
sensors

Article

A Single LiDAR-Based Feature Fusion Indoor
Localization Algorithm

Yun-Ting Wang 1, Chao-Chung Peng 1,*, Ankit A. Ravankar 2 and Abhijeet Ravankar 3

1 Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan;
omiwanggg@gmail.com

2 Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University,
Sapporo 060-8628, Japan; ankit@eng.hokudai.ac.jp

3 Lab of Smart Systems Engineering, Kitami Institute of Technology, Hokkaido, Kitami 090-8507, Japan;
abhijeetravankar@gmail.com

* Correspondence: ccpeng@mail.ncku.edu.tw; Tel.: +886-6-275-7575 (ext. 63633)

Received: 17 March 2018; Accepted: 18 April 2018; Published: 23 April 2018
����������
�������

Abstract: In past years, there has been significant progress in the field of indoor robot localization.
To precisely recover the position, the robots usually relies on multiple on-board sensors. Nevertheless,
this affects the overall system cost and increases computation. In this research work, we considered
a light detection and ranging (LiDAR) device as the only sensor for detecting surroundings and
propose an efficient indoor localization algorithm. To attenuate the computation effort and preserve
localization robustness, a weighted parallel iterative closed point (WP-ICP) with interpolation is
presented. As compared to the traditional ICP, the point cloud is first processed to extract corners and
line features before applying point registration. Later, points labeled as corners are only matched with
the corner candidates. Similarly, points labeled as lines are only matched with the lines candidates.
Moreover, their ICP confidence levels are also fused in the algorithm, which make the pose estimation
less sensitive to environment uncertainties. The proposed WP-ICP architecture reduces the probability
of mismatch and thereby reduces the ICP iterations. Finally, based on given well-constructed indoor
layouts, experiment comparisons are carried out under both clean and perturbed environments. It is
shown that the proposed method is effective in significantly reducing computation effort and is
simultaneously able to preserve localization precision.
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1. Introduction

Simultaneous localization and mapping (SLAM) is a method of building a map under exploration
and estimating vehicle pose based on sensor information in an unknown environment. When exploring
an unpredictable environment, an unmanned vehicle is generally employed for exploration as well
as localization. In this regard, the vehicle could be equipped with a single sensor for detecting and
identifying surroundings, or by attaching two or even more sensors on the vehicle to enhance its
estimation capability.

When considering different kinds of sensors [1], laser range finders (LRFs), vision, and Wi-Fi
networks are popular sensing techniques for indoor localization tasks. Recently, with advancement in
computer vision and image processing, many researchers have started investigating the vision-based
SLAM [2,3]. Under the condition that the captured images are matched sufficiently, features can
be extracted using Scale-Invariant Feature Transform (SIFT) [4] or Speeded Up Robust Features
(SURF) [5]. Other indoor localization methods consider the amplitude of received signal from Wi-Fi
networks [6–10]. These localization strategies depend on pre-installed wireless hardware devices on
the site and thus may not be applicable in Wi-Fi denied environments.
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For an ultra-low-cost SLAM module, previous works have considered a set of on-board ultrasonic
sensors [11], which provided sparse measurements about the environment. However, the robot pose
might lose its pose under complicated environments without the aid of robot kinematics information.
To achieve robust image recognition [12], robot navigation and map construction, the depth sensor,
Kinect v2, was considered [13]. Kinect v2 is based on the time-of-flight measurement principle and can
be used in outdoors environment. Since the multi-depth sensors are able to provide highly dense 3D
data [14], the real-time computation effort is relative higher. Furthermore, for well-constructed indoor
environment, such hardware configuration is not necessary for 2D robot positioning.

Owing to the light weight and portable advantage, light detection and ranging (LiDAR) has
attracted more and more attention [15,16]. LiDAR possesses a high sampling rate, high angular
resolution, good range detection, and high robustness against environment variability. As a result,
in this research, a single LiDAR is used for indoor localization.

By analyzing the position of features in each frame at every movement of the vehicle, one can
figure out the vehicle’s traveling distance and heading. With different scanning data, an iterative closed
point (ICP) [17] algorithm is employed to find the most appropriate robot pose matching conditions,
including rotation and translation. However, the ICP may not always lead to good pattern matching if
point cloud registration issue is not well addressed. In other words, a better point registration will lead
to better robot pose estimation. To address this, point cloud outliers must be identified and recognized.
Another issue when applying the ICP is computation efficiency. Since the ICP algorithm considers
the closest-point rule to establish correspondences between points in current scan and a given layout,
the searching effort can increase dramatically when the scan or a layout contains large amounts of data.

