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Abstract: For micromotion scatterers with small rotating radii, the micro-Doppler (m-D) effect
interferes with cross-range compression in inverse synthetic aperture radar (ISAR) imaging and
leads to a blurred main body image. In this paper, a novel method is proposed to remove the
m-D effect by promoting the joint sparsity in the time-frequency domain. Firstly, to obtain the
time-frequency representations of the limited measurements, the short-time Fourier transform (STFT)
was modelled by an underdetermined equation. Then, a new objective function was used to measure
the joint sparsity of the STFT entries so that the joint sparse recovery problem could be formulated
as a constrained minimization problem. Similar to the smoothed l0 (SL0) algorithm, a steepest
descend approach was used to minimize the new objective function, where the projection step
was tailored to make it suitable for m-D effect removal. Finally, we utilized the recovered STFT
entries to obtain the main body echoes, based on which cross-range compression could be realized
without m-D interference. After all contaminated range cells were processed by the proposed method,
a clear main body image could be achieved. Experiments using both the point-scattering model and
electromagnetic (EM) computation validated the performance of the proposed method.

Keywords: inverse synthetic aperture radar imaging; micro-Doppler effect; joint sparsity; short time
Fourier transform; time-frequency domain

1. Introduction

In inverse synthetic aperture radar (ISAR) imaging, mechanical rotations or vibrations of structures
on a target may introduce additional frequency modulations on the returned signal, known as the
micro-Doppler (m-D) effect [1–3]. The main body image is usually blurred because of the interference of
the rotating or vibrating scatterers, which are also called micromotion scatterers [3]. Therefore, the m-D
effect should be removed in order to obtain a clear image of the main body.

Micromotion targets with rotating structures can often be found in real world scenarios, e.g., a ship
with scanning antennas or an aircraft in flight equipped with turbofans. A micromotion scatterer with
a large rotating radius will generate a m-D signal which can be depicted in the form of sinusoidal
modulations in the spectrogram after range compression [4,5]. In contrast, the main body signal in
the spectrogram has the shape of straight lines [5]. Based on the different shapes in the spectrogram,
many methods [4–7] have been proposed to eliminate the m-D signal. Li and Ling [4] put forward
an adaptive chirplet decomposition algorithm in which the returned signal is decomposed into
a family of chirplet functions. The main body signal and the micromotion signal subsequently are
separated according to their distinct chirp rates. However, this algorithm has high computation
cost because of the large chirplet dictionary. To remove the sinusoidal m-D interference, the method
in Q. Zhang et al. [6] extracts the straight lines in the spectrogram using the Hough transform.
Similarly, the methods in H.C. Liu et al. and L. Sun et al. [5,7] only recover the straight lines via
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the sparse representation (SR)-based algorithms where the sinusoids are eliminated. Nevertheless,
the aforementioned methods [5–7] cannot remove the m-D effect generated by a micromotion scatterer
with a small rotating radius, since the m-D signal has the same straight line shape as the main body
signal in the spectrogram when the rotating radius is smaller than half of the range resolution.

Recently, some methods based on the time-frequency analysis have been developed to address
the problem of the removal of the m-D effect under a small rotating radius. L. Stanković et al.’s
method [8], based on L-statistics, performs the short-time Fourier transform (STFT) to the echoes in
the contaminated range cell. It is assumed in L. Stanković et al. [8] that the m-D interference occupies
a small portion of time instants at each frequency bin. Using the L-statistics, a fixed fraction of the most
significant STFT entries were eliminated to achieve m-D effect removal. Subsequently, the remaining
entries were utilized to recover the main body signal. However, a large amount of STFT entries
corresponding to the main body might be removed together with the m-D interference, which leads to
a high sidelobe level in the imaging result [9]. A method based on histogram analysis is proposed in
R. Zhang et al. [9], where the STFT entries with a high frequency of occurrence were regarded as the
main body components and were preserved to reconstruct the ISAR image. On the other hand, the STFT
entries with a low frequency of occurrence were considered to correspond to the m-D interference
and suppressed. When the m-D effect is severe, the method in R. Zhang et al. [9] cannot remove the
m-D signal in the time-frequency domain completely because the m-D components might be mistaken
for the main body signal. Consequently, there are some spurious points in the imaging result due to
the residual m-D signal. In real world situations, the data samples of the echoes might be randomly
missing at given time instants [10] where strong electromagnetic interference or sensor failure prevents
effective observation. As a result, the effective pulses are limited. The L-statistics-based method is
combined with the short-time compressed sensing (STCS) [11] approach in Q.K. Hou et al. [12] to
reduce the m-D effect with limited pulses. The STCS was employed to recover the STFT entries where
the number of the frequency bins was equal to the number of full pulses. Nevertheless, the window
width in the STCS could have been much shorter than the signal duration to obtain the local frequency
characteristics. Thus, the measurements in the window were much fewer than the frequency bins in the
time-frequency domain. The frequency resolution of the recovered STFT entries was reduced due to
the extremely limited measurements. As a result, the L-statistics-based method in Q.K. Hou et al. [12]
cannot obtain the accurate support of the main body signal in the frequency dimension and some
spurious points exist near the main body scatterers in the imaging result.

