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Abstract: In this study, modified perpendicular drought index (MPDI) models based on the
red-near infrared spectral space are established for the first time through the analysis of the spectral
characteristics of GF-1 wide field view (WFV) data, with a high spatial resolution of 16 m and
the highest frequency as high as once every 4 days. GF-1 data was from the Chinese-made,
new-generation high-resolution GF-1 remote sensing satellites. Soil-type spatial data are introduced
for simulating soil lines in different soil types for reducing errors of using same soil line. Multiple
vegetation indices are employed to analyze the response to the MPDI models. Relative soil moisture
content (RSMC) and precipitation data acquired at selected stations are used to optimize the drought
models, and the best one is the Two-band enhanced vegetation index (EVI2)-based MPDI model.
The crop area that was statistically significantly affected by drought from a local governmental
department, and used for validation. High correlations and small differences in drought-affected crop
area was detected between the field observation data from the local governmental department and
the EVI2-based MPDI results. The percentage of bias is between −21.8% and 14.7% in five sub-areas,
with an accuracy above 95% when evaluating the performance via the data for the whole study
region. Generally the proposed EVI2-based MPDI for GF-1 WFV data has great potential for reliably
monitoring crop drought at a relatively high frequency and spatial scale. Currently there is almost no
drought model based on GF-1 data, a full exploitation of the advantages of GF-1 satellite data and
further improvement of the capacity to observe ground surface objects can provide high temporal
and spatial resolution data source for refined monitoring of crop droughts.

Keywords: crop drought; EVI2-based MPDI; GF-1 WFV data; relative soil water content; FVC

1. Introduction

Regional temperature and precipitation anomalies resulting from global climate change may
cause droughts. Drought is a type of natural disaster that has significant impacts on the economy,
society, food security and the human living environment [1]. Situated in the southeastern East Asian
continent, China has a typical monsoon climate with uneven temporal and spatial distributions
of precipitation as well as susceptibility to frequent droughts over large areas. The impacts on
agricultural production are especially impressive. Zhou estimated the economic loss caused by drought
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at, up to 7.1–11.8 billion Renminbi (RMB) in the early 1990s [2]. During 2004–2007, each year drought
affected approximately 16% of farmers nationwide, which resulting in an income loss of about 20% [3].
The nationwide drought happened from 2000 to 2001, the summer drought occurred in South China
in 2003. Later in 2006, the once-in-a-century heavy drought taken place in Sichuan and Chongqing,
and over large areas of North China in the winter and spring area suffered drought from 2008 to
2009 (an additional 0.112 billion mu of farmlands in China were affected by drought). The severe
drought occurred in Southwest China in 2010, which caused nearly 20 billion RMB economic losses.
From January to May 2011, five provinces in the middle and lower reaches of the Yangtze River suffered
the most severe drought since the new China was founded. As China undergoes rapid economic
development, the economic losses and the level of economic risk as a result of droughts increase
significantly; this situation poses a severe threat to public security and national economic development.
An urgent need to employ advanced technology exists to not only address the problem of real-time
monitoring and detection of droughts over large areas but also improve the ability to rapidly respond to
developing droughts and their changes. Chinese high resolution satellites has great potential to apply
for disaster monitoring, damage assessment and related disaster risk management aspects [4]. GF-1 is
the first satellite in of the Chinese High Resolution Earth Observation System program, which includes
7 different types of high resolution Earth observation satellites [5–7]. The GF-1 wide field view (WFV)
cameras can acquire data that are highly valuable for drought dynamic monitoring because of their
high spatial resolution, wide coverage and high revisit frequency (Table 1). However, the application of
GF-1 data to agricultural remote sensing monitoring is still at an initial stage, and almost no literature
exists to date on estimating drought from the GF-1 WFV data.

Table 1. Specifications of GF-1 WFV cameras.

Bands No. Spectral Range Spatial Resolution Width Revisit Period Transit Time

1 0.45–0.52

16 m 800 km 4 days 10:30 a.m.
2 0.52–0.59
3 0.63–0.69
4 0.77–0.89

Many estimation algorithms by satellite data have been developed, but for satellites with four
visible and near infrared bands (such as GF-1), a simple and effective method should be mentioned,
which is two dimensional spectral space based on reflectance of red and near-infrared wavelengths.
In as early as the 1970s, researchers had begun to study the patterns of changes in vegetation indices in
the red- near-infrared two-dimensional (2D) spectral space [8]. Taking advantage of the reflective and
absorptive features of the canopy and bare soils, Ghulam et al. [9] proposed a simple and effective
perpendicular drought index (PDI), which is based on the red and near infrared bands. Qin et al. [10]
estimated the PDI from Moderate Resolution Imaging Spectroradiometer (MODIS) data and used it to
monitor the drought conditions in North China. Combining several characteristic parameters of the
areas (e.g., soil and hydrological parameters), these authors quantitatively classified the PDI into several
drought levels and found that the drought distribution derived from the PDI was consistent with
the actual conditions. Zhu et al. [11] used 250-m-resolution data acquired by the Medium Resolution
Spectral Imager (MERSI) sensor aboard the new-generation FY-3A satellite, which was developed
independently in China, and the PDI to monitor the drought conditions in the central and eastern Inner
Mongolia Autonomous Region during the summer of 2009. Similarly, these authors found a relatively
high correlation between the PDI and the soil moisture content (SMC) at a depth of 20 cm. The study
conducted by Chen et al. [12] in 2009 showed that the PDI derived from HJ/charge-couple device
(CCD) data could be used to achieve effective monitoring of drought conditions, which demonstrates
the effectiveness of HJ satellite data in disaster monitoring. Based on monitoring data acquired by the
MODIS/Terra, FY-3B/MERSI and HJ/CCD sensors as well as the corresponding measured SMC data,
Jiang et al. [13] used the PDI to comparatively analyze the sensitivity and reliability of these sensors in
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monitoring the temporal and spatial distributions of droughts and found that the PDI was most highly
correlated with the relative soilmoistureinthe0–20 cm soil layer.

