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Abstract: There exists a common problem in the localization of underwater control networks that the
precision of the absolute coordinates of known points obtained by marine absolute measurement is
poor, and it seriously affects the precision of the whole network in traditional constraint adjustment.
Therefore, considering that the precision of underwater baselines is good, we use it to carry out
quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the
network shape better. In addition, we add unconstrained adjustment for quality control of underwater
baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the
unqualified baselines and improve the results’ accuracy of the two adjustments. Finally, the modified
method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location
precision of 0.08 m, which improves by 38% compared with the traditional method.

Keywords: underwater control network; acoustic ranging; quasi-stable adjustment; baseline quality
control; depth constraint

1. Introduction

Underwater control networks are widely applied to underwater navigation, seafloor crustal
dynamics observation and stability monitoring of underwater structure through measuring the
absolute coordinates of the monitored object [1,2]. To get the coordinates of the object, it is necessary to
determine the absolute coordinates of all the control points in the underwater control network firstly.

The measurement to determine the absolute coordinates of the underwater control network can
be divided into two types:

(1) Absolute measurement:

This kind of measurement can directly obtain the absolute coordinates of the underwater control
point by using GNSS (Global Navigation Satellite System) technology and multiple sensors, also called
absolute datum transfer.

The most popular way is the GPS-acoustic (Global Positioning System-acoustic) method [2]. It uses
several survey vessels equipped with a transducer and GNSS to realize acoustic ranging rendezvous
with underwater control points equipped with transponders [3,4]. During the measurement, GNSS
precisely offers the absolute coordinates of the on-board transducer. On-board transducers constantly
transmit the beam, and underwater transponders receive and respond to on-board transducers.
However, it was found that the positioning precision is affected seriously by velocity errors by
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decreasing the precision of the distance from the on-board transducer to the seafloor acoustic
transponder [5,6].

To improve the positioning precision, scholars tried different ways to deal with velocity errors.
The most common method is to carry out CTD (sea water Conductivity, Temperature and Depth)
observations to get an accurate acoustic velocity structure of the corresponding water area and then
through the ray-tracing method to get the final slant distance [7–12]. However, the velocity varies with
time and space, so it is practically impossible to get an accurate acoustic velocity structure for all the
acoustic ranging [2]. Therefore, under this mode of measurement, in data post-processing, scholars
use other treatments for the distance on the basis of ray-tracing. For example, Fanlin Yang et al. (2011)
regarded remaining ranging error after ray-tracing as an unknown parameter to participate in the later
calculation [13]. All these treatments improve the precision of the slant distance, but they increase the
complexity of data processing.

Then, a new measurement mode was proposed called circle navigation in 2007, which largely
decreases the impact of velocity errors on plane coordinates [14]. It uses one survey vessel around one
unknown point for circular sailing. Relative to the GPS-acoustic method, the circle navigation incident
angle of the measuring beam is approximately equal, as well as the ranging error brought by velocity,
which can be effectively eliminated after the least squares solution [14,15]. However, when there are
many points to be determined in an underwater control network, circle navigation becomes time
consuming and laborious.

As for the vertical coordinate, there are specialized sensors recording seafloor pressure, gravity or
magnetic data to determine the depth of the underwater control point with the progress of technology,
the precision of which is better than that of the GPS-acoustic method and circle navigation [16–19].
These sensors are generally installed at underwater points and are used in relative measurement,
as well.

(2) Relative measurement:

This kind of measurement is committed to obtaining the slant distance or azimuth of every two
underwater points by the transponders’ mutual response.

Because underwater transponders on the two endpoints at the baseline have a small depth
difference, the impact of velocity error on baseline observation is quite small relative to the absolute
measurement [16,18]. Therefore, the precision of relative measurement is high [20,21]. However,
relative measurement alone cannot obtain the absolute coordinates of the underwater control network
when no absolute coordinates of any point are known.

Due to the advantages and disadvantages of the two kinds of measurement, in recent years,
it has become popular to combine absolute measurement with the relative one [19–23], such as
the Sonardyne (Sonardyne, Hampshire, UK) 6G LBL (Long Baseline) system. Firstly, the on-board
transducer continuously transmits the command signal to the underwater transponder during the
voyage of the ship. Once the transponder receives the signal, it will be activated and telemeters
data to the transducer. The survey is actually the absolute measurement, and it is to obtain the
absolute 3D coordinates of several underwater points in the control network, mostly by circle
navigation [14,15]. After the absolute measurement, underwater transponders start another mode of
work. They communicate with each other in the same way as thee transducer and transponder to
obtain the slant distance of every two underwater points. Compared with the previous underwater
positing system, the new system adopted a wider bandwidth and more channels to guarantee stable
and accurate positioning signals, far propagation distance and more user applications. During the
whole measurement, pressure sensors work continuously, obtaining the depth sequence of each point.
Because both circle navigation and the mutual response of underwater transponders are based on
TWTT (Two-Way Travel Time) [15,18], CTD observations are carried out in the survey area, and all the
distances are obtained through ray-tracing.
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After data collection finishes, it is necessary to process the data to get the absolute coordinates
of unknown points in the network. The current method is to carry out the least square method [20],
in which the coordinates obtained by absolute measurement are regarded as starting data, the distances
obtained by the relative one as observations and the depths obtained by pressure sensors as
observations or known values. When the depths are regarded as observations, the method is called 3D
Constraint Adjustment with depth constraint (3DCA) [22]. When the depths are regarded as known
values, it is 2D Constraint Adjustment with depth constraint (2DCA) [22].