The main body scatterer has a constant Doppler frequency [13]. Thus, the support of the main body
signal is a slow time invariant in the time-frequency domain which indicates the joint sparsity [14,15]
of the main body signal. In contrast, the Doppler frequency of the micromotion scatterer varies with
the slow time [13]. Based on the distinct patterns in the time-frequency domain, this paper proposes
a joint sparsity-based ISAR imaging method to remove the m-D effect generated by the micromotion
scatterers with small rotating radii. Firstly, the echoes in the contaminated range cell were modelled by
an underdetermined equation where the relation of the echoes and the corresponding STFT entries
is built on the STFT matrix. Generally, the l2/l0-norm [16] of the STFT entry vector could be used to
measure the joint sparsity in the time-frequency domain because it is equal to the number of frequency
bins having nonzero STFT entries. Nonetheless, minimizing the l2/l0-norm leads to a combinatorial
optimization problem [17] that is difficult to solve. In M. Bevacqua et al. [18], the l1-norm of an auxiliary
variable, defined as the common upper bound to the amplitudes of the electric currents, is utilized
to replace the l2/l0-norm so that the new problem is tractable. However, the difference between
the l1-norm of the auxiliary variable and the original l2/l0-norm is significant [19] because larger
coefficients are penalized more heavily than smaller coefficients in the l1-norm. A reweighted l1-norm
method is proposed in Y. Liu et al. [19] to overcome the drawback of the l1-norm, but this method is
lack of convergence guarantee [20]. Recently, the l2/l1-norm was utilized to promote the joint sparsity
of highly conductive scatterer in microwave imaging [21]. Nonetheless, the l2/l1-norm is a loose
approximation to the original l2/l0-norm and often leads to suboptimal solutions [22]. Different from
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the methods in M. Bevacqua et al., Y. Liu et al., and S. Sun et al. [18,19,21], we propose a new objective
function in this paper which can achieve tight approximation to the original l2/l0-norm with proper
parameters. The new objective function was minimized, similar to the smoothed l0 (SL0) algorithm
approach [23] which consisted of two steps, i.e., the steepest descend step and the projection step.
Since the m-D signal was suppressed in the steepest descend step, in this paper, the projection step
of SL0 was tailored to make it suitable for m-D effect removal. By minimizing the new objective
function, the joint sparsity in the time-frequency domain was promoted and the m-D interference
could be effectively removed. Subsequently, we utilized the recovered STFT entries to obtain the main
body echoes free of m-D effect. Finally, the cross-range compression [24] of the main body echoes
was realized through the sparse Bayesian learning (SBL) algorithm [25]. When the m-D effect in all of
the contaminated range cells was removed by the proposed method, a clear main body image could
be achieved.

The rest of this paper is organized as follows. Section 2 presents the signal model of ISAR imaging
for micromotion targets with rotating parts. Section 3 demonstrates the joint sparsity of the main body
signal in the time-frequency domain. The proposed ISAR imaging method is elaborated in Section 4,
where we introduce the joint sparse recovery problem based on the l2/l0-norm and briefly review
the SL0 algorithm. In Section 5, we discuss experiments based on the point-scattering model and
electromagnetic (EM) computation which were conducted to validate the effectiveness of the proposed
method. Finally, conclusions are drawn in Section 6.

We introduce the following notations in this paper. Bold uppercase letters and bold lowercase
letters are reserved for matrices and vectors, respectively. A ∈ CM×N denotes a matrix of size M× N
with complex elements. ‖A‖F denotes the Frobenius norm of A. For a vector x, its ith element is
denoted by xi. ‖x‖0, ‖x‖1, and ‖x‖2 represent the l0-norm, l1-norm and l2-norm of x, respectively.
(·)T and (·)H stand for the transpose and the conjugate transpose of a matrix or a vector.