However, these authors also found that the PDI was less effective at monitoring the drought
conditions in surface cover types that vary from bare soil to densely vegetated agricultural fields
and are characterized by non-flat topography with different soil types. By considering the effects of
vegetation cover, Ghulam et al. [14] proposed a modified PDI (MPDI) based on the red–near-infrared
spectral space of Enhanced Thematic Mapper Plus (ETM+) data, through validation with data from
Inner Mongolia and Ningxia, found that the MPDI was relatively highly accurate. Feng et al. [15]
derived the PDI and MPDI from 30-m-resolution HJ-1A/1BCCD data and found that compared with
the PDI, the MPDI was more sensitive to drought changes and more effective at monitoring the drought
conditions in areas with relatively high fractional vegetation coverage (FVC) than the PDI. Moreover,
they noted that the shape and characteristics of the soil line were related to the soil type, fertilization
conditions, climatic characteristics and vegetation type. Shahabfar et al. [16,17] found high correlations
of the MODIS-derived PDI and MPDI with the meteorological drought index, the vegetation condition
index and the crop water index for Iran, which is an arid–semiarid country in Asia. Zhang et al. [18]
validated the MODIS-derived MPDI for North China and found that the MPDI was highly effective at
reflecting the drought conditions and was most highly correlated with the SMC at a depth of 10 cm.
Li and Tan [19] validated the MPDI, which was composed of the perpendicular vegetation index (PVI)
and the PDI derived from ETM+ data measured in Hubei Province, China, finding that the MPDI was
more effective in high-FVC areas. Large amounts of usable high-resolution data are becoming available
in China and elsewhere, which are often collected in only four bands, three in the visible spectrum and
the near-infrared band. Therefore, the bright application prospects are bright for drought monitoring
methods based on visible- near-infrared spectral space information.

In recent years, China has successively launched the new-generation GF series of Earth observation
satellites, collecting data in the blue, green and red bands of the visible spectrum as well as the
near-infrared band; these satellites have notably improved not only the spatial and temporal scales but
also their range and accuracy of earth observations. Furthermore, these satellites have advanced the
application and service capability of remote sensing in disaster reduction, but there is currently no
drought monitoring model is currently based on GF-1 data. In this study, to improve their application
potential in drought monitoring, the shortcomings and issues of the normalized difference vegetation
index (NDVI)-based MPDI are considered. Soil texture distribution data and new vegetation indices
are first introduced to not only reduce the effects of soil background and the saturation problem of
NDVI in high-FVC areas but also increase the stability and comparability between areas. The study
estimates a two-band enhanced vegetation index (EVI2)-based MPDI is established that can make full
use of the advantages of GF-1 data and demonstrate the effectiveness of GF-1 WFV data in drought
monitoring at fine temporal and spatial scales.

2. Study Area and Data

2.1. Study Region

The Jinzhou region (including Yi, Heishan, Beizhen, Linghai and Jinzhou City) in Liaoning
Province was selected as the study area (Figure 1). Topographically, it is high toward the northwest
and low toward the southeast with the terrain sloping from northwest to southeast and consisting
of a low-mountain, a hilly and a plains section. Situated in eastern Eurasia, Jinzhou has a warm
temperate-zone semi-humid climate with predominant westerlies and subtropical atmospheric
circulation systems. As a continental monsoon area, Jinzhou has four distinct seasons that are
characterized by warm and windy springs, hot and rainy summers, warm-cool and sunny falls
and cold and dry winters as well as concentrated precipitation and a clear monsoon season. Jinzhou
has an annual mean temperature of 7.8–9.0 ◦C, which decreases from south to east, an annual maximum
temperature of 41.8 ◦C, an annual minimum temperature of −31.3 ◦C, a 144–180-day frost-free season
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and an annual mean precipitation of 567 mm (the precipitation is uneven throughout the four seasons,
with 60–70% occurring in the summer).

Figure 1. Study area and field stations distribution.

2.2. Data and Preprocessing

2.2.1. Satellite Data

GF-1, which is the first satellite in the high-resolution Earth observation system, a major science
and technology project of China, was successfully launched from the Gansu Jiuquan Satellite Launch
Center at 12:13 on 26 April 2013. The GF-1 satellite uses the CAST2000 compact satellite platform
technology and is equipped with two 8-m-resolution (2-m panchromatic resolution) multispectral
high-resolution cameras and four 16-m-resolution multispectral WFV cameras (four sensors:
WFV1, WFV2, WFV3 and WFV4). The GF-1 satellite orbits at an altitude of 645 km. A 25◦ swing
of a GF-1 camera corresponds to a visual range of 700 km. The GF-1 satellite has a revisit period of
four days. The WFV cameras can cover the entire globe once every four days without requiring the
satellite to swing. The greatest advantage of the GF-1 satellite is its combination of a short revisit
period, high resolution and wide field of view (Table 1) [5].