However, the positioning precision of absolute measurement is not high, just the decimeter-level,
while the baseline precision in relative measurement is high, up to the millimeter-level [14,17], which
is much higher than positioning precision. It would cause the precise network shape made up of
underwater baselines to be destroyed to some extent after the introduction of imprecise known points
in 3DCA or 2DCA.

Therefore, we propose to carry out quasi-stable adjustment for absolute coordinates of known
points with underwater baselines as observations before constraint adjustment, to amend known
points and increase the compatibility between known points and network shape. In addition, relative
measurement can obtain plenty of repeating baselines to participate in quasi-stable adjustment and
constraint adjustment, part of which may be polluted by the marine environment, signal leap of
underwater transponders, acoustic wave multi-reflection, etc. To improve baseline accuracy and the
inner coincidence precision of the two adjustments, we add unconstrained adjustment for baselines
to eliminate the unqualified baselines. The structure of this paper is as follows. Section 2 elaborates
2D unconstrained adjustment as the quality control of underwater baselines. Section 3 describes
2D quasi-stable adjustment in detail. Section 4 presents the validation and analysis of the proposed
method through experiments. Section 5 provides the corresponding discussion. Lastly, Section 6
presents several beneficial conclusions and recommendations that are drawn from the experiments
and discussions.

2. Quality Control of Underwater Baselines

Before quasi-stable and constraint adjustment, it is necessary to control the quality of the
observations, that is underwater baselines from relative measurement. An unconstrained adjustment
is proposed as follows.

During measurement, pressure sensors provide depth information of each underwater
transponder. Imitating 2DCA and 3DCA, the introduction of the depth information in unconstrained
adjustment can be divided into two types:

(1) Use the depth information to get the depth difference of every two underwater points, and further
switch the slant distance into horizontal distance. Then, carry out 2D unconstrained adjustment.

(2) Both the depth difference and slant distance are regarded as observations. Then, carry out 3D
unconstrained adjustment.

In 3D adjustment, if the value difference of one dimension is far less than the other two dimensions,
the result of the adjustment is likely to be wrong [24]. For an underwater control network, it is common
that the depth difference between underwater control points is rather small relative to the x and y
difference. In this case, 3D unconstrained adjustment is inapplicable.

Because unconstrained adjustment is mainly to eliminate unqualified baselines and evaluate
internal coincidence precision and the calculation process of 2D unconstrained adjustment is simpler
than that of the 3D, here we choose 2D unconstrained adjustment to realize quality control.

Assuming that i and j are two underwater control points and lij and zij are observed slant distance
and depth difference between the two, so the plane distance sij is:

sij =
√

l2
ij − z2

ij (1)
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Meanwhile, supposing that Xi(xi, yi) and Xj(xj, yj) are real 2D coordinates of points i and j
respectively, g(Xi, Xj) represents the real plane distance of two points and ∆s is the observation error,
then the plane distance sij can be represented by Equation (2) as follows:

sij = g(Xi, Xj) + ∆s =
√
(xi − xj)2 + (yi − yj)

2 + ∆s (2)

Taylor expand Formula (2), then the correction of the underwater baseline is:

vij = 1
s0

ij
((x0

i − x0
j )(dxi − dxj) + (y0

i − y0
j )(dyi − dyj)) − (sij − s0

ij)

= [
x0

i − x0
j

s0
ij

y0
i − y0

j

s0
ij
−

x0
i − x0

j

s0
ij
−

y0
i − y0

j

s0
ij

]


dxi

dyi

dxj

dyj

 − (sij − s0
ij)

(3)

In the formula, (x0
i , y0

i ) and (x0
j , y0

j ) are a priori coordinates of points i and j, respectively. (dxi , dyi )

and (dxj , dyj) are corrections of i and j, respectively. s0
ij is the a priori value of the underwater baseline,

which is calculated by (x0
i , y0

i ) and (x0
j , y0

j ). sij is the observed value, obtained by Equation (1).
Supposing there are n underwater baselines (including repeating baselines) and m underwater

control points, then there are n equations, like Equation (3). Combine the n equations to build the
correction equation group as Equation (4).

