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Abstract: In water-quality, early warning systems and qualitative detection of contaminants are
always challenging. There are a number of parameters that need to be measured which are not entirely
linearly related to pollutant concentrations. Besides the complex correlations between variable water
parameters that need to be analyzed also impairs the accuracy of quantitative detection. In aspects
of these problems, the application of least-squares support vector machines (LS-SVM) is used to
evaluate the water contamination and various conventional water quality sensors quantitatively.
The various contaminations may cause different correlative responses of sensors, and also the degree
of response is related to the concentration of the injected contaminant. Therefore to enhance the
reliability and accuracy of water contamination detection a new method is proposed. In this method,
a new relative response parameter is introduced to calculate the differences between water quality
parameters and their baselines. A variety of regression models has been examined, as result of its high
performance, the regression model based on genetic algorithm (GA) is combined with LS-SVM. In this
paper, the practical application of the proposed method is considered, controlled experiments are
designed, and data is collected from the experimental setup. The measured data is applied to analyze
the water contamination concentration. The evaluation of results validated that the LS-SVM model
can adapt to the local nonlinear variations between water quality parameters and contamination
concentration with the excellent generalization ability and accuracy. The validity of the proposed
approach in concentration evaluation for potassium ferricyanide is proven to be more than 0.5 mg/L
in water distribution systems.

Keywords: water quality early warning; quantitative evaluation; LS-SVM; conventional
water-quality sensors

1. Introduction

With the progress of urbanization, there are increasing management problems concerning the
pollution of water bodies or drinking water, which troubles many countries, especially developing ones.
The idea of establishing an early warning system (EWS) to make the water supply system more robust
against contamination events has been highlighted. In 2005, the United States Environmental Protection
Agency (USEPA) introduced a framework for integrating early warning systems into water distribution
systems to monitor, analyze, interpret and communicate data, which can protect public health [1].
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Subsequently, numerous studies has been performed on water quality early warning technologies all
over the world, including water quality sensor technologies, event detection algorithms, hydrological
models, and decision-making systems (DSS) [2,3]. Establishing an early warning system has been
recognized as an effective means of: (1) avoiding or reducing the impact of water contamination events;
and (2) protecting water sources and ensuring the safety of drinking water [4].

In the past few years, a number of researchers have discussed the various contamination detection
techniques. In EWS, the detection module plays a significant part to adopt online sensors to monitor
water quality and detect contamination. The online conventional water quality sensor techniques of
water events detection are mainly divided into three categories, artificial intelligence (AI), statistical
approach, and data mining method [5] respectively. Relying on a fixed-length moving time window as
well as a single water-quality parameter, the time series prediction makes statistical methods potentially
inefficient in tracking the water quality data trends [6–8]. In terms of AI methods, they include
support vector machines (SVM), regression trees, ensemble methods, Bayesian analysis and artificial
neural networks (ANN), which are aimed at water quality data classification [5,7,9]. For example,
Bucak and Kalik [10], and Bouamar and Ladjal [11] used SVM and ANN to classify water quality
data into two classes: normal and anomalous. As for data mining, it is used to protect drinking
water systems by combining various sensors measurement values and location information [6,8].
Moreover, for improving the detection of water-contamination events, data-fusion methods have
been introduced. They can piece various types of information together, such as operational data [12],
additional station-specific features [9], and data from multiple monitoring stations [13]. In 2005,
Hall et al. [14] demonstrated that it is possible to detect changes in water-quality parameters by using
real or near real-time sensors. Empirical evidence proves that conventional water quality indicators,
including pH, conductivity, total nitrogen, free chlorine, and total organic carbon (TOC), are sensitive
parameters of contaminants such as arsenic trioxide, nicotine, and Escherichia coli. Accordingly,
the method of anomaly-based water-contamination event detection has gradually drawn the attention
of many researchers. Besides conventional water quality indicators, various sensing technologies are
used for vulnerability reliably of groundwater, river or water reservoir [15–17]. Among them, the
biological stimulation technology, represented by the electronic tongue, has developed rapidly in
recent years [18,19].

In addition to event detection and qualitative analysis, the quantitative evaluation of contaminant
concentrations another critical part of water quality analysis and early warning, which plays
an important role in contamination incident evaluation, pollution tracing, and source tracking.
It involves a visual assessment of the degree of water pollution. Nevertheless, the existing quantitative
evaluation method requires a lot of chemical analyses in a laboratory environment, which is time and
resource consuming.

In recent years, quantitative characteristics of water parameters were widely investigated. Some
studies have identified the quantitative characteristics of sensor responses by using hydrodynamic
models and multifactorial data analysis technologies comprehensively. In a study by Yang et al. [20],
a modified one-dimensional Danckwerts convection–dispersion–reaction model has numerically
explained the observed chlorine residual loss for a “slug” of reactive contaminants which are
instantaneously introduced into a drinking water pipe with wall demand that is assumed to be
absent or negligible. The research results demonstrated that the change in water quality indicators
occurs immediately after the injection of contaminant and becomes steady around the crest value.
Meanwhile, it confirmed a linear relationship between water quality parameters and contaminants.
In addition, by hydrodynamic models and time-frequency methods, Feng et al. [21] studied the
relationship between contaminant concentration and variation of free chlorine. This model-based
algorithm relies on a real-time hydraulic and water quality model to estimate water quality signature
for comparing it with sensing water quality signals. Although, there are still gaps in the quantitative
study of contaminant concentration online, the quantitative evaluation with conventional online
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sensors, compared with time-consuming and expensive off-line chemical analysis in the laboratory,
is more suitable for sudden pollutant incident.

Based on the least squares support vector machine (LS-SVM), a method for evaluating contaminant
concentration quantitatively using different types of conventional water quality sensors for drinking
water is described in this paper. The proposed method aims to quantitatively determine contaminant
concentrations by exploring two attributes of responses from multiple sensors. One is the correlative
relationship between responses from multiple sensors and different concentrations of the experimental
contaminant; the other is the change value of water quality parameters relative to the baseline value
caused by different contaminant concentrations. The proposed method is tested using online data from
contaminant-dosing experiments in a laboratory. Thereafter, results of the method and problems caused
by disturbance of water quality parameters and equipment are discussed. In this paper, the method is
tested by online data from contaminant-dosing experiments in the laboratory. Afterwards, results of the
method and problems triggered by equipment and water quality parameter disturbances are discussed.

2. Methodology

Figure 1 shows the algorithm flowchart in this paper. There are two steps: firstly trained by
the data from online, the sensitive parameters are extracted off-line, then an on-line characteristic
calculation is conducted to establish the LS-SVM regression model, consequently, draw the evaluation
of contaminants.

Figure 1. Schematic of a method for quantitative analysis of contaminant concentration using LS-SVM.

2.1. Least-Squares Support Vector Machines (LS-SVM)

SVM and Support Vector Regression (SVR) have been successfully used in hydraulic engineering
issues such as wastewater quality indicator prediction [22], water quality management [23], rainfall-runoff
modeling in urban drainage [24], flood stage forecasting [25], monthly streamflow forecasting [26],
and prediction of air entrainment rate as well as aeration efficiency of weirs [27]. Liu et al. [28] adopted
SVR with GA optimization to predict aquaculture water quality, which to some extent weakened the impact
brought by the nonlinearity and non-stationarity of water quality indicator series. The generalization
performance between SVR and ANN was compared by Behzad et al. [29] to predict one-day lead stream
flow, which proved SVM was more effective for water resources management.