GF-1 data can be queried and downloaded through the Land Observation Satellite Data Service
Platform of the China Center for Resource Satellite Data and Applications (CRESDA) [20]. In this study,
GF-1/WFV imagery of 31 scenes of the study area from May to September 2013 and 2014 with less than
5% cloud cover were collected and downloaded (Table 2). The image preprocessing mainly included
radiometric calibration, fine geometric correction and atmospheric correction. In the radiometric
calibration process, based on the calibration coefficients provided by CRESDA, the digital value of
channel observations was converted to apparent radiance data or reflectance to eliminate or reduce the
difference between the sensor measurements and spectral radiance. The corrected ZY-3 data were used
as reference imagery to perform the fine correction to reach a planar accuracy of less than one pixel
in plain, which meets the sub-pixel accuracy requirements for multi-temporal remote sensing image
classification. Based on the spectral response functions and half-wavelengths for the bands of the
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GF-1 satellite payloads, the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH)
module in the ENVI5.1 software [21] was used to perform the atmospheric correction to eliminate the
effects of the atmosphere, illumination and scattering by aerosols on the reflections by ground objects.

Despite efforts to select cloudless imagery, some areas in the selected imagery were still cloud
covered. Based on an analysis of the spectral characteristics of the GF-1 data in each band, a simple
multi-threshold discrimination method was employed to detect clouds and remove cloud-polluted
pixels. The pixels with reflectance greater than 0.25 in the red band and greater than 0.45 in the
near-infrared band and an NDVI less than 1 were identified as cloud pixels and subsequently removed.
In addition, a buffer zone method was employed to eliminate cloud-polluted pixels, and five-pixel
buffer zones were established to filter the pixels near the cloud pollution.

Table 2. Used GF-1 WFV data list.

Transit Time Scene No. Data Information

2013/05/20 1 GF1_WFV1_E121.9_N41.3_20130520_L1A0000046801.hdf

2013/06/01 1 GF1_WFV1_E121.2_N41.3_20130601_L1A0000020121.hdf

2013/06/13 1 GF1_WFV1_E121.4_N41.3_20130613_L1A0000028258.hdf

2013/07/12 3
GF1_WFV3_E123.5_N42.2_20130712_L1A0000053576.hdf
GF1_WFV2_E121.3_N42.6_20130712_L1A0000052402.hdf
GF1_WFV2_E120.8_N41.0_20130712_L1A0000052403.hdf

2013/08/09 1 GF1_WFV1_E121.2_N41.4_20130809_L1A0000067755.hdf

2013/08/30 1 GF1_WFV4_E121.4_N41.8_20130830_L1A0000077556.hdf

2013/09/03 1 GF1_WFV4_E121.6_N41.8_20130903_L1A0000079519.hdf

2013/09/11 2 GF1_WFV3_E121.6_N42.2_20130911_L1A0000082577.hdf
GF1_WFV3_E121.0_N40.5_20130911_L1A0000082578.hdf

2013/09/15 2 GF1_WFV4_E122.2_N41.8_20130915_L1A0000084339.hdf
GF1_WFV4_E121.6_N40.1_20130915_L1A0000084340.hdf

2014/05/08 1 GF1_WFV1_E120.9_N41.3_20140508_L1A0000220193.hdf

2014/05/21 2 GF1_WFV3_E121.6_N42.2_20140521_L1A0000231625.hdf
GF1_WFV3_E121.1_N40.6_20140521_L1A0000231626.hdf

2014/06/23 4

GF1_WFV4_E122.9_N41.8_20140623_L1A0000258242.hdf
GF1_WFV4_E122.3_N40.1_20140623_L1A0000258243.hdf
GF1_WFV3_E120.6_N42.2_20140623_L1A0000258228.hdf
GF1_WFV3_E120.0_N40.6_20140623_L1A0000258229.hdf

2014/07/01 2 GF1_WFV3_E121.8_N42.2_20140701_L1A0000264733.hdf
GF1_WFV3_E121.2_N40.6_20140701_L1A0000265941.hdf

2014/07/10 1 GF1_WFV4_E119.3_N41.8_20140710_L1A0000271938.hdf

2014/07/29 1 GF1_WFV1_E121.5_N41.3_20140729_L1A0000289542.hdf

2014/08/02 1 GF1_WFV1_E121.6_N41.3_20140802_L1A0000293356.hdf

2014/08/11 2 GF1_WFV3_E121.7_N42.2_20140811_L1A0000301287.hdf
GF1_WFV3_E121.2_N40.6_20140811_L1A0000301288.hdf

2014/09/04 2 GF1_WFV2_E122.7_N41.0_20140904_L1A0000327811.hdf
GF1_WFV1_E120.4_N41.3_20140904_L1A0000327798.hdf

