, (A49)
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where {yn}n≥4 is the bounded sequence of real numbers given by:

{yn}n≥4 =

{
f
( 2π

n
)

if n is even,

g
( 2π

n
)

if n is odd.
(A50)

Thus,

lim
n→∞

log ε−1

−n2 log ‖
◦

W(γ0)− Pn‖2

= lim
n→∞

log ε−1

2π2 + yn
8π3

n

=
log ε−1

2π2 . (A51)

Hence, as a ≤ dae < a + 1, with a ∈ R, applying Theorem A1, we obtain:

log ε−1

2π2 = lim
n→∞

log ε−1

−n2 log ‖
◦

W(γ0)− Pn‖2

≤ lim
n→∞

τ(ε,
◦

W(γ0))

n2 (A52)

≤ lim
n→∞

log ε−1

−n2 log ‖
◦

W(γ0)− Pn‖2

+ lim
n→∞

1
n2 =

log ε−1

2π2 , (A53)

and consequently, (9) holds.

Finally, we prove (7). If δ ∈
(

0, log ε−1

2π2

)
, then there exists n0 ∈ N, with n0 > 3, such that:

∣∣∣∣∣∣τ(ε,
◦

W(γ0))

n2 − log ε−1

2π2

∣∣∣∣∣∣ < δ ∀n ≥ n0. (A54)

Thus, if n ≥ n0, then:

− δ <
τ(ε,

◦
W(γ0))

n2 − log ε−1

2π2 < δ, (A55)

or equivalently,(
1

2π2 −
δ

log ε−1

)
n2 log ε−1 < τ(ε,

◦
W(γ0)) <

(
1

2π2 +
δ

log ε−1

)
n2 log ε−1. (A56)

Appendix D. Proof of Theorem 3

We denote with
�
W the set of all the rc× rc real symmetric matrices such that:

�
W r,c =

{
B ∈ Rrc×rc, B = B>, BPn = Pn, [B]j,k = 0 ifj 6= k and[

�
A]j,k = 0

}
, (A57)

where
�
A is the adjacency matrix of a grid of r rows and c columns. Consider the bijection B : Rq 7→

�
W r,c defined in [4] (Equation (8)), where q = 4rc− 3c− 3r + 2 (i.e., q is the number of edges when the
network is viewed as an undirected graph).

We define the function f : Rq 7→ [0, ∞) as f (w1, . . . , wq) := ‖B(w1, . . . , wq) − Pn‖2. We next
prove that: ∥∥∥∥ �

Wr,c

(
1
2

)
− Pn

∥∥∥∥
2
≤ ‖B(w1, . . . , wq)− Pn‖2 ∀w1, . . . , wq ∈ R. (A58)

Without loss of generality, we can assume that r ≥ c. We first show that
�
Wr,c

(
1
2

)
∈

�
W r,c:(∼

Wr

(
1
2

)
⊗
∼
Wc

(
1
2

))
>=

(∼
Wr

(
1
2

))
>⊗
(∼

Wc

(
1
2

))
>=

∼
Wr

(
1
2

)
⊗
∼
Wc

(
1
2

)
, (A59)
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and: ( ∼
Wr

(
1
2

)
⊗
∼
Wc

(
1
2

))
Pn =

( ∼
Wr

(
1
2

)
⊗
∼
Wc

(
1
2

))(√
nPr ⊗

√
nPc
)

(A60)

=n
(( ∼

Wr

(
1
2

)
Pr

)
⊗
( ∼

Wc

(
1
2

)
Pc

))
(A61)

= n (Pr ⊗ Pc) =
√

nPr ⊗
√

nPc = Pn. (A62)

The eigenvalues of
∼
Wn (α) are (see, e.g., [20]):

aj := 1− 2α + 2α

(
cos

π(j− 1)
n

)
, j ∈ {1, . . . , n} (A63)

and therefore, the eigenvalues of
∼
Wn

(
1
2

)
are given by aj(n) := cos (j−1)π

n with j ∈ {1, . . . , n}.