The researches [18–24] has addressed and solved some of the problems when applying ICP,
including (1) wrong point matching for large initial errors, (2) expensive correspondence searching,
(3) slow convergence speed, and (4) outlier removal. For robot pose subjected to large initial angular
displacement, especially in [16], iterative dual correspondence (IDC) is proposed. However, it demands
higher computation due to its dual-correspondence process. Metric-based ICP (MbICP) [21] considers
geometric distance that takes translation and rotation into account simultaneously. The correspondence
between scans is established with this measure and the minimization of the error is carried out in
terms of this distance. The MbICP shows superior robustness in the case of existing large angular
displacement. Among various planar scan matching strategies, Normal Distribution Transformation
(NDT) [22] and Point-to-Line ICP (PLICP) [23] illustrate state-of-the-art performance in consideration
of scan matching accuracy. NDT transforms scans onto a grid space and tends to find the best fit by
maximizing the normal distribution in each cell. The NDT does not require point-to-point registrations,
so it enhances matching speed. However, the selection of the grid size dominates estimation stability.
The PLICP considers normal information from environment’s geometric surface and tries to minimize
the distance projected onto the normal vector of the surface. In addition, a close-form solution is also
given such that the convergence speed can be drastically improved.

To obtain precise and high-bandwidth robot pose estimation, the vehicle’s dynamics and traveling
status can be further integrated into a Kalman filter [25]. A Kalman filter provides the best estimate to
eliminate noise and provides a better robot pose prediction. Other researchers have considered the
wheel odometry fusion-based SLAM [26,27], which integrates robot kinematics and encoder data for
pose estimation. However, it might not be suitable for realization of a portable localization system.

Based on the aforementioned issues, in this work, the LiDAR is considered as the only sensor for
mapping and localization. To avoid mismatched point registration and to enhance matching speed,
we propose a feature-based weighted parallel iterative closed point (WP-ICP) architecture inspired
by [18,23,28–31]. The main advantages of the proposed method are as follows: (a) Point sizes of the
model set and data set are significantly reduced so that the ICP speed can be enhanced. (b) A split
and merge algorithm [28,29] is considered to divide the point cloud into two feature groups, namely,
corner and line segments. The algorithm works by matching points labeled as corners to the corner
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candidates; similarly, for those points labeled as lines can only be matched to the lines candidates. As a
result, it attenuates any possibilities of point cloud mismatch.

In this paper, it is supposed that the well-constructed indoor layout is given in advance. The main
design object is to reduce the computation effort and to maintain the indoor positioning precision.
The rest of this paper is organized as follows. In Section 2, an adaptive breakpoint detector is firstly
introduced for scan point segmentation. A clustering algorithm and a split–merge approach is further
considered for point clustering and feature extraction, respectively. In Section 3, a WP-ICP algorithm is
proposed. Section 4 presents real experiments to evaluate the effectiveness of the proposed method.
Finally, Section 5 outlines conclusions and future work.

2. Feature Extraction

For feature extraction, a robot is employed in an indoor environment and moves in a given layout,
and a localization algorithm is introduced. In addition, real-time sensing and pose estimation is key
for practical realization. Feature extraction plays an important role in reducing the amount of point
cloud data for computational speedup.

2.1. The Main Concept of Feature Extraction

Due to the high scan resolution of LiDAR and the given layout, construction of a KD-Tree will
be highly time-consuming if all data points are fed into the ICP algorithm. Therefore, extracting
informative feature points to represent the environment is one of the important tasks.

In this research, a feature extraction scan matching procedure is proposed as summarized in
Figure 1. Firstly, all the scanning points are separated into many clusters by invoking the adaptive
breakpoint detector (ABD) [28]. The main idea of an ABD is to find the breakpoints in each scan,
where the scanning direction of a LiDAR is counterclockwise and continuous. Therefore, by detecting
breakpoints, the algorithm can determine if there exists a discontinuity between two consecutive
scanning points. However, the threshold for the breakpoint determination should be adaptive with
respect to the scanning distance, which is presented in the following subsection.
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2.2. A Novel Method for Finding Clusters