2014/09/08 1 GF1_WFV1_E121.9_N41.3_20140908_L1A0000336275.hdf

2014/09/17 1 GF1_WFV3_E121.1_N42.2_20140917_L1A0000344707.hdf

2.2.2. Field Data

The relative soil water content (RSMC) data acquired at ground observation stations were used
to validate the drought indices (Dis) established based on various vegetation indices and select the
optimal drought model. RSMC is the ratio of soil water content to field water capacity. Ten-day
RSMC (at a depth of 0–20 cm) data acquired at two observation stations, the Heishan station and
the Jinzhou station, from May to September 2013 were downloaded from the data sharing website
of the China Meteorological Data Service Center [22]. Each data point was examined, and invalid
data points (marked with −9999) were removed. Based on the longitude and latitude of each station,
the monitoring results for the corresponding location obtained using each drought model were
extracted from the raster remote sensing drought monitoring data.
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The conventional field drought assessment data were referred to the drought-affected region
data. The field-based drought-affected crop areas in the study region were published in early
August 2014, and downloaded from the website of the Liaoning Provincial Department of Water
Resources (LNDWR) [23]. The drought-affected field areas were collected and submitted from
various villages to counties and cities, which requires considerable manpower and material resources.
These data, which are field-derived, regional, manual, and experiential observations based on crop
drought status, and provide a suitable and exact description of drought severity. The different
degree of drought-affected crops area in the Jinzhou region and five counties were included. Here
we recommended these reference data for evaluating the GF-1 WFV-based drought model results on
a county scale.

2.2.3. Auxiliary Data

Soil texture was obtained from the Harmonized World Soil Database (HWSD) [24], which is
a 30 arc-second raster database with over 15,000 different soil mapping units. This database combines
existing regional and national updates of soil information worldwide with the information contained
within the 1:5,000,000 scale FAO-UNESCO Soil Map of the World (FAO, 1971–1981). This was the result
of collaboration by the FAO with the International Institute for Applied Systems Analysis (IIASA);
ISRIC-World Soil Information; Institute of Soil Science; Chinese Academy of Sciences (ISSCAS); and
the Joint Research Centre of the European Commission (JRC). In present paper, the USDA soil type
data were extracted and resampling into high resolution for building the soil lines in different soil
types. The original soil type data were defined by 13 classes: C1-clay (heavy), C2-silty clay, C3-clay
(light), C4-silty clay loam, C5-clay loam, C6-silt, C7-silt loam, C8-sandy clay, C9-loam, C10-sandy clay
loam, C11-sandy loam, C12-loamy sand and C13-sand.

The precipitation data used in this research is the Climate Hazards Group Infrared Precipitation with
Stations dataset (CHIRPS) [25,26], which is a fine-resolution (approximately 5 km × 5 km) and temporal
range from the first pentad of January 1981 through the near-present. This product is a combination of
Climate Hazards Group precipitation climatology [27], satellite infrared measurements, and rain gauge
measurements. It has been validated and used in many researches [28–30], and is recommended as
reference data in this study.

The crop distribution map for the study area can be obtained from the CropWatch bulletin [31],
which is published quarterly [31,32]. This bulletin reports many climatic and remotely sensed indicators
produced from the CropWatch system and their use in the analysis of climatic and crops condition
assessments, providing accurate and timely information essential to food producers, traders and
consumers [31,32]. These indicators include maps of cropped and uncropped arable land maps for
different periods is one of those indicators that can be directly utilized. The maps comprise raster
data, with a value of 1 and 0 indicating cropped area and unplanted areas, respectively. The crop
distribution data for the Jinzhou area is extracted for use in masking the non-crop area.

3. Methodology

3.1. Soil Lines Determination

Because the characteristics of a soil line are related to the soil optical properties, the slope of
a soil line may be vary with the soil type; consequently, there are differences in the drought results.
It is generally assumed that a soil line is a straight line (the expression of the relationship between the
reflectance in the near infrared and red bands) [14–17]. These researchers found that the soil line can
be approximately expressed by Equation (1), as follows:

RNIR = M× RRed + I (1)

where, M is the slope of the soil line, I is the interception on the vertical axis and RRed and RNIR are
the reflectance of the red and near-infrared channels, respectively.
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The distribution of soil line is highly dependent on the soil type, soil texture distribution data from
HWSD database (detailed information seen in Section 2.2.3) was firstly employed for reducing error
by different soil types. These data refer to six soil types, C3, C5, C9, C10, C11 and C12, with an area
percentage of 3.2, 44.1, 44.2, 0.5, 7.5 and 0.5 of the entire study region, respectively. Because more
sampling points were needed to fit the soil lines and relatively insignificant differences occurred among
the soil types in this study region, soil types C3 and C5 were combined to form soil class CI, and soil
types C9, C10, C11 and C12 were combined to form soil class CII. Soil lines were then established for
CI and CII. Then new slope and interception of soil line for two classes (CI and CII) were generated by
multi-temporal GF-1 data from the red and near-infrared bands, masked by the crop planting area,
which is required and suitable for MDPI based on GF-WFV data.

3.2. Candidate Vegetation Indices

In the present study, the eight most extensively used vegetation indices were collected, organized
(Table 3), and used to establish drought models based on the different vegetation indices. Through
comparison and an adaptability analysis, vegetation index with the relatively highest sensitivity to the
MPDI was selected to modify the vegetation effects on the PDI, and a new MPDI based on the optimal
vegetation index is established to improve the model performance of crop drought monitoring.