V
n×1

= B
n×2m

x̂
2m×1

− l
n×1

(4)

In Equation (4), V is the collection of vij. V is the correction matrix of underwater baselines. B is the

collection of [
x0

i − x0
j

s0
ij

y0
i − y0

j

s0
ij
−

x0
i − x0

j

s0
ij
−

y0
i − y0

j

s0
ij

]. B is the coefficient matrix, and it is rank-deficient. x̂ is

the collection of (dxi , dyi ) of all the underwater control points. x̂ is the correction matrix of coordinates.
l is the collection of sij − s0

ij.

Supposing normal matrix N
2m×2m

= BT
2m×n

P
n×n

B
n×2m

, in which P is the weight matrix of underwater

baselines, N is rank-deficient, as well. In matrix P, the weight of a baseline is generally set as the
reciprocal of the length of the baseline [24,25]. In 2D unconstrained adjustment, it is the reciprocal of
the plane distance.

Choose unconstrained adjustment with gravity datum, and the weight matrix Px of points is the
unit matrix [24]. The datum matrix S is:

ST =

 1
0
−x0

1

0
1
y0

1

1
0
−x0

2

0
1
y0

2

. . .
1
0
−x0

m

0
1

y0
m

. (5)

Supposing K = PxSSTPx, then the coefficient matrix of the normal equation is N′ = N + K [24],
and N′ is full rank at the moment. The correction matrix of coordinates x̂ is:

x̂= (N′)−1BTPl (6)

The unit weight mean square error σ0 and the mean square error σij of each baseline are:

σ0 =
√

VTPV
n− rank(B)

σij = σ0 /
√

Pij
(7)
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Among them, rank(B) represents the rank of coefficient matrix B. Pij is the weight of the
corresponding underwater baseline.

Finally, use Equation (8) to eliminate disqualified baselines:

If
vij > kσij

Otherwise
then

Refused
Accepted

(8)

Inside, vij is the correction of baselines. σij is the error of the corresponding baseline. k is the
multiple in the threshold, which needs to be set appropriately. Generally, k is set as 3, 2 or 1 [25,26].
It also can be decimal [26]. After eliminating disqualified baselines, do unconstrained gravity datum
adjustment until all the baselines are qualified.

The whole process is depicted as follows (Figure 1).
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Figure 1. Data process of 2D unconstrained adjustment.

After quality control of underwater baselines is finished, it is time to carry out
quasi-stable adjustment.

3. Quasi-Stable Adjustment

To increase the compatibility of starting data and the underwater network, we add quasi-stable
adjustment for known points obtained from absolute measurement to mend their coordinates,
with regard to the qualified underwater baselines obtained by the above step as observations. Because
the vertical coordinate can be obtained precisely by depth from the pressure sensor, wave sensor,
tide sensor and water surface elevation [19], here we also just focus on the 2D coordinates of known
points. The data process of 2D quasi-stable adjustment is as follows.

In Figure 2, the plane distance of underwater baseline is obtained by Formula (1), and it also can
be expressed by Formula (2). The baseline weight matrix is the same as P in unconstrained adjustment,
in which the weight of a baseline is the reciprocal of the plane distance. The point weight matrix Px is
a diagonal matrix, in which the weight of known points is o, and for the others is zero.
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Figure 2. Data process of 2D quasi-stable adjustment.

Then, Taylor expand Equation (2). When the two endpoints of the baselines are both unknown,
the correction of the underwater baseline is expressed by Equation (3). Otherwise, replace the a priori
coordinates of known points with their absolute coordinates obtained by absolute measurement.

Therefore, if there are n baselines, absolute coordinates of known points, a priori coordinates
of unknown points and plane distance of underwater baselines form n correction equations like
Equation (3). These equations make up equation group as Formula (4).

In quasi-stable adjustment, the correction and mean square error of points and baselines can be
calculated by Equations (4)–(7). However, it needs to noted that the point weight matrix Px and datum
matrix S of quasi-stable adjustment are different from unconstrained adjustment. The value of Px has
been depicted above. In Equation (5), that is datum matrix S, the a priori coordinates of known points
should be replaced with their absolute coordinates obtained by absolute measurement.

After quasi-stable adjustment has finished, the baselines will be further eliminated by Equation (8).
When the iteration ends, the coordinates of known points have been fine-tuned. Finally, we regard the
mended coordinates as the starting data to participate in constraint adjustment, 3DCA or 2DCA, to get
unknown underwater points [22], with the qualified baselined obtained by unconstrained adjustment
as observations.

For the sake of understanding the experiment below, we give the flowchart of 3DCA and 2DCA,
as shown in Figures 3 and 4.
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4. Experiment and Analysis

After all the proposed methods have been depicted, they are applied to a practical LBL experiment,
and the results are compared with that of other recent approaches. The experiment and comparisons
are depicted as follows.