2. ISAR Imaging Model

To simplify the analysis, we consider the point-scattering model [4] to illustrate the m-D effect.
As shown in Figure 1, the radar is located at the origin O of the coordinate system XOY. The target
center u(xu, yu) is located at the Y-axis which indicates the line of sight (LOS). Without loss of
generality, we assume that the target moves within the 2-dimensional (2-D) imaging plane XOY
with velocity v and the motion compensation [26] has been accomplished. The projection of v along
the direction of the X-axis is denoted by vx which generates the aspect angle variation utilized in
ISAR imaging. p

(
xp, yp

)
and q

(
xq, yq

)
denote the main body scatterer and the micromotion scatterer,

respectively. O′(xo′ , yo′) is the rotating center of the micromotion part. q rotates around O′ with radius
rq, angle frequency ωq, and initial rotation angle θq. At the initial processing time, the distances from p,
q, and u to the radar are Rp, Rq, and Ru, respectively.

The transmitted chirp signal is

s
(
t̂, tm

)
= rect

(
t̂
T

)
exp

(
j2π
(

fc
(
t̂ + tm

)
+

1
2

γt̂2
))

(1)

where t̂ and tm denote the fast time and the slow time, respectively. T is the pulse duration, fc is
the carrier frequency, and γ is the chirp rate. rect(·) represents the rectangular function, which is
defined as

rect
(

t̂
T

)
=

{
1,

∣∣t̂∣∣≤ T/2
0,

∣∣t̂∣∣> T/2.
(2)

To reduce the received effective bandwidth, the dechirp method is applied. Taking the target
center as the reference point in the dechirping process, the reference signal is given by
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where Tre f is the duration of the reference signal with Tre f > T, and c denotes the speed of light.
After dechirping and removing the residual video phase, the echo can be expressed as

sr
(
t̂, tm

)
=

P
∑

p=1
σprect

(
t̂−2

Rp(tm)
c

T

)
exp

(
−j 4π

c

(
fc + γ

(
t̂− 2 Ru(tm)

c

))
∆Rp(tm)

)
+

Q
∑

q=1
σqrect

(
t̂−2

Rq(tm)
c

T

)
exp

(
−j 4π

c

(
fc + γ

(
t̂− 2 Ru(tm)

c

))
∆Rq(tm)

) (4)

where σp and σq denote the backscattering coefficients of the pth main body scatterer and the qth
micromotion scatterer, respectively. After the Fourier transform to Equation (4) along the t̂ dimension,
the range compression is achieved and the spectrogram can be written as

sr

(
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=

P
∑

p=1
Ap sin c
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exp

(
−j 4π

λ ∆Rq(tm)
) (5)

where f̂ is the fast frequency and λ is the wavelength. Ap = σpT and Aq = σqT denote the complex
coefficients of scatterers p and q, respectively.

It is assumed that the target has a constant velocity vx in a short coherent processing interval (CPI).
Thus, the aspect angle variation of the target is calculated to be vxtm/Ru. Because the target is far
from the radar, the instantaneous distances from p and q to the reference point can be approximately
expressed as

∆Rp(tm) = xp
vxtm

Ru
+ yp − yu (6)

∆Rq(tm) = xo′
vxtm

Ru
+ yo′ − yu + rq sin

(
ωqtm + θq

)
. (7)

Substituting Equations (6) and (7) into Equation (5) yields
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(8)

It can be seen from Equation (8) that the peaks of the spectrogram are located at

f̂p = −2γ

c
(
yp − yu

)
(9)

f̂q = −2γ

c
(
yo′ − yu + rq sin

(
ωqtm + θq

))
(10)

and the range resolution is ρr = c/(2γT). For the targets with large rotors, the rotating radius
rq might be much larger than the range resolution. Equation (8) indicates that the signal of the
micromotion scatterer migrates through the range cells in the spectrogram and has the shape of
a sinusiod. In contrast, the position of the main body signal is slow time invariant, which has the shape
of a straight line. The sinusoid in the spectrogram will seriously affect the cross-range compression,
i.e., the integration in the slow time domain, and lead to a smeared ISAR image. To remove the
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sinusoidal m-D interference, the method in Q. Zhang et al. [6] extracts the straight lines in the
spectrogram using the Hough transform. Similarly, the methods in H.C. Liu et al. and L. Sun et al. [5,7]
only recover the straight lines where the sinusoids are eliminated. However, when the target has
small rotors, rq might be smaller than half of the range resolution. In this condition, the signal of
the micromotion scatterer is located in a constant range cell and also has the shape of a straight line.
The spectrogram can be approximately expressed as

sr

(
f̂ , tm

)
≈

P
∑

p=1
Ap sin c

(
T
(

f̂ + 2γ
c
(
yp − yu

)))
exp

(
−j 4π
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))
+
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))
exp

(
−j 4π

λ

(
xo′

vxtm
Ru

+ yo′ − yu + rq sin
(
ωqtm + θq

)))
.