Vapnik [30] introduced a reliable solution for classifying and recognizing patterns. As an extension
of SVM, LS-SVM tends to calculate the loss function with the linear least-squares criteria [31]. It is
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supposed that a set of data {xi, yi}, i = 1, 2, . . . , n exist, with input data xi and corresponding target yi.
In the LS-SVM model, the error ξi quadratic norm presents the loss function of LS-SVM. Optimization
problem can be reflected as below:

min J
w,b,ξ

(w, ξ) =
1
2

wTw + γ
1
2

n

∑
i=1

ξi
2, (1)

under the equality constraints:

yi = wTφ(xi) + b + ξi
2, i = 1, . . . n. (2)

the model of LSSVM is expressed as below:

f (x) = wTφ(x) + b, (3)

where 1
2 wTw means a flatness measurement function, J denotes the objective function, ξi =

αi
γ refers

to the error variable; γ stands for a punishment influential factor of the tradeoff between the model
flatness and the training error, and the nonlinear mapping φ depicts inputting data to a space with
high-dimensional characteristics, in which a linear regression problem can be solved and obtained;
in addition, b is the bias; w presents a weight vector of dimension similar to the feature space.

Thus, L is presented as:

L(w, b, ξ, α) =
1
2

wTw + γ
1
2

n

∑
i=1

ξi
2 −

n

∑
i=1

αi(ξi − yi + wTφ(xi) + b), (4)

where αi refers to the Lagrange multiplier, leading to the Karush–Kuhn–Tucker conditions for
optimality as below: 

∂L
∂w = 0→ w =

n
∑

i=1
αiφ(xi)

∂L
∂b = 0→

n
∑

i=1
αi = 0

∂L
∂ξi

= 0→ αi = γξi

∂L
∂αi

= 0→ wTφ(xi) + b + ξi − yi = 0

i = 1, . . . n. (5)

When variables w and ξi are eliminated, transforming the optimization problem into the linear
solution as below: [

0 QT

Q K + C−1 I

][
b
A

]
=

[
0
Y

]
, (6)

where Q = [1, 1, . . . , 1]T , A = [α1, α2, . . . , αm]
T , and Y = [y1, y2, . . . , ym]

T .
Based on the Mercer’s condition, it is feasible to set the Kernel function as below:

K(xi, xj) = φ(xi)
T · φ(xj). (7)

The resulting LSSVM model used in function estimation is:

f (x) =
n

∑
i=1

αiK(xj, xi) + b. (8)

The Mercer kernel function K(xi,yi) has several different types, such as sigmoid, polynomial,
and radial basis function (RBF). RBF is a common option for the kernel function because of an excellent
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overall performance and fewer parameters required [32]. Therefore, this study took RBF as the kernel
function, which is expressed as follows:

K(xi, xj) = exp

{
−‖xj − xi‖2

2σ2

}
. (9)

Consequently, it is necessary to choose two parameters from the LS-SVM model: and the
punishment factor γ and the bandwidth of the Gaussian RBF kernel σ. The bandwidth of the Gaussian
RBF kernel controls the complexity of the final solution. The punishment factor is to adjust the
equilibrium relationship between empirical risk and the regularization part, thus determining the
penalty to the error square. The selection of very small γ or very large σ lead to underfitting of the
regression machine. Conversely, overfitting may occur in the process of regression, decreasing the
generalization of the regression.

2.2. Quantitative Evaluation of Known Contaminant by LSSVM

The application of LSSVM weakens the influence caused by the local nonlinearity of parameters as
well as the disturbance of water environment, resulting in the realization of the quantitative evaluation.
Descriptions of the method are as below.

2.2.1. Procedure for Quantitative Evaluation of Known Contaminant

Different contaminants may cause different sensor responses, which can be used as inputs for
a regression model. To establish the LS-SVM regression model, its inputs should be determined,
including the parameter types of inputs and input values. Both are calculated by multiple
water-quality parameters and related data in offline situations; thus, the LS-SVM regression model
can achieve sensitive parameter extraction and establish an input matrix. In modeling, parameter
optimization should be conducted by four different optimization methods to obtain the best regression
performance. All of the previously mentioned details are part of the offline section to prepare for the
online evaluation.

In the online part, based on the detection value of online monitoring instruments and the
LS-SVM regression model for the known contaminant, the baseline value and characteristic value are
calculated in real time. Then, the LS-SVM regression model is tested to evaluate the given contaminant
concentration in drinking water, and different regression models with different input dimensions are
compared. Figure 1 shows the algorithm flowchart of the given contaminant concentration evaluation
based on LS-SVM. Each regression model for a designated pollutant in the regression model library is
individually established.

2.2.2. Sensitive Parameter Extraction

Firstly, the concept of relative response value to calculate the differences between water quality
parameters and their baselines was introduced. Then, the change of the water quality parameters was
taken as the result of contaminant introduction, which can be applied in analyzing the contaminant
concentration quantitatively. Through the utilization of the maximum value of each sensor response
data from one experiment, the relative response value of each parameter in the training set can be
calculated by. Afterwards, the baseline value is subtracted before introducing the contaminant.

However, incomplete time sequence values of water event make offline data processing infeasible
in this application background. A traditional time-series forecasting method known as moving average
can determine the baseline value of each water quality parameter before contaminant introduction.
The window size value is set as 30, an empirical value. The length of the sliding window is set to
ensure the time sequence in the partition window contains characteristic information as much as
possible, and the data quantity can be controlled effectively to avoid high computational complexity.
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The relative response values in each contaminant introduction are used to calculate the Pearson
correlation coefficients for each sensor with potassium ferricyanide concentration. The Pearson
correlation coefficient is used to measure the correlation between two variables X and Y, the value
varies between −1 and 1. The closer the absolute values of the Pearson correlation coefficients of the
two variables are to 1, the more linear they are with each other. If the Pearson correlation coefficient is
small, the corresponding water quality parameter should be disposed of. According to the previous
study [33], the threshold of such coefficient is chosen as 0.35 in this paper. The empirical value may
affect the dimensions of the input, which will be discussed in this paper.

2.2.3. Parameter Optimization

LS-SVM is believed to be very effective in forecasting regression. Especially it can determine the
values of the punishment factor γ and the bandwidth of the Gaussian RBF kernel σ by applying proper
metaheuristic algorithms. However, there is no unified method of optimizing the LSSVM parameters.
The main idea is to set γ and σ in certain ranges, using leave-one-out cross validation [34] or K-fold
cross validation [35] to obtain the accuracy of regression modeling with the training set and selected γ

and σ. Finally, γ and σ are chosen as model parameters for achieving the best regression performance.
In the simple LS-SVM algorithm, γ is 1 and σ = 1/l, where l represents the dimensionality of the input
training data.