4.1. Data Acquisition

In order to verify the correctness of the proposed method, experiments were carried out in
Songhua Lake in September 2015, as shown in Figure 5A. The average depth of water in the
experimental area is about 60 m. The ups and downs of underwater topography change at 1–2 m,
and the change is relatively flat, as shown in the red box in Figure 5A.

In the experiment, the positioning equipment adopted the Sonardyne 6G LBL system, including
6 elements and their floating bodies, 1 tracking and positioning transceivers (including telemetry
transducer) and deck units. The ship attitude sensor adopted was Seatex MRU-05 (Kongsberg Seatex
AS, Trondheim, Norway), and the compass adopted was TSS Meridian Surveyor (TELEDYNE TSS,
Hertfordshire, UK), which were mainly used for measuring ship attitudes and azimuth during the
measurement. The sound velocity profiler adopted was AML SVP (AML Oceanographic, BC, Canada),
and bathymetry adopted was ValePort 740 (Valeport, Devon, United Kingdom). The survey ship used
Leica GPS1200 (Leica Geosystems AG, Heerbrugg, Switzerland) to locate with the aid of GNSS RTK
(Real-Time Kinematic) technology. The list of performance parameters for the above device is shown
in Table 1. In the default accuracy column in Table 1, S is observed acoustic ranging distance and D is
observed depth.

At the bottom of the lake, we set 5 transponders as the underwater control points in a
134 m × 102 m range, as shown in Figure 5B, numbered C2, C4, C5, C6 and C8. Before measuring,
we strictly determined the coordinates of ship-borne transducer and the GNSS RTK antenna in the
coordinate system of the ship. When measuring, we first carried out circle navigation on 5 underwater
control points respectively for 4 laps with a radius of 60 m. Then, we carried out mutual acoustic
ranging between underwater points (transponders), and several observation sets were completed.
During the measurement, we also carried out the measurement of the sound velocity profile in the
experiment area, as shown in Figure 5C.
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Figure 5. Underwater topography (A), control network (B) and sound velocity profile (C) in the
experiment area. (A) The red box represents the survey area, the center of which is around 126.5◦ E,
43.4◦ N. The color from red to purple represents the depth from the minimum value to the maximum
value. (B) Five small triangles represent underwater control points. (C) The horizontal axis represents
sound velocity, and the ordinate axis represents depth.

Table 1. Performance of the equipment.

Equipment Measurement Default Accuracy

Sonardyne 6G LBL Ranging ±0.1% S
ValePort 740 Depth ±0.1% D

Seatex MRU-05 Roll, pitch, heave ±0.05◦, ±0.05◦, ±5 cm
TSS Meridian Surveyor Heading ±0.1◦

AML SVP Sound velocity ±0.1 m/s

Leica GPS1200 RTK
Horizontal positioning ±0.03 m

Vertical positioning ±0.05 m

4.2. Data Processing and Analysis

After data acquisition, data processing of circle navigation, unconstrained, quasi-stable and
constraint adjustment of the underwater control network were carried out, and the absolute coordinates
of all the underwater control points were obtained. The following describes the data processing
in detail.

(1) Circle navigation:

Circle navigation obtained the absolute 3D coordinates of the on-board transducer and the distance
from the on-board transducer to the underwater transponder. We carried out the least squares solution
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to realize acoustic ranging rendezvous and combined the depth information of pressure sensors to
get the absolute coordinates and internal coincidence accuracy of the five underwater control points,
as Table 2.

In the table, x, y, z are the absolute coordinates and σx, σy, σz are the corresponding accuracies.
σ is the internal coincidence accuracy of the point, which was calculated by:

σ =
√
(σ2

x + σ2
y + σ2

z )

Table 2. The absolute coordinates and accuracies of the five points by circle navigation.

Point x/m y/m z/m σx/m σy/m σz/m σ/m

C2 315,690.393 4,841,955.122 −40.88 0.017 0.017 0.006 0.025
C4 315,697.791 4,841,835.080 −40.13 0.011 0.011 0.005 0.016
C5 315,792.601 4,841,864.999 −40.02 0.017 0.016 0.008 0.025
C6 315,787.073 4,841,969.796 −40.6 0.017 0.016 0.007 0.024
C8 315,736.475 4,841,896.675 −40.44 0.018 0.018 0.007 0.026

(2) Unconstrained adjustment:

Two thousand six hundred twenty six underwater baselines were obtained by relative
measurement, including repeating baselines. Using the depth difference of the five control points
obtained by pressure sensors, we converted the observed slant distance to horizontal distance according
to Formula (1) and constructed observation equations like Formulas (3) and (4). Then, we used the
2D unconstrained method of Section 2 to process data and rejected unqualified baselines according to
Formula (8), in which we set the multiple k as 2. We finally obtained 1512 qualified baselines.