(11)

Because the main body signal and the signal of the micromotion scatterer have the same straight
line shapes in the spectrogram, the methods in H.C. Liu et al., Q. Zhang et al., and L. Sun et al. [5–7]
are invalid to remove the m-D effect. According to Equation (11), the Doppler frequencies of the main
body scatterer and the micromotion scatterer are

fp = −
2xpvx

λRu
(12)

fq = − 2
λ

(
xo′vx

Ru
+ rqωq cos

(
ωqtm + θq

))
. (13)

It is obvious from Equations (12) and (13) that the main body scatterer has a constant Doppler
frequency while the Doppler frequency of the micromotion scatterer is slow time variant. Therefore, it is
possible to separate the main body signal from the micromotion signal in the time-frequency domain.Sensors 2018, 18, x FOR PEER REVIEW  6 of 18 
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Figure 1. Inverse synthetic aperture radar (ISAR) imaging geometry with rotating scatterers.

3. Joint Sparsity of Main Body Signal in Time-Frequency Domain

Typical time-frequency transforms include the Wigner–Ville distribution (WVD) [27] and the
STFT. Although WVD has better time-frequency resolution than STFT, it suffers from cross-terms for
multiple signal components. Thus, we chose the STFT to achieve the time-frequency representations
of the echoes in the contaminated range cell. In order to obtain the STFT entries, the echoes in
the contaminated range cell were first segmented into narrow time intervals so that the signal in
each segment could be considered stationary. Then, the Fourier transform was carried out for the
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windowed signal in each segment to obtain the local spectral representations. In this paper, we chose
the rectangular window function and the segmentation of the echoes could be realized by a sliding
window with proper time step.

To demonstrate the joint sparsity of the main body signal in the time-frequency domain,
we conducted the following simulation. The target model was composed of nine main body scatterers
and two micromotion scatterers, as described in Figure 2. The micromotion scatterers q1 and q2 rotated
around the origin counterclockwise with radii of 0.1 m and 0.2 m, and with rotating frequencies of 10 Hz
and 3 Hz, respectively. The initial rotating phases were π/2 rad and 0 rad, respectively. The target
moved along the cross-range direction with a velocity of 300 m/s. The radar carrier frequency was
10 GHz, the bandwidth was 600 MHz, the pulse repetition interval (PRI) was 1 ms, and the CPI was 1 s.
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According to the radar system parameters, the range resolution was calculated to be 0.25 m,
which was larger than twice the rotating radii of both q1 and q2. Thus, the micromotion signal did
not migrate through the range cells in the spectrogram. As shown in Figure 3a, the micromotion
signal was located in the 40th range cell and had the same straight line shape as the main body signal.
In this situation, the methods in H.C. Liu et al., Q. Zhang et al., and L. Sun et al. [5–7] were invalid
to eliminate the micromotion components. As a result from the m-D effect, the application of a fast
Fourier transform (FFT) to the spectrogram along the slow time dimension would lead to a blurred
main body image, as depicted in Figure 3b. We selected 50 cross-range cells where the target was
located in the imaging result to display.
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To obtain the time-frequency representations, we applied the STFT to the echoes in the 40th range
cell of the spectrogram. The time step was 10 PRI and the window width was 30 PRI. Thus, there were
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30 frequency bins in the time-frequency domain. As shown in Figure 4, the main body signal was
located at the 15th and 16th frequency bins. Consequently, the support of the main body signal in
the time-frequency domain was slow time invariant which indicated the joint sparsity of the main
body signal. In contrast, the micromotion scatterers’ Doppler frequencies were slow time variant
and the micromotion signal had the shape of sinusoids, as illustrated in Figure 4. Because of the
distinct patterns, the micromotion signal could be removed by promoting the joint sparsity in the
time-frequency domain, which is detailed in the next section.
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4. M-D Effect Removal by Promoting Joint Sparsity

4.1. Problem Formulation for Joint Sparse Recovery

The echoes in the range cell contaminated by the m-D effect are denoted by s, and we assume that
the number of the received pulses is V. The window width and the time step of the STFT are denoted
by N and G, respectively. Thus, the number of the segments in the STFT is M = d(V − N)/Ge+ 1,
where d·e denotes rounding to the nearest integer towards infinity.

