Green, hydrothermal synthesis of fluorescent carbon nanodots from gardenia enabling detection of metronidazole in pharmaceuticals and rabbit plasma

Xiupei Yang^{1,*}, Mingxian Liu¹, Yanru Yin¹, Fenglin Tang¹, Hua Xu¹ and Xiangjun Liao²

¹ College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China; mxliu_chem@163.com (M.L.); tfl06180205@126.com (F.T.); bigtree.xu@foxmail.com (H.X.)

- ² Exposure and Biomonitoring Division, Health Canada, 50 Colombine Driveway, Ottawa, K1A 0K9 Canada; xiangjun.liao@mail.mcgill.ca
- * Correspondence: xiupeiyang@163.com; Tel.: +86-817-2568-081

Figure S1. Effect of various quantity of gardenia for synthesis FCNs and differential dilution ratio on the fluorescence intensity of FCNs solution at 220 °C for 10 h.

Figure S2. Fluorescence spectra (A) and fluorescence intensity (B) of C-dots preprared under various reaction times.

Figure S3. Fluorescence spectra (A) and fluorescence intensity (B) of C-dots preprared under various temperature.

ronidazole.

Figure S5. Overlapping between Flurescence spetra of FCNs and the UV-vis absorption spectra of secnidazole.

Figure S6. Overlapping between Flurescence spetra of FCNs and the UV-vis absorption spectra of glucose, Na^+ and Mg^{2+} .

2 3 4 Figure S7. Overlapping between flurescence spetra of FCNs and the UV-vis absorption spectra of

metronidazole.