LS-SVMLab v1.7 is a Matlab toolbox for LSSVM developed by De Brabanter et al. [36], which is
used for optimizing LS-SVM algorithm in this study. In this version, the parameters are tuned in two
phases. First, based on certain criteria, suitable parameters will be confirmed by a global state-of-the-art
optimized technique, combined with motivated annealing (CSA) [37]. It has been proved that
compared with multi-start gradient descent optimization, CSA is more efficient [38]. Due to the
reduction in the sensitivity of the algorithm to the initialization parameters, efficiency improvement in
optimization can be achieved, and maintain the quasi-optimal running of the optimization process [39].
By default, CSA applies five multiple starters [40]. Second, a second optimization procedure is used
to these parameters for performing a fine tuning step. Optimization algorithms such as simplex,
particle swarm optimization (PSO) grid search (GS), and genetic algorithm (GA) are introduced to
obtain the best punishment factor and kernel bandwidth in the second optimization procedure. Thus,
the LS-SVM regression modeling is conducted to compae the results.

The difference between the real output of the model and the expected output (concentration
at sensors of solution mixed with drinking water and original configured contaminant solution in
a laboratory) has been taken as the error, for measuring the predicting accuracy of LSSVM model,
the outputs are represented in separate ways. The uncertainty of future predictions was estimated with
the root-mean-square error of prediction (RMSEP) (Equation (10)) and squared correlation coefficient
(r2) (Equation (11)):

RMSEP =

√√√√√∑
i

(
yi −

∧
yi

)2

I
, (10)

r2 =

(
I∑

i
yi ·

∧
yi −∑

i
yi ·∑

i

∧
yi

)2

(
I∑

i

∧
yi

2 −
(

∑
i

∧
yi

)2
)
·
(

I∑
i

y2
i −

(
∑
i

yi

)2
) , (11)

In Equations (10) and (11), I stands for the number of testing samples,
∧
yi refers to the

predicted value of contaminant concentration estimated by the regression analysis method mentioned
previously, and yi is the true concentration of the contaminant to which the conventional water-quality
sensors respond.
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3. Experiments Methodology

3.1. Experimental Design

Contaminant injection in water, transport, monitoring, and detection testing was conducted in an
experimental water-distribution system (Figures 2 and 3). The water quality indicators are obtained in
this experimental device including residual chlorine, total chlorine, chloride, oxidation-reduction
potential (ORP), total organic carbon (TOC), PH, nitrate-nitrogen, ammonia nitrogen, turbidity,
temperature, conductivity, chemical oxygen demand (COD) and dissolved oxygen (DO), etc.

Figure 2. Experimental setup of a small-scale distribution pipe device. PLC: programmable logic
controller. Water quality can be monitored at points A, B, C, and D.

Figure 3. Pipeline distribution control system.
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The experimental water system contains a ductile iron water-distribution pipe with a length
of 50 m and an internal diameter of 20 mm. Besides, the system is composed of a programmable
logic controller (PLC), contaminant monitoring points, contaminant injection point, solenoid valve,
contaminant solution tank, and one tap-water tank. The PLC is to control the contaminant solution
into the pipe and the flow rates of tap water. There are two contaminant injection methods: namely,
injection through a contaminant injection point and using a contaminant solution tank for injection.
The first method was applied to simulate a real pollution incident and obtain a training set because it
provided a relatively stable intensity of an injection by setting the mixing proportion with tap water.

At the beginning of the whole experiment, tap water, whose flow can be controlled by valve,
was run through the experimental pipe for at least 60 min to ensure that the system worked normally.
The contaminant solutions of potassium ferricyanide were prepared with different concentrations
separately. Before each injection, the experimental system had kept running for at least 25 min to
establish a baseline. Thereafter, the contaminant solution with different concentrations was individually
injected into the pipe of tap water at the contaminant injection point. Subsequently, the changes of
water quality were measured from the injection port at downstream stations. The frequency of
water-quality sampling at monitoring point D was measured every minute with the sensors listed
in Table 1.

Table 1. Characterization of drinking water in current study.

Parameter Concentration Parameter Concentration

Temperature 14.0 ◦C pH 6.77
DO 6.950 mg L−1 Turbidity 0.026 NTU

COD 5.763 mg L−1 TOC 12.512 mg L−1

Conductivity 0.914 µs/cm NH3-N 2.890 mg L−1

NO3-N 1.624 mg L−1 Residual chlorine 0.029 mg L−1

The experiments are mostly composed of two parts: establishing the training set and obtaining
the water quality data with pollution events. According to experimental test results before the training,
upper and lower limits of contamination concentrations can be roughly acquired when all water
quality sensors work effectively. The concentration gradient ∆ of the training set is determined by the
sample amount. The detection values of each water quality parameter can be recorded depending on
the equal intervals of contaminant concentration. In addition, the detection values of drinking water
are recorded as a baseline. Three experiments were conducted for each contamination sample with
different specified concentrations to obtain the original water parameters of the training set. The even
data will cover the normal data to form the original water parameters of the test set.

In addition, mimicking a pollution event in a distribution system is complicated because of
difficulty in environmental monitoring and safety. Therefore, experiments and simulations are used
to solve the problem. The experiment structure is composed of event data detection and normal
data detection. Through a simulated water pollution event, contaminant concentration in water is
obtained with a given time interval. Moreover, based on chemical experiments, the pollution condition
is reproduced and the detection of relative water quality parameters is performed. Also, the detection
is conducted in the distribution system with the same time interval. The former data are called event
data and the latter are called normal data. Finally, the normal data are overlaid with the event data to
form the original water parameters of the test set.

When operating in a single-pass contaminant mode, the contaminant solution is pumped by
a peristaltic pump to a pipe that is connected to the tank and the sensor. According to the current tap
water flow, mixed proportion of tap water, and contaminant solution set in the upper computer, PLC
controls the injection flow of the contaminant solution. The mixing ratio is set at 0.5%, which allows
the injection of 500 mL contaminant solution to be sustained for approximately 20 min.
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In the regression process, the real concentration of contaminant solution, which flows through
online water quality sensors and then directly into a designated sewage treatment pool, is the calculated
value of the initial injected contaminant concentration mixed with tap water by the setting ratio. After
the injection of contaminant solution, the pipeline still has running water, so that the sensor responses
revert to the baseline level.

3.2. Contaminants Investigated

Specific quantities of different contaminants were injected into the system. According to supplements
and contrasts from previous studies by Yang et al. [40] and Hall et al. [41], the correlative response of
sensors for five inorganic compounds and one organic compound selected in the present study is listed
in Table 2.

Table 2. The responding sensors to various contaminants.