Table 3. Candidate drought indices.

Name of Indices Authors Formula

Normalized difference vegetation index (NDVI) Rouse et al., 1974 [33] RNIR−RRED
RNIR+RRED

Perpendicular vegetation index (PVI) Richardson & Wiegand, 1977 [2] RNIR−αRRED−α√
1+α2 , α = 1.253

Soil adjusted vegetation index (SAVI) Huete et al., 1988 [34] RNIR−RRED
RNIR+RRED+L (1 + L), L = 0.5

Modified soil adjusted vegetation index (MSAVI) Qi et al., 1994 [35] 2RNIR+1−
√

1+(2RNIR+1)2−8(RNIR−RRED)

2

Transformed soil adjusted vegetation index (TSAVI) Baret, F. and Guyot, G., 1991 [36] α(RNIR − αRRED − β)/
(
αRNIR + RRED − αβ + 0.08

(
1 + α2))

Global environment monitoring index (GEMI) Pinty, B. and Verstraete, M., 1992 [37]
γ(1− 0.25γ)− (RRED − 0.125)/(1− RRED),

γ =
(
2(R2

NIR − R2
RED

)
+ 1.5RNIR +

0.5RRED)/(RNIR + RRED + 0.5)

Enhanced vegetation index (EVI) Liu, H.Q., Huete, A.R., 1995 [38] 2.5× RNIR−RRED
RNIR+6×RRED−7.5×RBLUE+1

Two-band enhanced vegetation index (EVI2) Jiang et al., 2008 [39] 2.5× RNIR−RRED
RNIR+2.4×RRED+1

Note: RRED , RNIR and RBLUE is atmospheric corrected reflectance of red, near-infrared and blue band, respectively.

3.3. GF-1 WFV-Based MPDIs

The scatter plot of the atmospherically corrected near-infrared and red reflectance spectrum
demonstrated a typical triangle shape [9,10,14,17], which caused the construction of a vegetation
coverage and drought monitoring index based on red and near-infrared spectral reflectance space.
Ghulam et al. [9,10] was the first to design a PDI based on a red- and near-infrared spectral space for
drought monitoring. Significant relationships exist between these indices and the soil moisture over
different study areas that differed with vegetation coverage that varied from full vegetation cover
to bare soil. These authors recommended applying these methods as drought monitoring indices
in arid or semi-arid areas. The PDI can be used to effectively monitor surface drought conditions.
It is calculated using the following mathematical equation:

PDI =
1√

M2 + 1
(RRed + M× RNIR) (2)

where M is the slope of the soil line, I is the interception on the vertical axis and RRed and RNIR are the
reflectance of the red and near-infrared channels, respectively.

Vegetation has a high capacity to scatter light at many times in the visible and near-infrared
bands. The PDI cannot effectively depict the drought conditions in vegetation area; and there are some
limitations that challenge the performance of the PDI in areas whose surface cover types vary from bare
soil to densely vegetated agricultural fields. Ghulam et al. used the FVC to express the vegetation factor



Sensors 2018, 18, 1297 8 of 18

and established an MPDI model [14]. A similar approach was adopted in our paper. Several studies
found that strong correlations occur between FVC and the scaled NDVI [40]; later Jiang et al. [41]
indicated that the scaled NDVI method would overestimate FVC in most cases by analyzing the spatial
scale dependencies of the NDVI and the various forms of the relationships between the vegetation
indices and FVC. We used the power function of the scaled NDVI to obtain FVC, as proposed by
Baret et al. [42], and then acquired the several FVCs that could be calculated via the use of various
candidate vegetation indices. The MPDI can be calculated by different candidate FVCs and vegetation
indices, as given in the following equations:

MPDI =
RRed + M× RNIR − FVC× (Rv, Red + M× Rv,NIR)

(1− FVC)
√

M2 + 1
(3)

FVC = 1−
(

VImax −VI
VImax −VImin

)θ

(4)

where FVC is the fractional vegetation cover, VI is the vegetation index, VImax and VImin correspond
to vegetation index value of bare soil and full vegetation coverage, repspectively; M is the slope
of the soil line obtained from a linear regression of the soil points based on the red- near-infrared
spectral space; and Rv, Red and Rv,NIR are pure vegetation reflectance in the red and near-infrared
bands, respectively. For known vegetation growth, Rv, Red and Rv,NIR are determined as 0.05 and 0.5
by Ghulam’s result [10]; and θ is the regulatory factor for the vegetation index, which is set to 0.6175
from Ghulam et al. [10]. The MPDI values range from 0 to 1. The greater the PDI is greater with
increased drought severity, and vice versa.

Initially, for the MPDI, the NDVI-based FVC is used to correct the effects of vegetation on the
drought model’s monitoring results [40]. However, the NDVI is unfavorable for high-FVC areas due
to a severe red light saturation problem, which results in an overestimation of the NDVI in low-FVC
areas and an underestimation of the NDVI in high-FVC areas [43–45]. So besides of NDVI, other seven
candidate vegetation indices (introduced in Section 3.1) were also considered here to optimize the best
one and construct a corresponding MPDI model to improve its drought monitoring performance for
FVC areas.