Consider that, for each scan, there exists n beams. The radius for each beam is denoted as ri,
where i = 1, · · · , n. To enhance the clustering performance, a simple and straightforward adaptive
radius clustering (ARC) algorithm is developed as follows:

∆S = R× ∆θ = R× (α× 2π/360), R = min(ri, ri−1) (1)

λ = N × ∆S (2)

where ∆S denotes an adaptive arc length between points, α is the angular resolution provided by
LiDAR specification, N is a design scaling factor relative to LiDAR noise level, and λ is the threshold
for clustering. Therefore, if the distance between two scanning points in the same scan is larger than λ,
those points are going to be divided into two different clusters; that is

‖pi − pi−1‖ > λ (3)

Based on the ARC, the scan shown in Figure 2b can be clustered into two groups. Else, it may
be divided into several segments due to the radius variations as illustrated in Figure 2a. Therefore,
the ARC algorithm is able to separate clusters according to LiDAR’s measurement characteristics.

After utilizing the ARC algorithm, clusters with fewer scanning points are treated as outliers.
For clusters with lower density points that cannot provide reliable information are discarded before
the feature extraction step.
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Figure 2. Illustration of the adaptive radius clustering (ARC) algorithm.

2.3. Split and Merge for Corner and Line Extractions

Comparing a few of the feature extraction methods in different aspects, including the speed of the
algorithm, correctness, and so on, the split and merge [15,28,29] is considered for feature extraction in
this research. The algorithm is capable of extracting corner feature points in the environment, which
can be then taken as stable and reliable feature points.

The splitting procedure also combines the idea of Iterative End Point Fitting (IEPF) [30,32], which
is a recursive algorithm for extracting features. For a cluster Ω = {xi, yi|i = 1, · · · , k}, the split and
merge algorithm connects the first point and the last point to form a straight line. The algorithm then
calculates deviations from all the points to this line. If a point where the corresponding maximum
distance is larger than a predefined deviation threshold dc, this point is labeled as a feature point and
it further splits the cluster into two subsets. The feature point Pc(xi, yi) ∈ Ω can be determined by the
following rule:

Pc(xi, yi)← d := argmax
Pc∈Ω

|axi + byi + 1|√
a2 + b2

> dc (4)
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where a, b are the coefficients of a line equation L : ax + by + 1 = 0, which is composed of P1 and Pk.
Figure 3 demonstrates the main process of the split and merge algorithm. The algorithm recursively
splits the set of points into two subsets until the condition, Equation (4), is not satisfied.
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3. The Proposed Method: WP-ICP

3.1. Pose Estimation Algorithm

SLAM is considered to be a chicken and egg problem since precise localization needs a reference
map, and a good mapping result comes from a correct estimation of the robot pose [33]. To achieve
SLAM, these two issues must be solved simultaneously [34]. However, in this work, only localization
is considered. Therefore, by assuming that a complete layout of the environment is given in advance,
a novel scan matching algorithm is presented and will be introduced in the next subsection.

Suppose that the correspondences are already known, the pose estimation can be considered as
an estimate of rigid body transform, which can be solved efficiently via singular value decomposition
(SVD) technique [35].

Let P = {p1, p2, · · ·pN} be data set from a current scan and Q = {q1, q2, · · ·qN} be a model set
received from a given layout. The goal is to find a rigid body transformation pair (R, t) such that the
best alignment can be achieved in the least error sense. It can be stated as

(R, t) = argmin
N

∑
i=1

wi‖Rpi + t− qi‖2 (5)

where wi are the weights for each point pair.
The optimal translation vector can be calculated by

t = q−Rp (6)

where

p =
∑N

i=1 wipi

∑N
i=1 wi

, q =
∑N

i=1 wiqi

∑N
i=1 wi

(7)

can be taken as weighted centroids for the data set and the model set, respectively.
Let xi = pi − p and yi = qi − q. Consider also matrices X, Y, and W which are defined by

X =
[

x1 · · · xN

]
, Y =

[
y1 · · · yN

]
, and W = diag(w1, · · · , wN), respectively.