The discrete Fourier matrix for each segment is

Q =


1 1 · · · 1
1 W−1 · · · W−(N−1)

...
...

. . .
...

1 W−(N−1) · · · W−(N−1)(N−1)


N×N

(14)

where W = exp(j2π/N). Denoting the STFT entries in Figure 4 by X, the corresponding STFT entry
vector is x, which is generated by stacking the columns of X into a single vector. Then, the STFT of s
can be written in a compact matrix form

x = Hs (15)

where H ∈ CK×V denotes the STFT matrix

H =


Q 0N×(V−N)

0N×G Q 0N×(V−G−N)

0N×2G Q 0N×(V−2G−N)
...

...
...

0N×(V−N) Q


K×V

(16)

and K = MN is the number of the STFT entries in x. 0N×G denotes a matrix of size N × G,
whose elements are equal to 0.
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The echoes in the contaminated range cell can be modeled as follows:

s = Dx + φ (17)

where φ ∈ CV×1 denotes the noise, and D =
(
HHH

)−1HH is the Moore–Penrose inverse of the STFT
matrix H. However, the data samples of the echoes might be randomly missing in real world scenarios
where strong electromagnetic interference or sensor failure prevents effective observation. The data
samples under strong electromagnetic interference must be discarded and the remaining L samples
constitute the measurement vector y ∈ CL×1, which can be expressed as

y = Ax + n (18)

where n ∈ CL×1 is the noise. A ∈ CL×K is formed by omitting the rows of D which correspond to the
missing samples. Because the remaining samples are fewer than the STFT entries to recover, i.e., L < K,
Equation (18) is underdetermined.

To facilitate the notation, we rearrange the STFT entries in the ith frequency bin into a vector

bi = [xi, xN+i, . . . , xMN+i], 1 ≤ i ≤ N. (19)

According to the analysis in Section 3, the micromotion components in the time-frequency domain
can be eliminated by promoting the joint sparsity of x. The joint sparse recovery problem is usually
formulated by the following l2/l0 minimization problem

x̂ = arg min
x
‖x‖2,0 s.t. ‖y−Ax‖2 < ε (20)

where ε bounds the l2-norm of the noise in the measurements. ‖x‖2,0 stands for the l2/l0-norm of x
defined as [16]

‖x‖2,0 = ‖β‖0 (21)

where β = [‖b1‖2, ‖b2‖2, . . . , ‖bN‖2]
T . It is obvious that ‖x‖2,0 is equivalent to the number of

frequency bins which have nonzero STFT entries. Therefore, by solving the problem in Equation (20),
we can find the solution x̂ which occupies the fewest frequency bins and the joint sparsity in the
time-frequency domain can be promoted.

However, the problem in Equation (20) is essentially a combinatorial optimization problem [17],
which is difficult to solve. Inspired by the smoothed l0 (SL0) algorithm, we propose a novel objective
function to replace ‖x‖2,0, so that the new problem is tractable. In the following subsections, the original
SL0 algorithm is briefly reviewed at first. Then, we elaborate the proposed ISAR imaging method.

4.2. Brief Review of SL0 Algorithm

The basic idea of the SL0 algorithm is to approximate the l0-norm of x with the following
function [23]

Fσ(x) =
MN

∑
i=1

fσ(xi) (22)

where

fσ(x) = exp
(
− x2

2σ2

)
(23)

and

lim
σ→0

fσ(x) =

{
1, if(x = 0)
0, if(x 6= 0)

(24)
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It can be seen from Equations (22) and (24) that ‖x‖0 ≈ MN − Fσ(x) for small values of σ.
Furthermore, this approximation becomes equality as σ→ 0 . The SL0 algorithm obtains the sparse
solution of Equation (18) by solving the following problem

x̃ = arg max
x

Fσ(x) s.t. ‖y−Ax‖2 ≤ ε. (25)

To avoid trapping into local maxima, a decreasing sequence of σ is utilized, i.e.,
[
σ1, . . . , ση

]
,

where σi > σj for i > j. η is the iteration number and the current maximizer of Fσ(x) is used as the
starting point of the next iteration. To maximize Fσ(x) for a fixed σ, there are two steps in each iteration:
the unconstrained maximization step x′ ← x + µ∇Fσ(x) and the projection to the feasible set

x = arg min
x
‖x− x′‖2 s.t. y = Ax

= x′ −A†(Ax′ − y)
(26)

where A† = AH(AAH)−1, and ∇Fσ(x) is the gradient of Fσ(x).