Contaminant

Responding Sensors

Hall et al. [41] Yang et al. [40] Current Study

Sensor Array Sensor Array Sensor Array

A, B, D, E, G, H, I A, B, C, D, F A, E, F, G, H, I, J, K, L, M

Drinking Water Drinking Water Drinking Water

Aldicarb A, B, D, E, I A, B, C, D
Arsenic trioxide A, B, D, G, H, I

Colchicine A, B, C, D
Dicamba D, F

E. coli A, B, E, H, I A, B, C, D, F
Glyphosate A, C, D, E A, B, C, D, F
Malathion A, D, E, I

Mercuric chloride A, C, D, F
Nicotine A, B, D, E, G, H A, B, D, F

Nutrient broth A, B, C, D
Terrific broth A, B, D, E, I A, B, D, F

Typtic soy broth A, B, C, D
Ammonium citrate H, K

Cupric sulfate A, E, L
Potassium
biphthalate E, G, H, L

Potassium
ferricyanide B, C, D A, E, G, H, L

Sodium nitrite E, H, L
Urea E, H

Note: A—residual chlorine; B—total chlorine; C—chloride; D—ORP; E—TOC; F—pH; G—nitrate-nitrogen;
H—ammonia-nitrogen; I—turbidity; J—temperature; K—conductivity; L—COD; M—DO.

Based on the survey of water pollution events in the water supply systems of Chinese urban area
for the past two decades, the contaminants were confirmed. These contaminants consist of three kinds
of pollutants that are the most common in agricultural use (urea), chemical industry use (sodium
nitrite aldicarb, and potassium biphthalate), and heavy metals (cupric sulfate). The selection of them
was consistent with the national standards of China concerning drinking water quality in GB3838-2002.

Table 2 summarizes the different responding sensors for injections of different contaminants.
Other studies have revealed a similar phenomenon. In 2007, Hall et al. [40] reported the influence
of nine different contaminants on conventional water quality parameters through analysis based on
experiments; the report also proved that particular pollutants could be reflected by water-quality
monitoring indicators. Szabo et al. [42] utilized a single-pass pipe to simulate a drinking-water
distribution system for a study between contaminants and water quality parameters, in which similar
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results were obtained. In 2009, Yang et al. [40] conducted a sensor response experiment for 11 types of
contaminants and observed more than one sensor responding to each tested contaminant.

As shown in Table 2, differently tested contaminations may cause different correlative responses
of sensors. And the degree of the aforementioned response base value is employed to establish an
LS-SVM regression model, which can be used to evaluate the same contaminant with an unknown
concentration in water distribution system. The studies mentioned verified the assumption of the
proposed method.

Potassium ferricyanide is used to explain the quantitative evaluation method presented in this study
with online sensors. It is primarily used in manufacturing, paints, inks, pigments, pharmaceuticals and
food additives. The main toxic effect on human is kidney damage. The sample concentration gradient
depends on the sample amount and the detection range of the online water-quality sensor.

4. Results and Discussions

4.1. Correlative Responses

As an example, Figure 4 shows the experiment results associated with potassium ferricyanide.
Throughout the experiment, potassium ferricyanide solutions with concentrations of 1.0 mg L−1,
2.0 mg L−1, 4.0 mg L−1, and 8.0 mg L−1 were tested in turn. The concentrations are at the sensors,
and are not the initial injected contaminant concentration via the peristaltic pump. This condition is
indicated by solid green bars at the top of Figure 4. In the figure, COD, NO3-N, TOC, and residual
chlorine increase because of the presence of potassium ferricyanide. In addition, the response of
residual chlorine is relatively slow but stable; however, random fluctuations still occur in the stable
state of the other three indicators. When the concentration of potassium ferricyanide at the sensors is
greater than 1.0 mg/L, the numerical value of NH3-N relative to the background also has an obvious
upward trend. However, when the contaminant concentration is 1.0 mg/L or 0.5 mg/L or even less,
the numerical value of the NH3-N is irregular, which shows the easily variable characteristic of water
quality parameters. Sensor responses show correlative relationships, especially for COD, NO3-N,
TOC, and residual chlorine, as well as reflect the response degree because of the induction of different
contaminant concentrations.

Figure 4. Sensor responses for potassium ferricyanide (concentrations: 1.0, 2.0, 4.0, and 8.0 mg L−1).

Obviously, the response amplitudes of sensors are related to the contaminant concentrations.
This fact suggests that correlative response and response amplitude are caused by the introduction
of different contaminant concentrations and implies that this type of phenomenon can be utilized
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for quantitative evaluation of contaminants. In order to justify the feasibility and applicability of
the proposed method, offline experiments of potassium ferricyanide were conducted before online
potassium ferricyanide injection experiments. Although types and detection methods of water
quality sensors used in offline experiments are different from those of online ones, the correlative
responses of pH, conductivity, residual chlorine, total chlorine, and NH3-N are also presented in the
offline experiments of potassium ferricyanide. The responses of sensors are similar to the case of
online experiments, which indicates that the proposed approach can also be utilized for quantitative
evaluation in offline cases. By comparing with results from other types of contaminants, the response
curves are clearly contaminant-specific. Obviously, obtaining parameters that will change with the
contaminant concentration is necessary, while the others are disposed of. In other words, sensitive
parameter extraction is needed to determine the input parameters of the regression model.

4.2. Sensitive Parameter Extraction

Because the detection upper bound of NO3-N is 2.0 mg/L, the maximum concentration of
potassium ferricyanide in the training set is 18 mg/L. In Figure 4, with the change in contaminant
concentration, the change values relative to the baseline values of the water quality sensors are
different. The change values of water quality parameters can be considered as the result of contaminant
introduction and can be used for the quantitative analysis of contaminant concentration. The concept of
relative response value was introduced to calculate the differences between water quality parameters
and their baselines. Ideally, the maximum response value should be stable and completely caused
by contaminant introduction, and not the superposition caused by water quality noise. For example,
after the introduction of 1 mg/L and 8 mg/L potassium ferricyanide, significant single-point mutation
noises appear in the TOC response data (Figure 4). The maximum response value of NO3-N occurs at
the end of the response time, while no ideal stationary change appears in the response values of COD
and NH3-N. Table 3 presents the relative response values of eight water quality parameters caused by
potassium ferricyanide introductions with different concentrations. Other data processing methods for
baseline values of water quality sensors are discussed in a later part of this paper.

The Pearson correlation coefficients for each sensor with potassium ferricyanide concentrations are
calculated (Table 3). In the table, the calculated Pearson correlation coefficients are 0.0746 (conductivity),
0.0886 (turbidity), 0.0533 (DO), 0.3748 (COD), 0.6080 (TOC), 0.7690 (NH3-N), 0.7541 (NO3-N), and
0.9997 (residual chlorine). In the regression model process of potassium ferricyanide, COD, TOC,
NH3-N, NO3-N, and residual chlorine are chosen as the model inputs according to the description in
Section 2.2.3.

Table 3. Relative responding values and Pearson correlation coefficients (potassium ferricyanide,
the 1st experiment).