Defining S = XWYT and then applying the singular value decomposition (SVD) on S yields

S = U Σ VT (8)

where U and V are unitary matrices, and Σ is a diagonal matrix. It has been proved that the optimal
rotation matrix is available by considering

R = VUT (9)
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Based on Equation (9), the translational vector given in Equation (6) can also be solved.
According to the ARC, the split–merge algorithm, and the ICP, the procedure of the

corner-feature-based ICP pose estimation is summarized in Figure 4. To reject the outlier during
the feature point registration, the weightings wi can be designed according to the Euclidean distance,
and the values for certain unreasonable feature pairs can be set to zero.
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3.2. A Weighted Parallel ICP Pose Estimation Algorithm

An environment that has a similar layout generally results in good estimates. However, in practice,
it is not always the case. To verify the feasibility of the proposed method, the proposed algorithm
needs to be robust enough even in the presence of environment uncertainties such as moving people.

Based on the results presented in Sections 2 and 3, a WP-ICP is proposed. The WP-ICP considers
two features for point clouds that are pre-processed: one is the corner feature and the other is the line
feature. Corners are important feature points in the environment as they are distinct, whereas walls are
stable feature points and a good candidate for feature extraction in structured environments [15,31,36].
Taking advantage of LiDAR for detecting surroundings, walls can be represented as line segments,
which are composed of two corners. Furthermore, we also considered the center point of a line segment
as another matching reference point.

The motivation for such features are that indoor environments, e.g., offices and buildings, are
generally well structured. Therefore, feature-based localization is suitable for such environments.
Examining the traditional full-points ICP algorithm, point cloud registration is achieved by means of
the nearest neighbor search (NNS) concept. There is no further information attached to those points.
Therefore, it is easy to obtain incorrect correspondence as shown in Figure 5. Under this circumstance,
several iterations are usually needed to converge the point registration. In addition, the ICP gives rise
to an obvious time cost for registration especially when the size of point cloud is large. To solve the
incorrect correspondence and iteration time cost issues, a feature-based point cloud reduction method
is developed.

For the proposed WP-ICP, the point cloud is first characterized by fewer corners and lines. This
has two main advantages: (a) First, the size of the point cloud is reduced significantly and thus
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enhances the ICP speed. (b) Second, the polished points are labeled as corner or line features. Only
those points labeled as corners can be matched to the corner candidates; similarly, only those points
labeled as lines can be matched to the lines candidates. The result is shown in Figure 6. Figure 6a
illustrates the matching condition for corners while Figure 6b represents the matching condition for
lines. The parallel-ICP results in correct point registration and thereby reduces the number of iterations.
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Figure 5. Incorrect point registration caused by the nearest neighbor search (NNS) Iterative Closest
Point (ICP) algorithm.
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Figure 6. Illustration of feature-based point cloud registration. (a) Corner features are matched to
corresponding corner features (b) Line features are matched to corresponding line features.

The main advantage of the WP-ICP is that the number of data points in a data set as well as a
model set can be significantly reduced. On the contrary, the full-points ICP algorithm includes all data
points for correspondence searching and thus leads to low computation efficiency.

Moreover, in the proposed WP-ICP, the scan points are clustered into the corner or the line groups,
respectively. Based on the parallel mechanism, the points from a corner set can never be matched
with the points from a line set. It can thus avoid mismatching during the point registration. However,
for full point ICP, many mismatches could happen once the distances between those two set points are
close enough.

Since the WP-ICP has two ICP processes at the same time, it generates two pairs of robot pose,
namely (RC, tC) and (RL, tL). Therefore, it is desired to fuse these two poses to come out with a more
confident pose estimate.
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The criterion for the confidence evaluation is designed as follows:

ΓC =
#ofmatchedcornerfeaturepoints

#oftotalcornerfeaturepoints
, ΓL =

#ofmatchedlinefeaturepoints
#oftotallinefeaturepoints

(10)

where ΓC,L represent the confidences and can be treated as fused weights for corner feature ICP and
line feature ICP, respectively.

The final step is to calculate a fused pose estimate
(

R f used, t f used

)
as follows:

R f used = αRC + (1− α)RL

t f used = αtC + (1− α)tL
, α =

ΓC
ΓC + ΓL

(11)

where the heading rotation angle is used to obtain the R f used.
Since the WP-ICP provides two sources of feature points, the real-time LiDAR scanning points

are going to be separated into two groups including corners and lines. Each group is then matched
with its corresponding features. Based on this parallel matching mechanism, serious mismatching can
be avoided, resulting in improved localization stability and precision. The flow chart of the WP-ICP is
illustrated in Figure 7.
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Figure 7. The weighted parallel iterative closed point (WP-ICP) pose estimation algorithm.