4.3. Proposed Method

Although it has been shown in H. Mohimani et al. [23] that the SL0 algorithm is effective to
obtain the sparse solution of Equation (18), the joint sparsity of x cannot be promoted. It can be seen
from Equation (22) that the SL0 algorithm only promotes the sparsity of the individual entries in x,
and (MN − Fσ(x)) is merely able to approximate ‖x‖0 rather than ‖x‖2,0, which measures the joint
sparsity of x. As a result, the SL0 algorithm is inappropriate to remove the m-D effect in ISAR imaging
for micromotion targets. In this paper, we propose a smoothed l2/l0 (SL2L0) algorithm, where ‖x‖2,0
in Equation (20) is approximated by a new objective function

Uσ(x) = N −
N
∑

i=1
fσ

(
‖bi‖2

2

)
= N −

N
∑

i=1
exp

−
M
∑

j=1
|x(j−1)N+i|2

2σ2

.
(27)

Since ‖x‖2,0 is equivalent to the number of frequency bins which have nonzero STFT entries,
it is obvious from Equations (19), (24) and (27) that Uσ(x) = ‖x‖2,0 when σ→ 0 . Therefore, the joint
sparsity can be promoted by minimizing the new objective function Uσ(x) with small values of σ.
The joint sparse recovery problem can be formulated as

x = arg min
x

Uσ(x) s.t. ‖y−Ax‖2 ≤ ε. (28)

Similar to the SL0 algorithm, a decreasing sequence of σ is used to avoid trapping into local
minimum and a steepest descend approach is employed to minimize Uσ(x) in each iteration, i.e.,

x′ = x−
(

2µσ2
)
∇Uσ(x) (29)

where µ is the parameter controlling the step-size
(
2µσ2). The gradient ∇Uσ(x) in Equation (29) is

calculated to be
∇Uσ(x) = 1N ⊗ α� x (30)

where 1N is a vector of length N with its entries equal to 1, ⊗ is the Kronecker product, � is the
Hadamard product, and α ∈ CN×1 is
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α =

 1
2σ2 exp

−
M
∑

j=1

∣∣∣x(j−1)N+1

∣∣∣2
2σ2

 · · · 1
2σ2 exp

−
M
∑

j=1

∣∣∣x(j−1)N+N

∣∣∣2
2σ2




T

. (31)

Since the micromotion components are eliminated by promoting the joint sparsity of x, we modify
the projection step in Equation (26) as follows:

x = arg min
x
‖x− x′‖1 s.t. ‖y−Ax‖2 ≤ λ (32)

where λ bounds the l2-norm of the micromotion components in the echoes. Equation (32) can be
rewritten into an unconstrained optimization problem

z = arg min
z

1
2
‖y′ −Az‖2 + τ‖z‖1 (33)

where z = x− x′ and y′ = y−Ax′. τ is the regularization parameter related to λ. g(z) = ‖z‖1 is called
the regularizer which indicates that the optimization problem in Equation (33) is convex. We use the
fast iterative shrinkage-thresholding algorithm (FISTA) [28,29] to solve the problem in Equation (33)
efficiently. The key concept in FISTA is known as Moreau’s proximal operator, or proximal operator
for short, which is expressed as

proxθg(zk) =
zk
|zk|

max(|zk| − θτ, 0), 1 ≤ k ≤ K, (34)

and θ in Equation (34) is a positive constant with θ ≥ 1/‖A‖2
F.

In summary, the successive steps of the proposed SL2L0 algorithm are given in Algorithm 1.

Algorithm 1 Proposed smoothed l2/l0 (SL2L0) algorithm

Input: The echo sampling vector y, the overcompleted dictionary A, positive constants
{µ, θ, ε}, the maximum number of outer loop iterations η, the maximum number of
inner loop iterations φ, a suitable decreasing sequence

[
σ1 · · · ση

]
, the tolerance values

ez and ex; initialization x(1) = A†y and t(1) = 1.
Iteration:

For i = 1, . . . , η

σ = σi;
x′ = x(i) −

(
2µσ2)∇Uσ

(
x(i)
)

;

y′ = y−Ax′;
z(0) = x(i) − x′;
q(1) = z(0);
For j = 1, · · · , φ

z(j) = proxθg

(
q(j) − θAH

(
Aq(j) − y′

))
;

t(j+1) = 1+
√

1+4t(j)

2 ;

q(j+1) = z(j) + t(j)−1
t(j+1)