Figure 6 shows the effect of quality control for underwater baselines. In Figure 6A, the maximal
correction is up to about 4.5 m, which can be considered as an error. Except for a few outliers, others
points are within 0.5 m. In Figure 6B, all the baseline corrections are less than 0.015 m, indicating that
the final internal coincidence accuracy is much higher than before, and the underwater baselines have
obtained valid quality control.
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(3) Quasi-stable adjustment and constraint adjustment:

In practical measurement, the fewer the points of circle navigation, the greater the savings.
The most economical way is to measure a certain number of points, which can just meet the necessary
starting data of constraint adjustment. Here, the number is 2. In the next data processing, it is supposed
that we just obtained 2 known points from circle navigation. Then, there are 10 (C2

5) combinations.
For the 10 combinations, we carried out the following 4 methods with the qualified baselines as

observations to obtain the absolute coordinates of the remaining unknown underwater control points.
Between the four, 2DCA and 3DCA are recent approaches and 2D Quasi-stable Constraint Adjustment
(2DQCA) and 3DQCA are the proposed methods. In the four methods, the value of k was set as 3.

(1) 2DCA (2D Constraint Adjustment with depth constraint);
(2) 3DCA(3D Constraint Adjustment with depth constraint);
(3) Quasi-stable adjustment and then 2DCA (2DQCA);
(4) Quasi-stable adjustment and then 3DCA (3DQCA).

Finally, each method obtained 10 combinations, in total, 40 (4 × C2
5) sets of results. Taking the

absolute coordinates in Table 2 as the reference, respectively calculate the 3D coordinate difference
of the unknown points, and regard the difference as the external coincidence precision, as shown in
Table 3.

In Table 3, dx, dy, dz represent the external coincidence precision in the x, y, z direction, respectively.
Their units are all meters.

It can be seen from Table 3 that:

(1) In the same combination, the most absolute value of dx and dy of 2DQCA and 3DQCA is smaller
than that of 2DCA and 3DCA. Especially in some combinations, such as ‘C2 C4′ and ‘C6 C8′,
dx and dy in the two traditional methods have decimeter-level values while, in the two new
methods, the values are all within the centimeter level.

(2) The value of dz is near the four methods.
(3) The external coincidence precision in the x, y, z direction is similar for 2DQCA and 3DQCA.

This phenomenon also existed for 2DCA and 3DCA.
(4) The value of dz is the same for 2DCA and 2DQCA. That is because the means of the acquisition

of z of 2DCA and 2DQCA is the same, which only depends on pressure sensors.

Table 3 shows that in most combinations, the external coincidence precision of the new methods
is higher than the traditional ones, especially for plane coordinate precision. The precision is similar
for the two new methods, as well as for the two traditional ones.

For a more visual comparison, we respectively averaged dx, dy, dz of each unknown point for
each method and draw a line diagram as shown in Figure 7.

In Figure 7A,B, the lines of 2DCA and 3DCA almost coincide, as well as 2DQCA and 3DQCA.
The lines of new methods are nearer to the horizontal axis, which means the external coincidence
precision of the new methods is higher than the traditional for x and y direction. This is because
quasi-stable adjustment increases the compatibility of the known points’ plane coordinates with the
underwater control network shape.

In Figure 7C, the trends of four lines are similar, which reflects that the external coincidence
precision of the 4 methods is similar for the vertical direction. Among them, the lines of 2DCA and
2DQCA coincide completely. The reason has been explained above.
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Table 3. The result of 2DCA, 3DCA, 2D Quasi-stable Constraint Adjustment (2DQCA) and 3DQCA methods.

Method
Known
Points

C2/m C4/m C5/m C6/m C8/m

dx dy dz dx dy dz dx dy dz dx dy dz dx dy dz

2DCA

C2 C4 / / / / / / 0.155 −0.005 0.022 0.146 0.094 −0.060 0.084 0.039 −0.023
C2 C5 / / / −0.091 −0.051 0.016 / / / 0.110 0.046 −0.060 −0.063 −0.008 −0.023
C2 C6 / / / −0.079 −0.112 0.016 0.064 −0.087 0.022 / / / −0.054 −0.099 −0.023
C2 C8 / / / −0.049 −0.089 0.016 0.084 −0.078 0.022 0.149 0.010 −0.060 / / /
C4 C5 −0.056 0.115 −0.084 / / / / / / 0.108 0.110 −0.060 −0.032 0.109 −0.023
C4 C6 −0.117 0.019 −0.084 / / / 0.099 −0.030 0.022 / / / −0.001 0.021 −0.023
C4 C8 −0.001 0.077 −0.084 / / / 0.127 0.013 0.022 0.141 0.091 −0.060 / / /
C5 C6 −0.158 −0.012 −0.084 −0.114 −0.117 0.016 / / / / / / −0.115 −0.020 −0.023
C5 C8 −0.112 0.033 −0.084 −0.118 −0.050 0.016 / / / 0.030 0.086 −0.060 / / /
C6 C8 −0.135 −0.063 −0.084 −0.053 −0.139 0.016 0.060 −0.074 0.022 / / / / / /