Concentration Conductivity Turbidity DO COD TOC NH3-N NO3-N Residual Chlorine
(mg/L) (us/cm) (NTU) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

1 −0.0305 0.00605 0.1145 0.11745 0.9335 −0.01 0.17185 0.1079
2 0.0009 0.00145 0.0415 0.12455 0.34565 0.2585 0.2684 0.261
4 0.0054 0.0035 0.0435 0.15275 0.6108 0.206 0.3177 0.557
6 −0.0058 0.0453 1.8745 0.2379 1.4498 0.3015 0.43915 0.824
8 0.0042 0.00425 0.064 0.176 2.06445 0.434 0.4661 1.1901
10 −0.04935 0.0581 1.1555 0.2599 2.36995 1.144 0.6202 1.44925
12 −0.06145 0.04615 2.329 0.6237 5.697 1.4025 0.631 1.77785
14 −0.0201 0.00005 −0.033 0.1799 2.31015 0.6875 0.71585 2.0392
16 0.01085 0.00585 −0.039 0.1869 2.25225 0.758 0.7045 2.40075
18 0.0139 0.00915 0.0755 0.25265 2.5757 3.0615 0.40465 2.64495
rxy 0.0746 0.0886 0.0533 0.3748 0.6080 0.7690 0.7541 0.9997

Note: rxy-Pearson correlation coefficients.

Figure 5 presents that the relative response values of TOC, NH3-N, NO3-N, and residual chlorine
change with the concentration of potassium ferricyanide. The values of the abscissa represent the
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labels of experiments, and the left values of ordinate represent the concentrations values of potassium
ferricyanide while the right values of ordinate represent the change values of TOC, NH3-N, NO3-N,
and residual chlorine.

Figure 5. Relative response values of four parameters with concentration of potassium ferricyanide:
(a) TOC; (b) NH3-N; (c) NO3-N; (d) residual chlorine change.

In the figure, a correlation exists between TOC and potassium ferricyanide. However, the Pearson
correlation coefficient is relatively small because of the noise introduced by the seventh sample; and the
relative response value of TOC in subsequent samples tend to saturate. The good linear correlation
between residual chlorine and potassium ferricyanide concentration largely depends on the detection
method for residual chlorine. Residual chlorine is measured once every 2.5 min but recorded every
minute. It can be seen from the figure that the strength of the correlation between different water
quality indicators and contaminant concentrations is different, and the reason for this difference is that
there is a local nonlinearity in the relative response.

4.3. Modeling and Test

A simple method for model selection is to randomly divide the data set into three parts, namely
training set, validation set, and test set. The training set is used to train the model, the validation
set is used to select the model, and the test set is used to ultimately evaluate the learning method.
In the different complexity models learned, the model with the smallest prediction error for the
verification set is selected. Since there are enough data in the validation set, it is also effective to use
it to select models. However, in practice, data is often insufficient. In order to select a good model,
cross-validation can be used. A simple cross-validation method is used here. Firstly divide the given
data into two parts randomly, one part as a training set and the other as a test set. Then use the training
set to train the model under different conditions to obtain different models. The test error of each
model is evaluated on the test set, and the model with the smallest test error is selected.

After the training set is established, the test set needs to be determined. To improve the simulation
of the diffusion of a contaminant in the distribution system, the simulation of contaminant release is
performed. Based on the simulation results, chemical experiments are conducted. Table 4 presents the
real concentrations of each sample and the relative response values of model input parameters in the
test set.

According to the modeling process mentioned, the complete training set data are applied for the
tuning of σ and γ first by using LS-SVMLab v1.7. Then, the LS-SVM regression model with RBF is
conducted by using the obtained model parameters and the training set data. Thereafter, the regression
model is tested using the test data. In the present study, the initial parameters of the GA-LSSVM and
PSO-LSSVM are given as follows: the maximum iteration number maxgen = 200, the population size
sizepop = 20, the range of σ ⊂ [0, 10 × 104], the range of γ ⊂ [0, 10 × 103], and the object accuracy
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mse (mean square error) = 0.01. The step values of σ and γ in GS-LSSVM are both 0.8. The initial
parameters adopted in simplex are taken by default in the Matlab toolbox. Simplex, GS, GA, and PSO
are introduced in the second optimization procedure to obtain the best σ and γ.

Table 4. Real concentrations and relative responding values in the test set.

Concentration COD TOC NH3-N NO3-N Residual Chlorine
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

0.5 0.1722 0.8618 0.9365 0.1248 0.0394
1.0 0.11745 0.9335 −0.01 0.17185 0.1079
2.5 0.1264 0.4334 0.0015 0.19255 0.3125
3.0 0.1512 0.6176 0.4205 0.21635 0.3927
5.0 0.14375 0.87205 0.6935 0.3427 0.7004
7.5 0.1759 1.15385 0.3905 0.4474 1.0798
9.0 0.15305 1.43175 1.467 0.5052 1.3417
11.0 0.1947 1.5408 1.3285 0.5435 1.6668
13.0 0.3848 4.8059 2.905 0.6767 1.904
15.0 0.23175 2.07795 1.3135 0.7274 2.2522
17.0 0.28945 3.7201 2.068 0.656 2.5344
18.0 0.25265 2.5757 3.0615 0.40465 2.64495

Figure 6 shows an illustration of a visual comparison between the real value and prediction value
by LS-SVM regression models with four parameter optimization algorithms. The values of the abscissa
represent the labels of testing set, and the values of ordinate represent the concentrations values (both
real concentration values and prediction values based on different parameter optimization algorithms)
of contaminants.

The curve marked with plus signs is the real concentration value of potassium ferricyanide, while
the curves marked with squares, crosses, and triangles are the prediction values by the simplex-LSSVM,
GS-LSSVM, and PSO-LS-SVM models, respectively. The result predicted by the GA-LSSVM model is
marked with circles.

Figure 6. Illustration of comparison between real value and prediction value based on four parameter
optimization algorithms.

Table 5 presents the prediction performance of the test dataset in Table 4 for each LS-SVM model.
The RMSEP and r2 of the testing set were obtained (Table 5) using Equations (3) and (4).
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Table 5. Prediction performance on the test dataset in Table 4.

True Value (mg/L) Relative Error

Simplex GS GA PSO

0.5 15.53% 0.24% 1.95% 27.96%
1.0 26.00% 28.57% 9.17% 13.97%
2.5 10.67% 12.64% 7.86% 10.41%
3.0 4.12% 6.12% 5.33% 4.52%
5.0 0.20% 0.63% 1.97% 0.51%
7.5 0.08% 0.06% 0.36% 1.12%
9.0 4.63% 4.12% 2.36% 3.95%

11.0 5.15% 4.73% 3.59% 4.09%
13.0 0.86% 0.73% 0.68% 1.95%
15.0 3.27% 2.89% 2.27% 2.15%
17.0 0.46% 0.04% 0.26% 0.53%
18.0 0.21% 0.18% 0.26% 0.27%

RMSEP 0.2762 0.2619 0.1855 0.2310
r2 0.9986 0.9988 0.9992 0.9990

In the table, RMSEP and r2 of the regression result for the testing dataset are acceptable when
parameter optimization methods were used to obtain the best parameters for the LS-SVM training,
whereas the model obtained by GA-LSSVM has the best generalization ability because of the high
parallelism degree and strong adaptability of the genetic algorithm.

To test the performance of the described approach, two other models, LSSVM and multiple linear
regression models, are also developed for comparison purposes. The LS-SVM model obtained by using
the parameter optimization method performed better in terms of accuracy and generalization ability.
In detail, the LS-SVM model produces a RMSEP of 1.3158 and an r2 of 0.9712, while the multiple linear
regression models generate a RMSEP of 2.5327 and an r2 of 0.8531. As the RMSE indicator illustrates,
compared with that of LS-SVM with default model parameters, the predictive error of PSO-LSSVM and
GA-LSSVM decreases by 82.4% and 85.9%, respectively, proving that the proposed method provides
good concentration prediction accuracy for quantitative evaluation of a known contaminant.