(
z(j) − z(j−1)

)
;

if ‖z(j) − z(j−1)‖2/‖z(j−1)‖2 < ez, then break;
End
x(i+1) = x′ + z(j);
if ‖y−Ax(i+1)‖2 < ε or ‖x(i+1) − x(i)‖2/‖x(i)‖2 < ex, then break

End
Output: x = x(i+1)
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By promoting the joint sparsity in the time-frequency domain, the output x of the SL2L0 algorithm
only contains the main body components. Based on the recovered STFT entries, we can obtain the
main body echoes free of m-D effect as y = Ax. Assuming that the residual noise in y is e ∈ CL×1,
y can be rewritten as

y = Ωp + e (35)

where p ∈ CV×1 is the cross-range compression result of y, and Ω ∈ CL×V is a partial Fourier matrix
with its (l, v)th element given by exp(−j2π fvtl). fv is the vth Doppler frequency bin, and tl is the
lth sampling point of the slow time. Subsequently, we used the sparse Bayesian learning (SBL) [25]
algorithm to achieve the cross-range compression of y by recovering p in Equation (35).

Although the discussions in this section are focused on the echoes in a single range cell,
the proposed method is also suitable for other contaminated range cells. After all of the contaminated
range cells are processed by the proposed method, a clear main body image can be achieved.

5. Experimental Results and Performance Comparisons

In this section, we discuss the experiments conducted using the echoes generated by the
point-scattering model and EM computation, respectively. To validate the effectiveness, the imaging
results of the proposed method and other existing methods are compared. The parameters of the
proposed method used in the experiments are set as follows: µ = 1, θ = 1/‖A‖2

F, η = 40, φ = 20,
σi = 0.8i−1 for i = 1, . . . , η, ez = 10−4, and ex = 10−4. Since ε is related to the noise level, this
parameter is tuned manually in each experiment.

5.1. Experiments Using the Point-Scattering Model

The target model is depicted in Figure 2, and the radar system parameters are the same as in
Section 3. We obtained the limited measurements by choosing 500 pulses randomly in the slow time
domain, and the signal-to-noise ratio (SNR) was 20 dB. The number of cross-range cells to be recovered
was 1000. The window width of the STFT was 30 PRI and the time step was 10 PRI. According to the
above parameters, the size of A was calculated to be 500× 2940. Similar to Figure 3b, we selected
50 cross-range cells to display in the imaging results.

To eliminate the micromotion components of the echoes in the contaminated range cell,
both the method in R. Zhang et al. [9] and the L-statistics-based method utilize the time-frequency
representations obtained by the STCS [11]. However, part of the main body signal in the time-frequency
domain is missing due to the discarded pulses, as illustrated in Figure 5. Additionally, there is a strong
m-D signal which has the shape of sinusoids. As a result, the histogram analysis in R. Zhang et al. [9]
could not be used to remove the m-D signal, which might have been mistaken for the main body signal.
Figure 6a shows the imaging result produced by the method in R. Zhang et al. [9]. Many spurious
points exist in the 40th range cell due to the m-D interference and the main body scatterers are
defocused. Because the measurements within the sliding window are much fewer than the frequency
bins in STCS, the frequency resolution in the time-frequency domain is lower than the reciprocal of
the CPI. Therefore, the L-statistics-based method cannot obtain the accurate support of the main body
scatterers in the cross-range domain. As depicted in Figure 6b, some spurious points exist near the
main body scatterers. In addition, one of the main body scatterers in the 40th range cell cannot be
recovered because part of the main body signal is missing in Figure 5. In contrast to STCS, the proposed
SL2L0 algorithm can remove the m-D signal by promoting the joint sparsity in the time-frequency
domain, where only the main body signal with constant Doppler frequencies are preserved, as shown
in Figure 7a. Based on the recovered STFT entries, the proposed method achieves a clear main body
image in Figure 7b.