3DCA

C2 C4 / / / / / / 0.155 −0.004 0.019 0.146 0.095 −0.061 0.084 0.039 −0.013
C2 C5 / / / −0.099 −0.076 0.016 / / / 0.120 0.065 −0.060 −0.048 0.012 −0.023
C2 C6 / / / −0.096 −0.119 0.013 0.052 −0.098 0.019 / / / −0.034 −0.068 −0.014
C2 C8 / / / −0.049 −0.088 0.014 0.083 −0.077 0.025 0.148 0.011 −0.063 / / /
C4 C5 −0.056 0.115 −0.087 / / / / / / 0.108 0.110 −0.061 −0.032 0.109 −0.012
C4 C6 −0.117 0.019 −0.074 / / / 0.099 −0.030 0.034 / / / −0.002 0.021 −0.001
C4 C8 −0.002 0.077 −0.081 / / / 0.127 0.013 0.025 0.141 0.091 −0.058 / / /
C5 C6 −0.158 −0.012 −0.086 −0.114 −0.117 0.013 / / / / / / −0.115 −0.021 −0.015
C5 C8 −0.112 0.033 −0.080 −0.118 −0.049 0.014 / / / 0.031 0.086 −0.063 / / /
C6 C8 −0.135 −0.063 −0.083 −0.053 −0.139 0.020 0.060 −0.073 0.023 / / / / / /

2DQCA

C2 C4 / / / / / / 0.061 −0.029 0.022 0.071 0.057 −0.060 −0.024 0.007 −0.023
C2 C5 / / / −0.057 −0.057 0.016 / / / 0.065 0.045 −0.060 −0.041 −0.017 −0.023
C2 C6 / / / −0.036 −0.065 0.016 0.082 −0.011 0.022 / / / −0.016 0.008 −0.023
C2 C8 / / / −0.047 −0.073 0.016 0.074 −0.011 0.022 0.069 0.074 −0.060 / / /
C4 C5 −0.075 0.015 −0.084 / / / / / / 0.070 0.058 −0.060 −0.023 0.007 −0.023
C4 C6 −0.057 0.023 −0.084 / / / 0.064 −0.021 0.022 / / / −0.018 0.014 −0.023
C4 C8 −0.074 0.017 −0.084 / / / 0.062 −0.026 0.022 0.072 0.061 −0.060 / / /
C5 C6 −0.054 0.041 −0.084 −0.068 −0.050 0.016 / / / / / / −0.012 0.025 −0.023
C5 C8 −0.057 0.034 −0.084 −0.067 −0.060 0.016 / / / 0.090 0.059 −0.060 / / /
C6 C8 −0.056 0.036 −0.084 −0.059 −0.058 0.016 0.070 −0.017 0.022 / / / / / /
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Table 3. Cont.

Method
Known
Points

C2/m C4/m C5/m C6/m C8/m

dx dy dz dx dy dz dx dy dz dx dy dz dx dy dz

3DQCA

C2 C4 / / / / / / 0.061 −0.029 0.022 0.071 0.057 −0.062 −0.025 0.008 −0.019
C2 C5 / / / −0.061 −0.078 0.016 / / / 0.071 0.061 −0.060 −0.022 0.008 −0.023
C2 C6 / / / −0.042 −0.070 0.013 0.079 −0.013 0.023 / / / −0.008 0.021 −0.019
C2 C8 / / / −0.047 −0.073 0.013 0.074 −0.011 0.023 0.068 0.074 −0.062 / / /
C4 C5 −0.075 0.015 −0.084 / / / / / / 0.070 0.058 −0.062 −0.023 0.006 −0.019
C4 C6 −0.057 0.023 −0.085 / / / 0.064 −0.021 0.021 / / / −0.018 0.014 −0.020
C4 C8 −0.074 0.017 −0.084 / / / 0.062 −0.026 0.022 0.071 0.061 −0.063 / / /
C5 C6 −0.055 0.041 −0.083 −0.068 −0.051 0.013 / / / / / / −0.012 0.025 −0.019
C5 C8 −0.057 0.034 −0.084 −0.067 −0.060 0.013 / / / 0.091 0.059 −0.062 / / /
C6 C8 −0.056 0.036 −0.084 −0.059 −0.058 0.012 0.070 −0.016 0.022 / / / / / /
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Finally, we calculated plane precision pplane and positional precision ppoint of each unknown point
by the following formula:

pplane =
√

dx2 + dy2

ppoint =
√

dx2 + dy2 + dz2

Then, average the plane and positional precision of the unknown points in the four methods
respectively to get their average plane and positional precision. For example, 2DCA got 30 (3 × C2

5)
unknown points in total (includes repeating points, that is, all combinations of 2DCA obtained 6 sets
of coordinates for each point), we first calculated the plane and positional precision of each point and
then averaged them. We also calculated other statistical data, shown in Table 4.