The aforementioned regression models were built with a five-dimension vector input. During the
experiment, NH3-N had minimal response to the contaminant solution, of which the concentration was
1 mg/L, 0.5 mg/L, or even less. The relative response value recorded in Table 4 was 0.9365 mg/L when
the concentration of potassium ferricyanide was 0.5 mg/L, which was possibly an illusion caused
by noise fluctuation of water quality after response time. These potential errors were not eliminated
because noise may arise anytime in a real-time sense, and the model obtained by the proposed method
should have the robustness to handle small errors in one dimension of a five-dimension input model.

4.4. Analysis of Noise Source and Detection Limit

A common question for the regression modeling problem is how to discriminate the influence of
environmental noise included in characteristics and how to determine model input dimensions.

Figure 7 shows the response curve for potassium ferricyanide with concentrations of 0.5 and
1.0 mg L−1. Introduced by equipment noises mainly, lots of peaks and troughs exist in the graphs
of turbidity, conductivity, and DO. These noises are independent and not related to contamination
injections. This result is verified by the weak Pearson correlation coefficients for turbidity, conductivity,
and DO (Table 3), and also indicates that turbidity, conductivity, and DO does not respond to the
presence of potassium ferricyanide.

As the input of the LS-SVM regression model, the relative response value is also a characteristic
value extracted from the experimental data. The extraction refers to two parameters: baseline value
and maximum response value, both of which may be responsible for deviation of results. For example,
as shown in Figure 7 some peaks and troughs during response time (e.g., marked in the graph of COD,
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TOC, and NO3-N) shifted significantly from the previous reading because of equipment noise. This
type of shift is difficult to predict, and a significant deviation between response value and baseline
value occurs for real-time quantitative analysis. The baseline value relates to the window size and right
boundary of the moving average model. Quantitative evaluation of water quality detection occurs
immediately after the qualitative analysis, which includes contamination detection and contamination
identification. When the detection decision is made, the right boundary of the moving average model
is determined.

In the present study, we focus on the quantitative evaluation of contaminant concentrations but
not contamination event detection; thus, the injection time of contaminations is chosen as the right
boundary. Meanwhile, window size denotes the number of data involved in the calculation of the
baseline value. Given the relative stability of the baseline, the window size need not be extremely
large. With the autoregressive moving average method reported by Hou [43] for comparison, a greater
demand for historical data is observed because the input data of the autoregressive moving model
should be thousands of orders of magnitude.

Figure 7. Sensor responses for potassium ferricyanide (concentrations: 0.5 and 1.0 mg L−1).

As mentioned in the last section, NH3-N had a minimal response to the contaminant solution
when the concentration was 1 mg/L, 0.5 mg/L, or even less. As predicted for the two concentrations
in the test set, only four of the five dimension inputs were useful, while NH3-N may change to
an abnormal input, which caused prediction errors. Meanwhile, 0.5 mg/L and 1 mg/L were out of
the range of the training set, which was from 2 mg/L to 18 mg/L, leading to several regression errors.
Because of the adaptive and autocorrelation analysis of GA, GA-LSSVM has better generalization
ability. However, regardless of what optimization method is used, a lower detection limit is defined,
which is 0.5 mg/L in our study. Improving the generalization ability to improve the prediction accuracy
around the detection limit by sacrificing the accuracy of the model is unnecessary.

4.5. Effects of Input Dimensions

A reasonable construction of the input vector is the premise of applying LSSVM to predict the
time series, and the influence of different construction methods on prediction precision and efficiency is
affected significantly. In practical application, proposing a generally applicable method of constructing
the input vector for all types of time series with different characteristics is difficult. In the present study,
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every dimension of the model input has a different calculated Pearson correlation coefficient with
potassium ferricyanide concentration. COD, with a Pearson correlation coefficient of 0.3748, was also
chosen as an input. Input dimensions might influence the performance of the quantitative evaluation.
To understand this, given a specified dimension value, parameters with greater Pearson correlation
coefficient are chosen as model input for model reconstruction and retesting.

Table 6 presents the evaluation performance of the GA-LSSVM model built with different input
dimensions. It demonstrates that the proposed method can be effectively used for quantitative analysis
regardless of what the dimensions are. It also implies that the GA-LSSVM model with one or two
dimensions has better performance for the given test set in this study. Residual chlorine is chosen
as the only input of the GA-LSSVM model with one dimension because of its significant Pearson
correlation coefficient. However, the robustness of the GA-LSSVM model with one or two dimensions
is weak because of has been recognized the reliance on the linear relationship between contaminant
concentration and residual chlorine or NO3-N.

Table 6. Impacts of input dimensions of GA-LSSVM on evaluation performance.

True Value
Relative Error

One
Dimension

Two
Dimensions

Three
Dimensions

Four
Dimensions

Five
Dimensions

0.5 1.01% 1.66% 2.71% 2.97% 1.95%
1.0 2.16% 10.25% 9.18% 10.09% 9.17%
2.5 6.56% 6.43% 7.99% 7.41% 7.86%
3.0 4.52% 5.21% 6.55% 4.52% 5.33%
5.0 3.51% 1.95% 3.32% 1.95% 1.97%
7.5 0.16% 0.36% 0.89% 1.02% 0.36%
9.0 1.53% 2.32% 2.71% 3.65% 2.36%
11.0 3.98% 3.65% 3.67% 3.61% 3.59%
13.0 0.73% 0.72% 0.72% 0.77% 0.68%
15.0 2.08% 2.01% 2.62% 2.75% 2.27%
17.0 0.21% 0.23% 0.67% 0.54% 0.26%
18.0 0.25% 0.25% 0.53% 0.73% 0.26%

RMSEP 0.1793 0.1841 0.1902 0.1913 0.1855
r2 0.9994 0.9992 0.9991 0.9990 0.9992

4.6. Analysis of Algorithm Reproducibility

Data from two sets of independent injection experiments were used to assess the reproducibility
of the proposed quantitative evaluation method. The data will form a testing set to test the regression
model previously achieved by using four different parameter optimization methods. The experimental
conditions for the two groups of experiments are the same. In Figure 8, the concentrations of all
24 testing samples in the two groups are evaluated by four regression models.
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Figure 8. Correlation between standard concentration value and evaluated value modeled by LS-SVM.

5. Conclusions

From the above analysis, this paper introduces the water-contamination quantitative evaluation
method using multiple conventional water quality parameters, which comes to the following conclusions:

Firstly, based on the phenomenon that different contaminations may cause different correlative
responses of sensors and the degree of responses is related to the injected concentration of
contamination, the experiment results imply that this type of phenomenon can be used for quantitative
analysis of a known contamination incident in a water distribution system. The concept of relative
response value is introduced to calculate the differences between water quality parameters and
their baselines.

Secondly, by utilizing LS-SVM, the presented method can reduce the effect of the limited number
of training samples, adapt well to local nonlinear response of water quality parameters, and improve
the prediction accuracy of pollutant samples at low concentrations.