4. Results

The development of the crop drought monitoring algorithm for the GF-1 WFV data consisted of
new soil lines for two soil classes in the study area, with their average slopes used to build the several
MPDI models based on the various vegetation indices. Multiple MPDI models were established based
on multiple vegetation indices by analyzing multiply vegetation indices responses to drought results.
The optimization and presentation of the EVI2-based MPDI to estimate the drought extent from GF-1
WFV data were finished by RSMC and CHIRPS precipitation data. Finally, the EVI2-based MPDI for
the GF-1 WFV data was validated with ground measurements.

4.1. Quantitative Analysis of the Soil Lines

In this study, the soil lines were established for two classes with GF-1 data from 2013 to 2014.
Figure 2 shows the relation of the red and near infrared band data and the fitting of the two soil lines
for 9 August 2013 and 2 August 2014 in the study area. The correlation of determination of class CI is
up to 0.951 and 0.978 in two dates, and class CII is 0.948 and 0.975. We can obtain the following soil
line slopes from the fitting results: 1.09 and 1.18 (CI and CII) for 9 August 2013, and is 1.30 and 1.32
(CI and CII) for 2 August 2014.

The soil lines slopes changes and their distributions at different times can be found in Figure 3.
The mean and variance of the slope are also calculated for each soil line. The slope of the soil line
established for soil classes CI and CII averages 1.22 and 1.21, respectively, with a variance of 0.005
and 0.006 and no significant difference between the mean or variance of the two class of results.
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Furthermore, the slopes for the crop growing season show little difference within different time
periods from 2013 to 2014. Therefore, the soil line slopes in CI and CII are relatively stable over the
study area.

Figure 2. Fitting of soil lines in two types and two dates, (A) CI class in 9 August 2013; (B) CII class in
9 August 2013; (C) CI class in 2 August 2014; (D) CII class in 2 August 2014.

Figure 3. Soil line slopes for soil type of CI, CII.

4.2. Preferred MPDI Model

RSMC can characterize whether a crop has suffered from water stress, which is closely related to
the drought conditions. Lower RSMCs indicate that crop have suffered more severe drought, and vice
versa. In this study, 10-day RSMC point-data were acquired at two agro-meteorological observation
stations from May to September in 2013. It was employed to sensitivity analysis of variable vegetation
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indices to drought results by the correlation with the MPDI model based variable vegetation indices,
then the optimal one was found to estimate the drought model.

The eight previously established VI-based drought monitoring models were compared to the
RSMC data measured at the two ground stations in 2013 and 2014. The validation results are as follows.
The Person correlation coefficients (Rs) between different MPDI models (based on GEMI, MSAVI,
NDVI, PVI, SAVI, TSAVI, EVI and EVI2) and the RSMC measured at the Heishan station are −0.77,
−0.79, −0.78, −0.77, −0.78, −0.79, −0.85 and −0.87, respectively. The R values between these MPDI
models and the RSMC measured at the Jinzhou station are 0.79, −0.73, −0.80, −0.81, −0.81, −0.79,
−0.86 and −0.89, respectively.

As shown in Figure 4, compared to the other vegetation indices, EVI and EVI2 are more highly
correlated with RSMC, with the correlation between the EVI2 and the RSM being the highest.
The R values between the EVI2 and the RSMC measured at the two stations are 0.87 and 0.89,
respectively, as shown in Figure 5. The EVI2 was developed based on EVI. EVI equation is composed
of the blue, red and near-infrared bands, whereas EVI2 is a development based on EVI that uses the
red and near-infrared bands to represent the blue band in EVI. We discovered that the EVI2-based
MPDI is more sensitive to the RSMC, and is therefore appropriate for refined drought monitoring.

Figure 4. Correlation coefficients between different drought indices with RSMCs measured at the
Jinzhou and Heishan meteorological stations.

Figure 5. Scatter plot of MPDI_evi2 with RSMCs measured at the Heishan and Jinzhou agro-
meteorological stations.
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In addition, the drought may be caused from precipitation deficits, so which can reflect crop
drought suffered status to some extent. Here, wetter year of 2013 and drier year of 2014 were selected
for analyzing the response of several MPDI models to precipitation; and results from linear regression
analysis indicated that all MPDI models based variable vegetation indices have a statistically significant
relationship with precipitation data in general. Correlation coefficients between different drought
indices with precipitation from CHIRPS (detailed introduction in Section 2.2.3) at the Jinzhou and
Heishan meteorological stations can be found in Table 4.

Table 4. Correlation coefficients between different drought indices with precipitation from CHIRPS at
the Jinzhou and Heishan meteorological stations.

Pearson’s
Correlation

Coefficient (R)
MPDI_gemi MPDI_msavi MPDI_ndvi MPDI_pvi MPDI_savi MPDI_tsavi MPDI_evi MPDI_evi2

Heishan_station −0.68 −0.67 −0.67 −0.61 −0.63 −0.64 −0.71 −0.73
Jinzhou_station −0.66 −0.64 −0.66 −0.56 −0.53 −0.54 −0.70 −0.70

EVI2-based MPDI has the strongest correlation with precipitation in Heishan and Jinzhou station,
and which of coefficient is little higher than EVI-based MPDI and precipitation. As to EVI2-based
MPDI, We showed EVI2-based MPDI values (from May to September) and related precipitation
(from January to December) in two locations in Figures 6 and 7. The EVI2-based MPDI demonstrated
a similar temporal trend in general, i.e., a higher index values followed less rainfall and lower values
after major precipitation events. In other words, during 2013 to 2014, a drop in the MPDI corresponded
to a significant rainfall occurred in previous days, or vice versa. There have significant correlation of
changes of EVI2-based MPDI value and corresponding rainfall. Briefly, EVI2-based MPDI values in
2013 are mostly low than results of 2014, it means that heavier drought happened in 2014.