Table 4. The statistical data of the four methods.

2DCA 3DCA 2DQCA 3DQCA

average plane precision/m 0.120 0.120 0.069 0.070
maximal plane precision/m 0.174 0.174 0.108 0.108
minimal plane precision/m 0.021 0.021 0.018 0.022

standard deviation of plane precision/m 0.033 0.035 0.024 0.025
average positional precision/m 0.130 0.129 0.084 0.083
maximal positional precision/m 0.184 0.184 0.125 0.124
minimal positional precision/m 0.031 0.021 0.030 0.029

standard deviation of positional precision/m 0.034 0.038 0.031 0.029

It can be seen that the average plane and positional precision of 2DCA and 3DCA are almost same,
as well as 2DQCA and 3DQCA. The precision of the new methods is higher than that of the traditional
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ones. As for the standard deviation of plane and positional precision, the value of 2DQCA and 3DQCA
is smaller than that of 2DCA and 3DCA, which means the new methods have better robustness.

5. Discussion

It has been verified that the precision and the robustness of the proposed methods are better
than those of the traditional by the above experiments. In the following, some details about the
unconstrained adjustment are discussed. The reason why the positional precision of 2DQCA and
3DQCA is close was analyzed.

5.1. The Significance of Unconstrained Adjustment

In the experiment, the quality of observed baselines in quasi-stable and constraint adjustment has
been controlled by unconstrained adjustment. However, quasi-stable and constraint adjustment also
have steps for baseline quality control, like Equation (7).

To verify the necessity of unconstrained adjustment, we chose C2 and C4 as known points to
carry out the 2DQCA without unconstrained adjustment. The results were compared with those of
normal 2DQCA with the same known points, shown in Table 5.

Table 5. The impact of unconstrained adjustment on 2DQCA.

External Coincidence Precision C5 C6 C8

2DQCA

dx/m 0.061 0.071 −0.024
dy/m −0.029 0.057 0.007
dz/m −0.022 0.060 0.023

positional/m 0.071 0.109 0.034

2DQCA without
unconstrained adjustment

dx/m 0.134 0.160 0.055
dy/m −0.018 0.070 0.032
dz/m −0.022 0.060 0.023

positional/m 0.137 0.184 0.068

In Table 5, the external coincidence precision of the x, y direction and positional precision of
2DCQA are higher than those of 2DQCA without unconstrained adjustment, which shows that
unconstrained adjustment is indispensable in the localization of the underwater control network.

In method 2DQCA, constraint adjustment only eliminated three baselines, and in 2DQCA
without unconstrained adjustment, constraint adjustment only eliminated 53 baselines, while
unconstrained adjustment eliminated 1114 baselines. Therefore, quality control is mainly dependent
on unconstrained adjustment.

5.2. Setting of the k Value

Since unconstrained adjustment is necessary, then the quality control threshold should be
appropriately set. When we tried different multiple k in Equation (8), we found that the change
of the filter ratio (the percentage of eliminated baselines in all the baselines) and the unit weight error
of the underwater network had a trend, as shown in Figure 8.

It can be seen from Figure 8A,B that:

(1) In Figure 8A, when k < 1.4, the filter ratio is almost up to 100%. When 1.4 < k < 4.4, with the
increase of multiple k, the filter ratio decreases. When k > 4.4, filter ratio tends to be constant,
near 0%.

(2) In Figure 8B, when k < 1.4, the unit weight error is almost down to zero. When 1.4 < k < 3.8,
the unit weight error increases with the increase of k. When k > 3.8, the unit weight error tends to
be constant, near 0.1 m.

According to Figure 8A,B, we can find two points:
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(1) The filter ratio reflects the number of eliminated baselines. When k < 1.4, almost all the baselines
were eliminated, and when k > 4.4, almost no baselines were eliminated. These two cases are
inadvisable. To obtain enough and reliable baselines, we should choose a k value between 1.4
and 4.4.

(2) The unit weight error reflects the inner coincidence accuracy of the underwater control network.
The smaller the error is, the better the localization accuracy is. To obtain good inner coincidence
accuracy, we should make the k value as small as possible.Sensors 2018, 18, x FOR PEER REVIEW  15 of 18 
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Figure 8. The change of filter ratio (A), unit weight error (B) and influence factor (C) with different
multiple k. The red lines represent the change points, and the numbers below the lines represent the
corresponding k value of the points. The area in the red box has the largest change in the curve. (A) The
abscissa axis represents the value of k, and the vertical axis represents the filter ratio. (B) The abscissa
axis represents the value of k, and the vertical axis represents the unit weight error of the underwater
network. (C) The abscissa axis represents the value of k, and the vertical axis represents the influence
factor, which equals the filter ratio multiplied by the unit weight error.