The practical benefits of the proposed WP-ICP include the following: (a) computation effort is
reduced when KD-Trees are built and nearest point registration is applied; (b) correct point cloud
registration significantly reduces ICP iterations, enabling fast robot pose estimate; (c) robot pose is
determined by feature-based ICP fusion of two features (corner and line), which makes the estimate
less sensitive to uncertain environments.
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4. Experiments and Discussions

For the experiments, a Hokuyo UST-20LX Scanning Laser Rangefinder is used, where a 20 Hz
scan rate and a 15 m scan distance are applied. The scanning angle resolution is 0.25◦. Based on these
settings, the maximum scanning points are 1081 point per scan; that is, 20 × 1081 = 21,620 points per
second. The experiment system is shown in Figure 8, which includes (1) a portable LiDAR module
(the upper half part) and (2) a mecanum wheeled robot (the lower half part). In this work, since the
LiDAR is considered as the single sensor, the robot vehicle is only taken as a moving platform. There
is no communication between the LiDAR module and the vehicle. The maximum moving speed of the
vehicle in the following experiments is restricted to 50 cm/s.
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Figure 8. A LiDAR-based portable module and a moving platform.

Based on the resolution and testing result, N in Equation (2) is set to 15. With regard to the
ARC, clusters containing fewer than 5 points are considered as outliers and are removed before the
WP-ICP is applied. The distance dc = 10 cm is used for the split and merge process. For each iteration,
the weights for ICP will be set to zero if the distances between the points’ correspondences are greater
than 50 cm. This threshold is determined in accordance with the maximum moving speed of the robot.

To ensure the WP-ICP algorithm is feasible, an experiment was firstly carried out in a clear
environment with no obstacles, which is shown in Figure 9. The area of the testing environment was
about 5 m × 6 m. There are two experiments that were carried out in this environment. One is guiding
the vehicle in a rectangular path and the other is moving the vehicle randomly.
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Figure 9. Scene-1: a robot moves in a clear environment with no obstacles. (a) Experimental
environment. (b) Robot is moved in a guided rectangular path. (c) Robot is moved randomly.

Considering full points based ICP (shown in the black line) result as the ground truth, using corner
feature only (shown in the red line) is able to result in an accurate pose estimate in a clear environment
as illustrated in Figure 10. Figure 11 shows the deviation comparisons of the pose estimation and the
average of deviations are 3.06786 and 4.29678 cm, respectively.
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Moreover, to compare the real-time estimation capabilities between the full-points ICP and the
corner-feature-based ICP, the total number of ICP iteration at each LiDAR scan loop is addressed.
Less ICP iterations are helpful for real-time realization. Figure 12 shows the number of ICP iterations
between different algorithms for different experiments. It should be noted that, when using corner
as the only feature, the maximum iteration loop in the ICP was no more than 4 (two iterations on
average). However, using full-points ICP results in more than 25 iterations on average. In this
environment, the WP-ICP was also applied. The localization performance is very close to the one
conducted by the corner-based ICP. Therefore, the main advantage of the WP-ICP is not obvious under
this clear environment.
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To illustrate the superior pose estimation robustness against the corner-based ICP, another
experiment has been carried out on the 3rd floor of Department of Aeronautics and Astronautics,
NCKU, shown in Figure 13. The area is about 15 × 40 m2 and contained different sized objects like
flowerpots and water-cooler as shown in Figure 14, which can be taken as unknown disturbances for
post estimation. These objects were added later in the environment, and hence can be used to test the
feasibility and robustness of the proposed WP-ICP algorithm in dynamic environments.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 19 

 

Less ICP iterations are helpful for real-time realization. Figure 12 shows the number of ICP iterations 
between different algorithms for different experiments. It should be noted that, when using corner 
as the only feature, the maximum iteration loop in the ICP was no more than 4 (two iterations on 
average). However, using full-points ICP results in more than 25 iterations on average. In this 
environment, the WP-ICP was also applied. The localization performance is very close to the one 
conducted by the corner-based ICP. Therefore, the main advantage of the WP-ICP is not obvious 
under this clear environment. 

To illustrate the superior pose estimation robustness against the corner-based ICP, another 
experiment has been carried out on the 3rd floor of Department of Aeronautics and Astronautics, 
NCKU, shown in Figure 13. The area is about 15 × 40 m2 and contained different sized objects like 
flowerpots and water-cooler as shown in Figure 14, which can be taken as unknown disturbances for 
post estimation. These objects were added later in the environment, and hence can be used to test the 
feasibility and robustness of the proposed WP-ICP algorithm in dynamic environments. 