Figure 6. Temporal distribution of EVI2-based MPDI and precipitation during 2013 to 2014 at the
Heishan meteorological station.
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Figure 7. Temporal distribution of EVI2-based MPDI and precipitation during 2013 to 2014 at the
Jinzhou meteorological station.

4.3. Results of EVI2-Based MPDI

The Jinzhou area is a drought-prone city, where a severe drought occurred in 2014 [26,46]. In this
study, the crop growing period of 2014 is selected to display the trends of the temporal and spatial
changes in the drought conditions and exploit the application potential of the GF-1 data. The slope of
soil lines is from Section 4.1, the drought results can be obtained from the EVI2-based MPDI originated
from Equations (3) and (4).

Previous publications [9,10,47] classified the MPDI values into three drought categories, which are
severe drought, mild drought and normal (the thresholds for the drought severity classifications can be
found in Table 4). The field-based drought-affected crop data have four classifications (with an added
moderate drought class); thus we made little change regarding the reference categories considered for
comparability with the field-based drought-affected crop data, and defined the moderate and mild
drought class are 0.35–0.4 and 0.3–0.35, respectively. The threshold used to classify drought severity
for the EVI2-based MPDI from the GF-1 WFV data is showed in Table 5. The temporal and spatial
drought distributions in 2014 are shown in Figure 6.

During the early stage of crop growth, drought occurred in few areas, those areas are east
and west of Yi county, as well as north and south of Linghai City as shown in Figure 8a. In early
July, crop planting area suffered different degrees of drought in Beizhen city, and slight drought in
northwest Heishan, south Yi and west of Linghai (Figure 8b). Later, critical crop growing stage of July
to August, the drought extent and severity are largely increasing, we know that severe drought had
occurs through the entire Jinzhou area, except for parts of areas in south Heishan, Beizhen, south Yi,
west Linghai and Jinzhou City (Figure 8c). This pattern is consistent with the drought characteristics
of local governmental department [22]. From Figure 8d, the drought is obviously decreasing in most
areas, which are in the late stage of crop growing.
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Table 5. Classification of the EVI2-based MPDI and the MPDI from the Ghulam and Qin Qiming
drought indices.

Drought Class MPDI from Former Publishes EVI2-Based MPDI in This Paper

Severe drought >0.4 >0.4
Moderate drought - 0.35–0.4

Mild drought 0.3–0.4 0.3–0.35
Normal 0–0.3 0–0.3

Figure 8. Spatial distribution of drought for EV2-based MPDI in different 2014 crop growing stages:
(a) 6 June, (b) 1 July, (c) 2 August and (d) 9 September.

4.4. Validation of EVI2-Based MPDI

The accuracy of the drought results based on the EVI2-based MPDI for the GF-1 data was
evaluated using the drought statistical results of the local governmental department. These data were
from a drought-affected crop area, with varying degrees of drought in sub-areas. Bias can be calculated
for the drought-affected crop area with the data from the local governmental department and the
EVI2-based MPDI model; and the percentage of bias toward the drought-affected crop area by a local
statistics department is used. Comparisons of the proposed model and field observation data are made
for bias and the percentage of bias. Table 6 summarizes the drought-affected crop area by the use of the
LNDWR and the EVI2-based MPDI model, as well as comparisons in five sub-areas and for different
drought degrees affecting the entire region.
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Small differences occur between the drought-affected crop area from LNDWR and that from
the proposed model results for the five sub-areas (−3.4, 1.9, 4.4, 1.8 and 1.5 thousand ha, Table 3).
The percentage of bias for the entire region is approximately 4.8%, and the highest values is −21.8%
in Jinzhou City. In addition, slightly higher differences exist between the statistical data and remote
sensing monitoring results with respect to minor and severe drought conditions (27.1% and −24.7%).
Generally, for the whole study region, the percentage of the bias toward the field drought-affected crop
area is 4.6% (at an accuracy above 95%), which is good performance.

Table 6. Drought-affected crop area by LNDWR and the EVI2-based MPDI model, as well
as comparisons.

Comparison Items Drought-Affected Crop Area
from LNDWR (Thousand ha)

Drought-Affected Crop Area
from MPDI_evi2 (Thousand ha) Bias * Percentage ** (%)

Jinzhou 15.5 12.1 −3.4 −21.8

Beizhen 16.7 18.6 1.9 11.6

Heishan 30.0 34.4 4.4 14.7

Yi 32.3 34.1 1.8 5.7

Linghai 43.3 44.8 1.5 3.5

Jinzhou region 137.7 147.0 9.3 4.6

Severe drought in the
Jinzhou region 43.3 32.6 −10.7 −24.7

Moderate drought in the
Jinzhou region 29.3 31.7 2.4 8.1

Slight drought in the
Jinzhou region 65.1 82.7 17.6 27.1

Note: Bias * is the difference in the drought-affected crop area between LNDWR and the EVI2-based MPDI model,
Percentage ** is the percentage of bias toward the drought-affected crop area from LNDWR.