When k < 1.4, the unit weight error was almost down to zero, but almost all the baselines were
eliminated, which would lead to low reliability. Therefore, we should find a balance between unit the
weight error and filter ratio, that is we require that baselines have not only high reliability, but also
good inner coincidence accuracy.

To consider both factors above and try to find a suitable k, we tried to cross and magnify the
influence of the two factors, and obtained the formula below.

influence factor = filter ratio × unit weight error

The higher the influence factor is, the more appropriate k is. We defined the influence factor as
judgment criteria, and drew its change with the increase of k, as shown in Figure 8C.

It can be seen in Figure 8C that when k = 2.2, the influence factor is the peak. Because k is generally
3, 2 or 1 [25,26], we chose two as the value of k in the experiment.
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In practical applications, we can just calculate the influence factor when k = 3, 2 or 1 and select the
k that has the highest influence factor as the final value.

5.3. The Reason for the Close Positional Precision of 2DQCA and 3DQCA

In Tables 3 and 4, we found that the positional precision of 2DQCA and 3DQCA is close, which is
the same for 2DCA and 3DCA.

The difference of 2DQCA and 3DQCA is that 2DQCA takes 2DCA as the constraint adjustment,
while 3DQCA takes 3DCA as the constraint adjustment. Therefore, the reason why the positional
precision of 2DQCA and 3DQCA is close is the same reason why the positional precision of 2DCA and
3DCA is close. We analyze 2DCA and 3DCA below.

3DCA regards depth as observations with error and combines it and baselines to form the error
equation group [22]. 2DCA considers the error of depth to be zero and uses it to convert slant distance
to plane distance, as Equation (1) [22].

Using the total differentiation method for Equation (1), we obtain the plane distance error ds:

ds =
l

s0 dl − z
s0 dz, s0 =

√
l2 − z2 (9)

In the formula, l and z are the observed slant distance and depth difference between the two
points. dl and dz are the errors of l and z. s0 is the corresponding plane distance.

Supposing l and z are not related, make G =
[

l
s0

−z
s0

]
, σ2 =

[
σ2

l 0
0 σ2

z

]
. σl , σz are the

mean square errors of slant distance and depth difference, respectively. Then, the variance of plane
distance is:

σ2
s = Gσ2GT = ( l

s0 )
2
σ2

l + ( z
s0 )

2σ2
z = (s0)

2
+ z2

(s0)
2 σ2

l + ( z
s0 )

2σ2
z

= σ2
l + ( z

s0 )
2(σ2

l + σ2
z )

(10)

In Equation (10), σs is the baseline error of 2DCA, which is also the observation error. σl is the
baseline error of 3DCA. ( z

s0 )
2(σ2

l + σ2
z ) is the naturalization error.

In Table 2, it can be seen that the depth difference z among the five points is small, 0.438 m on
average, while plane distance is not small, 102.083 m on average. Then, in Equation (10), the average
of ( z

s0 )
2 can be 1.8 × 10−5. In addition, it can be seen from the previous content that σl and σz are just

centimeter-level. Therefore, the naturalization error in the experiment is so small that it can be thought
that σ2

s ≈ σ2
l .

2DCA distributes baseline error σs and plane coordinates error of known points to plane
coordinates of unknown points, while 3DCA distributes baseline error σl , depth error σz and 3D
coordinates error of known points to 3D coordinates of unknown points. Because pressure sensors have
high precision, depth error σz is small. Therefore, the errors in 2DCA and 3DCA are approximately
equal, and the positional precision of 2DCA and 3DCA is close, which is the same for 2DQCA
and 3DQCA.

6. Conclusions and Suggestions

The proposed method, localization of underwater control network based on quasi-stable
adjustment, realizes the high-accuracy positioning of underwater control points. Compared with
the traditional positioning methods, such as 2D Constraint Adjustment (2DCA) and 3D Constraint
Adjustment (3DCA), the proposed method has good performances in high-precision and stable
solutions and low restriction for the precision of known points. These conclusions have been verified
by experiments. In Songhua Lake, the proposed method eliminated 42% of baselines and ensured
the baseline correction within 0.015 m in the unconstrained adjustment, as well as achieved mean
positional precision of 0.08 m, which improved by 38% compared with the traditional adjustment
(2DCA or 3DCA).



Sensors 2018, 18, 950 17 of 18

The experiment data were obtained in Songhua Lake, which had a calm water surface during
the experiment. Therefore, the depth data provided by pressure sensors are regarded as known in the
proposed 2DQCA. If the measurement is carried out in the sea, it is recommended that the tidal effect
be considered to ensure the acquisition of accurate depth.

The proposed method will play a great role when the coordinates of known points in underwater
control networks are not precise enough. However, the proposed method was just tested in a lake.
Therefore, we are going to carry out the further experiments in deeper water. Furthermore, the reason
for the low precision of absolute measurement is that the error of baselines from the transducer to the
transponder is large. Therefore, we will also focus on how to reduce the baseline error in the next work.
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