Thirdly, according to the correlation coefficient calculated in the training set, the inputs of the
LS-SVM regression model are chosen. In modeling, four different parameter optimization methods are
used to optimize the penalty factor γ and the kernel width σ. The results illustrate that the regression
model obtained by GA, which works well on adaptive capacity and auto-correlation analysis, shows
the most effective performance in parameter optimization.

Lastly, our findings indicate that the proposed quantitative evaluation method can effectively predict
contamination concentration not less than 0.5 mg/L and use real-time monitoring of water quality. It is
necessary to develop a credible library of contaminant-sensitive parameters for implementing the
proposed quantitative evaluation method with respect to the drinking water systems coupled with EWS
operation in real time.

Acknowledgments: This work was funded by the National Natural Science Foundation of China (No. 61573313)
“Online water-quality anomaly detection, classification, and identification based on multi-source information
fusion”; (No. U1509208) “Research on big data analysis and cloud service of urban drinking water network
safety”; and the Key Technology Research and Development Program of Zhejiang Province (No. 2015C03G2010034)
“Research on intelligent management and long-effective mechanism for river regulation and maintenance”.

Author Contributions: Dibo Hou, Kexin Wang, Xiang Wen and Hongjian Zhang conceived the scheme and
designed the experiments; Guangxin Zhang, Pingjie Huang and Kexin Wang were involved in design and
realization of the scheme; Xiang Wen, Dezhan Tu and Naifu Zhu performed the experiments; Kexin Wang and
Xiang Wen wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 938 18 of 19

References

1. Hasan, J. Technologies and Techniques for Early Warning Systems to Monitor and Evaluate Drinking Water Quality
A State-of-the-Art Review; Environmental Protection Agency: Washington, DC, USA, 2005.

2. Storey, M.V.; van der Gaag, B.; Burns, B.P. Advances in on-line drinking water quality monitoring and early
warning systems. Water Res. 2011, 45, 741–747. [CrossRef] [PubMed]

3. Shi, B.; Wang, P.; Jiang, J.; Liu, R. Applying high-frequency surrogate measurements and a wavelet-ANN
model to provide early warnings of rapid surface water quality anomalies. Sci. Total Environ. 2018, 610,
1390–1399. [CrossRef] [PubMed]

4. Hart, D.B.; Mckenna, S.A.; Murray, R.; Haxton, T. Combining Water Quality and Operational Data for Improved
Event Detection; ASCE Library: Tucson, AZ, USA, 2010.

5. He, H. Research on Multi-Sensor Data Fusion for Water Quality Events Detection; Zhejiang University: Zhejiang,
China, 2013.

6. Murray, R.; Haxton, T.; McKenna, S.A.; Hart, D.B.; Klise, K.; Koch, M.; Vugrin, E.D.; Martin, S.; Wilson, M.;
Cruze, V.A.; et al. Water Quality Event Detection Systems for Drinking Water Contamination Warning Systems
Development, Testing, and Application of Canary; Environmental Protection Agency: Washington, DC, USA, 2010.

7. Allgeier, S.; Murray, R.; Mckenna, S.; Shalvi, D. Overview of Event Detection Systems for Water Sentinel;
Environmental Protection Agency: Washington, DC, USA, 2005.

8. Mahoney, M.V. A Machine Learning Approach to Detecting Attacks by Identifying Anomalies in Network
Traffic. Ph.D. Thesis, Florida Institute of Technology, Melbourne, FL, USA, 2003.

9. Raciti, M.; Cucurull, J.; Nadjm-Tehrani, S. Anomaly Detection in Water Management Systems Critical
Infrastructure Protection; Springer: Berlin, Germany, 2012; pp. 98–119.

10. Bucak, I.O.; Kalik, B. Detection of drinking water quality using CMAC based artificial neural Networks.
Ekoloji 2011, 20, 75–81. [CrossRef]

11. Bouamar, M.; Ladjal, M. Performance evaluation of three pattern classification techniques used for water
quality monitoring. Int. J. Comput. Intell. Appl. 2012, 11, 1250013. [CrossRef]

12. Hou, D.; He, H.; Huang, P.; Loaiciga, H. Detection of water-quality contamination events based on
multi-sensor fusion using an extented Dempster-Shafer method. Meas. Sci. Technol. 2013, 24, 055801.
[CrossRef]

13. Koch, M.W.; McKenna, S.A. Distributed sensor fusion in water quality event detection. J. Water Resour.
Plan. Manag. 2010, 137, 10–19. [CrossRef]

14. Hall, J.; Szabo, J. Water Sentinel Online Water Quality Monitoring as an Indicator of Drinking Water Contamination;
Environmental Protection Agency: Washington, DC, USA, 2005.

15. Dixon, B. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: A GIS-based
sensitivity analysis. J. Hydrol. 2005, 309, 17–38. [CrossRef]

16. Ocampo-Duque, W.; Osorio, C.; Piamba, C.; Schuhmacher, M.; Domingo, J.L. Water quality analysis in rivers
with non-parametric probability distributions and fuzzy inference systems: Application to the Cauca River,
Colombia. Environ. Int. 2013, 52, 17–28. [CrossRef] [PubMed]

17. Braga, G.S.; Paterno, L.G.; Fonseca, F.J. Performance of an electronic tongue during monitoring
2-methylisoborneol and geosmin in water samples. Sens. Actuators B Chem. 2012, 171, 181–189. [CrossRef]

18. Gutiérrez, M.; Gutiérrez, J.M.; Alegret, S.; Leija, L.; Hernández, P.R.; Favari, L.; Muñoz, R.; Valle, M.D.
Remote environmental monitoring employing a potentiometric electronic tongue. Int. J. Environ. Anal. Chem.
2008, 88, 103–117. [CrossRef]

19. Carbó, N.; López Carrero, J.; Garcia-Castillo, F.J.; Tormos, I.; Olivas, E.; Folch, E.; Alcañiz Fillol, M.; Soto, J.;
Martínez-Máñez, R.; Martínez-Bisbal, M.C. Quantitative Determination of Spring Water Quality Parameters
via Electronic Tongue. Sensors 2017, 18, 40. [CrossRef] [PubMed]

20. Yang, J.Y.; Goodrich, J.A.; Clark, R.M.; Li, S.Y. Modeling and testing of reactive contaminant transport in
drinking water pipes: Chlorine response and implications for online contaminant detection. Water Res. 2008,
42, 1397–1412. [CrossRef] [PubMed]

21. Shang, F.; Uber, J.; Murray, R.; Janke, R. Model-Based Real-Time Detection of Contamination Events.
Water Distrib. Syst. Anal. 2008, 2008, 1–5.