In addition to the visual results, we introduce the normalized mean square error (NMSE) and the
image contrast (IC) as two metrics to compare the performance of different methods. A lower NMSE
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means the image has less recovery error, and a higher IC indicates the image is better focused. The
NMSE is computed by [30]

NMSE =
1
U

U

∑
k=1

∥∥∥∥∥ I
‖I‖F

− Îk

‖Îk‖F

∥∥∥∥∥
F

(36)

where U = 100 independent trials are conducted, and Îk ∈ CR×V denotes the recovered result of the
true main body image I in the kth trial. The IC is computed by X. Z. Gao et al. [24]

IC =

√
Ave

((
Î2

k − Ave
(
Î2

k
))2
)

Ave
(
Î2

k
) (37)

where Î2
k represents the intensity matrix of the recovered main body image with its (r, v)th element

Î2
k(r, v) equal to

∣∣Îk(r, v)
∣∣2. Ave(·) denotes the mean operator, which is defined as

Ave(I) =
1

RV

R

∑
r=1

V

∑
v=1

I(r, v) (38)

Figure 8 gives the NMSEs and ICs obtained by different methods against the undersampling
factor [31], which is calculated as ψ = L/V, i.e., the number of measurements in slow time
dimension divided by the number of cross-range cells to recover. For each ψ, the IC is averaged
over 100 independent trials. It can be observed from Figure 8 that the proposed method achieves the
lowest NMSEs and the highest ICs among all of the methods, which indicate the least recovery error
and the best focused quality, respectively.
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5.2. Experiments Using EM Computation

To further testify the performance of the proposed method, we used the echoes of a ship target
generated by the graphic electromagnetic computing (GRECO) technique [32], which combines
physical optical (PO) theory and physical theory of diffraction (PTD). The target model is described in
Figure 9a, where the dashed circle indicates the antenna rotating with a frequency of 1 Hz. Figure 9b
depicts the imaging geometry. The ship was 6.9 km from the airborne radar and located at the origin.
The radar operated at 5 GHz, the bandwidth was 1 GHz, and the radar moved along the opposite
direction of the X-axis with a constant velocity of 300 m/s. 256 pulses were collected in a CPI of 2.3 s
and the SNR was 20 dB. We obtained the limited measurements by choosing 128 pulses randomly.
Within each pulse, there were 128 complex range samples. The window width and the time step of the
STFT were 20 PRI and 2 PRI, respectively. According to the aforementioned parameters, the size of A
was calculated to be 128× 2380.

The imaging results by different methods are shown in Figure 10. It can be seen from Figure 10a
that the m-D effect led to a blurred main body image by the FFT-based method. Though the method
in R. Zhang et al. [9] and the L-statistics-based method suppressed the m-D effect to some degree,
there were residuals and some spurious points exist in Figure 10b,c. In contrast, the proposed method
could remove the m-D effect through the SL2L0 algorithm and a clear image with the least spurious
points is achieved in Figure 10d.
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To quantitatively evaluate the performance of different methods, we used the image entropy
(IE). Generally, a smaller IE indicates a better focused quality of the image. The IE is defined by
W. Qiu et al. [33]

IE = −
R

∑
r=1

V

∑
v=1

I(r, v) ln
[
I(r, v)

]
(39)

where I is the power normalized image computed by

I =
I2

R
∑

r=1

V
∑

v=1
|I(r, v)|2

(40)
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The IEs of the imaging results are given in Table 1. The proposed method achieved the minimum
IE which verifies the superiority of the proposed method to other methods.

The computational time of different methods was recorded based on the MATLAB code and
summarized in Table 2, where the results are given by the averages of 50 independent trials conducted
on an Intel Core i7 machine at 3.50 GHz. The computational time of the FFT-based method was not
recorded since it could not suppress the m-D effect, as shown in Figure 10a. It can be seen from Table 2
that the proposed method is more computationally efficient than the method in R. Zhang et al. [9] and
the L-statistics-based method.

Table 1. Performance Evaluation by Image Entropy.

Method Image Entropy

The FFT-based method 5.977
The method in [9] 4.865

The L-statistics-based method 4.803
The proposed method 4.204

Table 2. Computational Time.

Method Computational Time (s)

The method in [9] 5.529
The L-statistics-based method 3.406

The proposed method 1.811

6. Conclusions

In ISAR imaging, the m-D effect generated by the micromotion scatterers with small rotating
radii leads to a blurred main body image. It is claimed that the Doppler frequency of the micromotion
scatterer is slow time variant while the main body scatterer has a constant Doppler frequency, indicating
the joint sparsity property in the time-frequency domain. To remove the m-D effect, this paper proposes
a novel algorithm named SL2L0, where a new objective function is used to measure the joint sparsity
and is minimized in a way similar to the SL0 algorithm. We have tailored the projection step in
the SL0 algorithm to make it suitable for m-D effect removal. Experimental results showed that the
proposed SL2L0 algorithm can effectively remove the m-D effect by promoting the joint sparsity in the
time-frequency domain and a clear main body image can be achieved after cross-range compression.
Diverse metrics, including the NMSE, IC, and IE, were employed to validate the superiority of the
proposed method to other existing methods.
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