0 200 400 600 800 1000 1200 1400 1600 1800
Scan Loop

0

10

20

30

40

50

60

70

80

90

100

IC
P 

ite
ra

tio
ns

ICP performance comparison

Full scanning points
Corner feature only

0 500 1000 1500 2000 2500 3000
Scan Loop

0

10

20

30

40

50

60

70

80

90

100

IC
P 

ite
ra

tio
ns

ICP performance comparison

Full scanning points
Corner feature only

(a) Exp-1 (b) Exp-2 

Figure 12. ICP performances of the first/second experiments. 

 

Figure 13. Scene-2: the 3rd floor, Department of Aeronautics and Astronautics, NCKU. Figure 13. Scene-2: the 3rd floor, Department of Aeronautics and Astronautics, NCKU.



Sensors 2018, 18, 1294 12 of 19

Sensors 2018, 18, x FOR PEER REVIEW  12 of 19 

 

  
(a) New objects like water-cooler added to the 

environment 
(b) New objects like flowerpots added to the 

environment 

Figure 14. DAA-3F local snapshot with new objects to test the robustness of the algorithm. 

In the experiment, the traveling path of the vehicle goes counterclockwise on the 3rd floor. The 
transient localization behavior can refer to Figure 15, where the upper left subplot and lower left 
subplot shows that all the points in data set (from a LiDAR scan) and a model set (from a layout) are 
already being labeled by corner features and line features, respectively. Those two features are fed 
into the parallel ICP process and finally being fused to a single robot pose. Facing the area that is 
different from layout and passing through a straight corridor, the result from utilizing corner feature 
points based ICP algorithm leads to apparent localization deviations. Figure 16 shows a long range 
localization results at DAA-3F under the use of different algorithms. 

 

Figure 15. Localization by the WP-ICP with 10 cm interpolation. Upper left corner subplot: corner 
features. Lower left corner subplot: line features. Right subplot: layout and estimated robot trajectory. 

-0.5 0.0 0.5 1.0 1.5 2.0 x104

Global map (mm)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
104

Frame Rate 20.00 Hz   
Angular Resolution 0.250 deg

-1.5 -1 -0.5 0 0.5 1 1.5
104

-1.5

-1

-0.5

0

0.5

1

1.5

C
or

ne
r F

ea
tu

re

104
LiDAR Scan Loop = 6652   Time = 166.28 sec

 ICP Iteration =2

Model Set
Rotated Data Set
Data Set

 =  -0.80 deg
 =  -0.22 deg

-1.5 -1 -0.5 0 0.5 1 1.5
104

-1.5

-1

-0.5

0

0.5

1

1.5

Li
ne

 F
ea

tu
re

104 ICP Iteration =3

Model Set
Rotated Data Set
Data Set

 =  -0.80 deg
 =  -0.16 deg

Figure 14. DAA-3F local snapshot with new objects to test the robustness of the algorithm.

In the experiment, the traveling path of the vehicle goes counterclockwise on the 3rd floor.
The transient localization behavior can refer to Figure 15, where the upper left subplot and lower left
subplot shows that all the points in data set (from a LiDAR scan) and a model set (from a layout) are
already being labeled by corner features and line features, respectively. Those two features are fed
into the parallel ICP process and finally being fused to a single robot pose. Facing the area that is
different from layout and passing through a straight corridor, the result from utilizing corner feature
points based ICP algorithm leads to apparent localization deviations. Figure 16 shows a long range
localization results at DAA-3F under the use of different algorithms.
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Figure 15. Localization by the WP-ICP with 10 cm interpolation. Upper left corner subplot: corner
features. Lower left corner subplot: line features. Right subplot: layout and estimated robot trajectory.
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Examining Figure 16 again, since WP-ICP provides both corner and line features as scan matching
correspondences, theoretically the results are supposed to be better than those conducted by the
corner-based ICP. However, Figure 16b indicates that there are still estimation errors when passing
through the corridor. It is because of fewer line features in the area. To further improve the estimation
robustness, an interpolation on the line features is further integrated into the WP-ICP. Note that
the interpolation is used to increase the number of line feature points for every 10 cm. The result
(i.e., the purple line) shows a good estimate when utilizing the WP-ICP algorithm with interpolation.
Finally, the improvement can also be found in locations subject to static unknown objects as shown in
Figure 16c, where the corresponding snapshots are shown in Figure 14a,b, respectively.