22. Granata, F.; Papirio, S.; Esposito, G.; Gargano, R.; de Marinis, G. Machine Learning Algorithms for the
Forecasting of Wastewater Quality Indicators. Water 2017, 9, 105. [CrossRef]

http://dx.doi.org/10.1016/j.watres.2010.08.049
http://www.ncbi.nlm.nih.gov/pubmed/20851446
http://dx.doi.org/10.1016/j.scitotenv.2017.08.232
http://www.ncbi.nlm.nih.gov/pubmed/28854482
http://dx.doi.org/10.5053/ekoloji.2011.7812
http://dx.doi.org/10.1142/S1469026812500137
http://dx.doi.org/10.1088/0957-0233/24/5/055801
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000094
http://dx.doi.org/10.1016/j.jhydrol.2004.11.010
http://dx.doi.org/10.1016/j.envint.2012.11.007
http://www.ncbi.nlm.nih.gov/pubmed/23266912
http://dx.doi.org/10.1016/j.snb.2012.02.092
http://dx.doi.org/10.1080/03067310701441005
http://dx.doi.org/10.3390/s18010040
http://www.ncbi.nlm.nih.gov/pubmed/29295592
http://dx.doi.org/10.1016/j.watres.2007.10.009
http://www.ncbi.nlm.nih.gov/pubmed/17991507
http://dx.doi.org/10.3390/w9020105


Sensors 2018, 18, 938 19 of 19

23. Singh, K.P.; Basant, N.; Gupta, S. Support vector machines in water quality management. Anal. Chim. Acta
2011, 703, 152–162. [CrossRef] [PubMed]

24. Granata, F.; Gargano, R.; de Marinis, G. Support vector regression for rainfall-runoff modeling in urban
Drainage: A comparison with the EPA’s storm water management model. Water 2016, 8, 69. [CrossRef]

25. Yu, P.S.; Chen, S.T.; Chang, I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006,
328, 704–716. [CrossRef]

26. Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting.
J. Hydrol. 2011, 399, 132–140. [CrossRef]

27. Baylar, A.; Hanbay, D.; Batan, M. Application of least square support vector machines in the prediction of
Aeration performance of plunging over fall jets from weirs. Expert Syst. Appl. 2009, 36, 8368–8374. [CrossRef]

28. Liu, S.; Tai, H.; Ding, Q.; Li, D.; Xu, L.; Wei, Y. A hybrid approach of support vector regression with genetic
algorithm optimization for aquaculture water quality prediction. Math. Comput. Model. 2013, 58, 458–465.
[CrossRef]

29. Behzad, M.; Asghari, K.; Eazi, M.; Palhang, M. Generalization performance of support vector machines and
neural networks in runoff modeling. Expert Syst. Appl. 2009, 36, 7624–7629. [CrossRef]

30. Vapnik, V.N. Statistical learning theory. In Adaptive and Learning Systems for Signal Processing, Communications
and Control Series; John Wiley & Sons: New York, NY, USA, 1998.

31. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9,
293–300. [CrossRef]

32. Keerthi, S.S.; Lin, C.J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput.
2003, 15, 1667–1689. [CrossRef] [PubMed]

33. Wen, X. Research on Online Quantitative Analysis of Accidental Contaminant in Urban Water Distribution System;
Zhejiang University: Zhejiang, China, 2016.

34. Cawley, G.C. Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs.
In Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada,
16–21 July 2006.

35. Wiens, T.S.; Dale, B.C.; Boyce, M.S.; Kershaw, G.P. Three way K-fold cross-validation of resource selection
functions. Ecol. Model. 2008, 212, 244–255. [CrossRef]

36. Suykens, J.A.K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector
Machines; World Scientific: Singapore, 2002; ISBN 981-238-151-1.

37. Xavier-de-Souza, S.; Suykens, J.A.; Vandewalle, J.; Bollé, D. Coupled Simulated Annealing. IEEE Trans. Syst.
Man Cybern. 2010, 40, 320–335. [CrossRef] [PubMed]

38. Suykens, J.A.K.; Vandewalle, J.; De Moor, B. Intelligence and cooperative search by coupled local minimizers.
Int. J. Bifurc. Chaos 2001, 11, 2133–2144. [CrossRef]

39. De Brabanter, K.; Karsmakers, P.; Ojeda, F.; Alzate, C.; De Brabanter, J.; Pelckmans, K.; De Moor, B.;
Vandewalle, J.; Suykens, J.A. LS-SVMlab Toolbox User’s Guide: Version 1.7; Katholieke Universiteit Leuven:
Leuven, Belgium, 2010; pp. 12–13.

40. Yang, J.Y.; Haught, R.C.; Goodrich, J.A. Real-time contaminant detection and classification in a drinking
water pipe using conventional water quality sensors: Techniques and experimental results. Environ. Manag. J.
2009, 90, 2494–2506. [CrossRef] [PubMed]

41. Hall, J.; Zaffiro, A.D.; Marx, R.B.; Kefauver, P.C.; Krishnan, E.R.; Haught, R.C.; Herrmann, J.G. On-line water
quality parameters as indicators of distribution system contamination. Am. Water Works Assoc. 2007, 99,
66–77. [CrossRef]

42. Szabo, J.G.; Hall, J.S.; Meiners, G. Water Quality Sensor Responses to Contamination in a Single Pass
Water Distribution System Simulator; EPA/600/R-07/001; Water Information Sharing and Analysis Center
(WaterISAC): Washington, DC, USA, 2007.

43. Hou, D.; Song, X.; Zhang, G.; Zhang, H.; Loaiciga, H. An early warning and control system for urban,
drinking water quality protection: China’s experience. Environ. Sci. Pollut. Res. 2013, 20, 4496–4508.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.aca.2011.07.027
http://www.ncbi.nlm.nih.gov/pubmed/21889629
http://dx.doi.org/10.3390/w8030069
http://dx.doi.org/10.1016/j.jhydrol.2006.01.021
http://dx.doi.org/10.1016/j.jhydrol.2010.12.041
http://dx.doi.org/10.1016/j.eswa.2008.10.061
http://dx.doi.org/10.1016/j.mcm.2011.11.021
http://dx.doi.org/10.1016/j.eswa.2008.09.053
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1162/089976603321891855
http://www.ncbi.nlm.nih.gov/pubmed/12816571
http://dx.doi.org/10.1016/j.ecolmodel.2007.10.005
http://dx.doi.org/10.1109/TSMCB.2009.2020435
http://www.ncbi.nlm.nih.gov/pubmed/19651558
http://dx.doi.org/10.1142/S0218127401003371
http://dx.doi.org/10.1016/j.jenvman.2009.01.021
http://www.ncbi.nlm.nih.gov/pubmed/19269081
http://dx.doi.org/10.1002/j.1551-8833.2007.tb07847.x
http://dx.doi.org/10.1007/s11356-012-1406-y
http://www.ncbi.nlm.nih.gov/pubmed/23247533
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Least-Squares Support Vector Machines (LS-SVM) 
	Quantitative Evaluation of Known Contaminant by LSSVM 
	Procedure for Quantitative Evaluation of Known Contaminant 
	Sensitive Parameter Extraction 
	Parameter Optimization 


	Experiments Methodology 
	Experimental Design 
	Contaminants Investigated 

	Results and Discussions 
	Correlative Responses 
	Sensitive Parameter Extraction 
	Modeling and Test 
	Analysis of Noise Source and Detection Limit 
	Effects of Input Dimensions 
	Analysis of Algorithm Reproducibility 

	Conclusions 
	References