Their associated orthonormal eigenvectors are given by [v1(n)]k,1 =
1√
n and [vj(n)]k,1 =

√
2
n cos (2k−1)(j−1)π

2n

with j ∈ {2, . . . , n}, k ∈ {1, . . . , n} (see, e.g., [20]). Consequently, the eigenvalues of
∼
Wr

(
1
2

)
⊗
∼
Wc

(
1
2

)
are

aj(r)ak(c) and associated orthonormal eigenvectors are vj(r)⊗ vk(c) with j ∈ {1, . . . , r} and k ∈ {1, . . . , c}.
From [4] (Lemma 1),∥∥∥∥ �

Wr,c

(
1
2

)
− Pn

∥∥∥∥
2
= a2(r)a1(c) = −ar(r)a1(c) = cos

π

r
∈ (0, 1). (A64)

Then, y1 = v2(r)⊗ v1(c) and y2 = vr(r)⊗ v1(c) are unit eigenvectors of
�
Wr,c

(
1
2

)
associated with

a2(r)a1(c) and ar(r)a1(c), respectively, and their entries are given by:

[y1]c(j−1)+k,1 =

√
2
rc

cos
(2j− 1)π

2r
, (A65)

[y2]c(j−1)+k,1 = (−1)j−1

√
2
rc

sin
(2j− 1)π

2r
, (A66)

for all j ∈ {1, . . . , r} and k ∈ {1, . . . , c}.
Let ε be the set of edges of the grid. An edge e = {j, k} connects the sensors vj, vk, and we enumerate

the edges such that el = {jl, kl} for all l ∈ {1, . . . , q}. We consider that the edges of the grid are sorted
as follows: εH, εV, εNW and εNE are the set of horizontal, vertical, northwest-southeast diagonal and
northeast-southwest diagonal edges, respectively. Moreover, if el1 = {jl1 , kl1}, el2 = {jl2 , kl2} ∈ εh with
h ∈ {H, V, NW, NE} and min{jl1 , kl1} < min{jl2 , kl2}, then the edge el1 precedes the edge el2 in εh.

From [4] (Theorem 1) , we obtain two subgradients of f , g1 and g2 given by:

g1 =
(

g(H)
1 |g

(V)
1 |g

(NW)
1 |g(NE)

1

)>
, (A67)

g2 =
(

g(H)
2 |g

(V)
2 |g

(NW)
2 |g(NE)

2

)>
, (A68)

where g(H)
1 = g(H)

2 = 01×r(c−1),[
g(V)

1

]
1,c(j−1)+k

= − 8
rc

sin2
( π

2r

)
sin2

(
jπ
r

)
, (A69)[

g(V)
2

]
1,c(j−1)+k

=
8
rc

cos2
( π

2r

)
sin2

(
jπ
r

)
, (A70)
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for all j ∈ {1, . . . , r− 1}, k ∈ {1, . . . , c},[
g(NW)

1

]
1,(c−1)(j−1)+k

= − 8
rc

sin2
( π

2r

)
sin2

(
jπ
r

)
, (A71)[

g(NW)
2

]
1,(c−1)(j−1)+k

=
8
rc

cos2
( π

2r

)
sin2

(
jπ
r

)
, (A72)

for all j ∈ {1, . . . , r− 1}, k ∈ {1, . . . , c− 1}, and:[
g(NE)

1

]
1,(c−1)(j−1)+k−1

= − 8
rc

sin2
( π

2r

)
sin2

(
jπ
r

)
, (A73)[

g(NE)
2

]
1,(c−1)(j−1)+k−1

=
8
rc

cos2
( π

2r

)
sin2

(
jπ
r

)
, (A74)

for all j ∈ {1, . . . , r − 1}, k ∈ {2, . . . , c}. If µ = cos2 ( π
2r
)
, we have that µg1 + (1 − µ)g2 =

0(4rc−3c−3r+2)×1. The result now follows from [18] (p. 12) and the fact that a convex combination of
subgradients of f at a certain point is also a subgradient of f at that point.

Since ‖
�
Wr,c

(
1
2

)
− Pn‖2 < 1, applying [2] (Theorem 1) and Theorem A1, Theorem 3 holds.

Appendix E. Proof of Theorem 9

We begin by proving (51). The Laplacian matrix of a cycle with n sensors is:

◦
L = diag(1>n circn(0, 1, 0, . . . , 0, 1))− circn(0, 1, 0, . . . , 0, 1) (A75)

= diag(2, 2, . . . , 2)− circn(0, 1, 0, . . . , 0, 1) = circn(2,−1, 0, . . . , 0,−1). (A76)

From [21] (Equation (3.4a)), the eigenvalues of
◦
L are given by{

2
(

1− cos 2π(j−1)
n

)
: j ∈ {1, . . . , n}

}
and, consequently, λn−1(

◦
L) = 2

(
1− cos 2π

n
)
. From [7]

(Corollary 1), we have:

◦
ϕ0 =

n− λn−1(
◦
L)

2n− λn−1(
◦
L)

= 1− n
2
(
n + cos 2π

n − 1
) , (A77)

and therefore, (51) holds. The entries of the expectation of
◦

WB(0) are given by:

[E(
◦

WB(0))]j,k =


1
n (1−

◦
ϕ0) if j− k ∈ {−1, 1},

1
n (1−

◦
ϕ0) if j− k ∈ {1− n, n− 1},

1
n

(
2
◦
ϕ0 + n− 2

)
if j = k,

0 otherwise,

(A78)

for all j, k ∈ {1, . . . , n}. Thus, E(
◦

WB(0)) =
◦

Wn(
1− ◦ϕ0

n ). Therefore, combining (A29) and (A30) yields:∥∥∥∥∥ ◦Wn

(
1− ◦ϕ0

n

)
− Pn

∥∥∥∥∥
2

=
n + 2 cos 2π

n − 2

n + cos 2π
n − 1

. (A79)

As:
◦
ϕ0 =

n− λn−1(
◦
L)

2n− λn−1(
◦
L)

= 1− n

2n− λn−1(
◦
L)

(A80)
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we get:

λn−1(
◦
L) = n

(
2− 1

1− ◦ϕ0

)
= n

1− 2
◦
ϕ0

1− ◦ϕ0

(A81)

and consequently,

1−
2
◦
ϕ0

(
1− ◦ϕ0

)
n

λn−1(
◦
L)−

(
1− ◦ϕ0

)2

n2

(
λn−1(

◦
L)
)2

= 1− 2
◦
ϕ0

(
1− 2

◦
ϕ0

)
−
(

1− 2
◦
ϕ0

)2
(A82)

= 1− 2
◦
ϕ0 + 4

◦
ϕ

2
0 − 1 + 4

◦
ϕ0 − 4

◦
ϕ

2
0 = 2

◦
ϕ0 = 2− n

n + cos 2π
n − 1

=
n + 2 cos 2π

n − 2

n + cos 2π
n − 1

. (A83)

Now, applying (A79), (A82) and [7] (Equations (28) and (46)), we obtain (52). The rest of the proof
runs as the proof of Theorem 2.

Appendix F. Proof of Theorem 10

We begin by proving (56). The Laplacian matrix of a path with n sensors is:

[
∼
L]j,k =


−1 if j− k ∈ {−1, 1},
2 if j = k, j 6= 1 and j 6= n,
1 if j = k, j ∈ {1, n},
0 otherwise,

(A84)

From [20], the eigenvalues of
∼
L are given by

{
2
(

1− cos π(j−1)
n

)
: j ∈ {1, . . . , n}

}
and,

consequently, λn−1(
∼
L) = 2

(
1− cos π

n
)
. From [7] (Corollary 1), we have:

∼
ϕ0 =

n− λn−1(
∼
L)

2n− λn−1(
∼
L)

= 1− n
2
(
n + cos π

n − 1
) , (A85)

and therefore, (56) holds. The entries of the expectation of
∼
WB(0) are given by:

[E(
∼
WB(0))]j,k =


1
n (1−

∼
ϕ0) if j− k ∈ {−1, 1},

1
n

(
2
∼
ϕ0 + n− 2

)
if j = k, j 6= 1 and j 6= n,

1
n (
∼
ϕ0 + n− 1) if j = k, j ∈ {1, n},

0 otherwise,

(A86)

for all j, k ∈ {1, . . . , n}. Thus, E(
∼
WB(0)) =

∼
Wn(

1−∼ϕ0
n ). Therefore, combining (A63) and [4] (Lemma 1) yields:∥∥∥∥∥ ∼Wn

(
1− ∼ϕ0

n

)
− Pn

∥∥∥∥∥
2

=
n + 2 cos π

n − 2
n + cos π

n − 1
. (A87)

As:
∼
ϕ0 =

n− λn−1(
∼
L)

2n− λn−1(
∼
L)

= 1− n

2n− λn−1(
∼
L)

(A88)

we get:

λn−1(
∼
L) = n

(
2− 1

1− ∼ϕ0

)
= n

1− 2
∼
ϕ0

1− ∼ϕ0

(A89)



Sensors 2018, 18, 968 25 of 25

and consequently,

1−
2
∼
ϕ0

(
1− ∼ϕ0

)
n

λn−1(
∼
L)−

(
1− ∼ϕ0

)2

n2

(
λn−1(

∼
L)
)2

= 1− 2
∼
ϕ0

(
1− 2

∼
ϕ0

)
−
(

1− 2
∼
ϕ0

)2
(A90)

= 1− 2
∼
ϕ0 + 4

∼
ϕ

2
0 − 1 + 4

∼
ϕ0 − 4

∼
ϕ

2
0 = 2

∼
ϕ0 = 2− n

n + cos 2π
n − 1

=
n + 2 cos π

n − 2
n + cos π

n − 1
. (A91)

Now, applying (A87), (A90) and [7] (Equations (28) and (46)), we obtain (57). The rest of the proof
runs as the proof of Theorem 2.
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