5. Discussion

This paper modified the MPDI model for suitable refined crop drought monitoring from GF-1
data, and proposed an EVI2-based MPDI model. Different soil lines were simulated in varying soil
types, and EVI2 outperformed the other vegetation indices in building the drought monitoring model.
Evaluated by the field drought statistical data published by LNDWR, the proposed model for the GF-1
WFV data was shown to perform well for refined crop drought monitoring.

Our analysis demonstrated that small slope changes occurred with soil type; thus soil type
impacts the drought results. However, this finding is only based on the conditions of the study area,
in which the soil types vary relatively insignificantly. We should focus on large areas for confirming
this conclusion. Former researchers believe that the differences may result from variation in the soil
color, soil brightness and fertilization conditions [9]. In Section 4.1, we find that small changes in the
slope of the soil line occur during several crop growing stage, which can be explained by different
fertilization or weather conditions on d days. Questions remain regarding the influence of those small
slope changes on the drought predictions, and the size of contribution to errors in the drought model.
We should investigate these questions in the future.

This study found EVI2-based MPDI to be more sensitive to drought conditions in high-FVC
areas than the NDVI-based MPDI. Because EVI2 is a modification of EVI, both the EVI and EVI2 are
resistant to atmospheric interference and soil background noise, and comparatively little affected by
the aerosol optical depth error [19,39]. In contrast, the used NDVI is prone to saturation in high-FVC
areas, is relatively significantly affected by soil background in the low-FVC areas, and is unable to
thoroughly remove atmospheric attenuation. Why does EVI perform slightly better than EVI2 in our
study? Possibly, the blue band is more susceptible to atmospheric correction, and does not provide
additional biophysical information on vegetation properties [39,48]. For this study we used the ENVI
software to conduct, not build the specific atmospheric correction algorithm for the GF-1 WFV data;
this algorithm would reduce the EVI performance twofold.
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The EVI2 development was undertaken to decompose the original EVI equation by eliminating
the blue band and assuming that the blue reflectance can be expressed as a function of the red
reflectance [39]. The parameter values of the EVI2 equation are dependent on the average ratio of the
red to blue band reflectance for MODIS data. Therefore, this ratio may be variable for other sensors
with different spectral functions, and the results from GF-1 data may vary slightly by directly using
EVI2 based on MODIS data.

FVC is another parameter in the MPDI equation, besides the soil line slope. In this paper and
previous studies, supposing that the FVC algorithm is powerful and can exactly express the vegetation
cover condition and changes in a certain area, FVC is proxy of vegetation coverage influence on
drought model and the linear mixture were widely used FVC estimation methods [44,45,48–50], but the
question arises whether FVC adequately describes the vegetation influences on the drought; these
models required a definition of the NDVI values of highly dense vegetation and bare soil, generally
empirical thresholds were used, which may cause some uncertainty and difference in extreme cases.

Other possible causes for the differences between the monitoring model results and the ground
measurements existed. For example, the accuracy assessment of the drought monitoring model is
an important issue, but actual drought values are presently difficult to obtain from field surveys.
Therefore, we recommended point-based RSMC data and field drought-affected crop area data to
evaluate the proposed model’s performance. Some errors maybe arisen. The scale for the point-based
RSMC data at the ground stations is inconsistent between the footprint of remote sensing data and
the point-based nature of the RSMC measured parameter. Furthermore, different calculation methods
exists between the drought-affected crop area data from LNDWR and from the proposed model.
A direct comparison of these data may result in errors. Another possible cause for the differences could
be temporal discrepancies between the drought monitoring results and the field observation data.
However, the former (drought-affected crop area from the proposed model) was calculated based on
satellite data from 2 August 2014, whereas the latter (drought-affected crop area data from LNDWR)
was for 5 August 2014, with little difference between the data collection dates.

6. Conclusions

By now almost no drought model based on GF-1 WVF data, so we illustrated the potential and
perspective for GF-1 satellite. GF-1 satellite data have high-resolution with 16 m, the highest frequency
is up to 4 days and wide field view, more available data in crop growing stage from same four sensors
can be obtained, even we have more chance to capture high quantity data in rainy season. The drought
distribution map for high-frequency and high-resolution is necessary, especially for precise agriculture.

A refined crop drought monitoring model was developed based on WVF GF-1 data and validated
over the Jinzhou area of Liaoning Province, China. Different soil line slopes were simulated, and we
considered EVI2 the best suitable one. Different soil line slopes were reconstructed and applied to
different soil types. The validation results show that the relative errors for the drought-affected
crop areas calculated using the EVI2-based MPDI model and the field data from LNDWR are
small for an entire large area (4.8%), and the bias percentage ranges from −21.8% to 14.7% in five
sub-areas. The proposed model can be used to achieve effective refined crop drought monitoring
within high-resolution and frequency over large areas, which can provide various types of reliable
drought information (e.g., an accurate spatial distribution of drought-affected crops and the drought
level in each pixel or region) to relevant drought management departments for drought prevention,
reduction and relief.
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