The results of WP-ICP with interpolation demonstrate the robustness against the external
environment uncertainty. The details of the computation efficiency under different algorithms are
depicted in Figure 17. Compared to the full point ICP, the use of corner features only can improve speed
by about 50 times on average; the use of WP-ICP (with interpolation) can improve speed by 5 times
on average. However, applying corner features only could sometimes lead to unstable estimates.
Therefore, WP-ICP makes a compromise between computation speed and localization accuracy.
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Finally, it is worth discussing the localization performance under different interpolation sizes
when applying the WP-ICP. In this study, the layouts of the localization environment are given in
terms of few discrete data points. Therefore, the resolution of the layouts can be further enhanced by
using interpolation. For each LiDAR scan, the interpolation can be achieved by manipulating the raw
data directly. The simplest way is to apply a divider on each segment.

Based on previous experiments, it is obvious that WP-ICP with interpolation has the minimum
error compared with the corner-feature-based ICP and the pure WP-ICP. In the following, 10 and 50 cm
interpolation resolutions are further considered for the same DAA-3F experiment. Figure 18 verifies
that increasing the size of the interpolation resolution does increase the localization error. However,
the number of ICP iterations can be significantly reduced. The average iterations of WP-ICP with
50 cm and 10 cm interpolations are 7.063 and 11.7577, respectively. As a result, the resolution of the
interpolation can be taken as a trade-off design factor between the computation efficiency and the
localization precision.

A comparison study from the viewpoint of the ICP iteration is summarized in Table 1. It is clear
that the ICP iteration performances obtained by the corner-based ICP and WP-ICP are noticeably better
than full-points ICP. To overcome the challenge of unknown objects during point cloud matching,
WP-ICP with interpolation was further introduced. It was shown that the localization robustness
can be significantly enhanced. Although the number of ICP iterations increases, the increment is still
acceptable for real-time consideration.
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Table 1. ICP iteration performance.

Experimental Environment Pose Estimation Algorithm Average ICP Iteration

Scene-1 Exp.1
Full-Points ICP 25.36

Corner-Based ICP 2.06
WP-ICP 2.06/2.04 (corner/line)

Scene-1 Exp.2
Full-Points ICP 30.10

Corner-Based ICP 2.04
WP-ICP 2.05/2.04 (corner/line)

Scene-2

Full-Points ICP 49.92
Corner-Based ICP 2.49

WP-ICP 2.61/2.85 (corner/line)
WP-ICP with 10cm Interpolation 2.87/9.25 (corner/line)

Finally, to further demonstrate the robustness of the proposed WP-ICP, we considered another
experiment in the same environment (as illustrated in Figure 19) but with five people walking around
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the vehicle. The practical scenes are shown in Figure 20. Firstly, to generate a ground truth for
comparison, the full-points ICP is considered, which leads to good localization results, as illustrated
in Figure 21. Due to many unknown moving objects that do not exist in the given layout, those
obstacles result in many outliers. Under this condition, using corner features only would cause
divergent localization, as demonstrated in Figure 22. On the contrary, as shown in Figure 23, applying
the WP-ICP together with interpolation presents satisfactory localization results without inducing
divergent behavior, even in the presence of unknown moving objects. For the WP-ICP under different
interpolation resolutions, the results are depicted in Figure 24a,b, respectively. The performance details
are given in Table 2. Experiments verify that the use of WP-ICP can withstand dynamic uncertainties
as well as produce satisfactory localization result with fewer iterations.
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Figure 22. Localization result by using corner features only (where the line information was not fused
for the localization).
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Table 2. Localization results for the environment subject to unknown moving objects.

Localization
Algorithm

Model Set Size
(Points)

Average ICP
Iterations

Total ICP
Iterations

Local. Error (mm)
Avg/Max

Full-Points ICP
(Point-to-Point ICP) 1991 35 86687 taken as ground truth

WP-ICP with 10 cm
Interpolation 213 13 30838 53.7/261.3

WP-ICP with 20 cm
Interpolation 114 9 22981 60.5/264.6

5. Conclusions

In this work, to solve the mismatched point cloud registration problem and to enhance ICP
efficiency, a parallel feature-based indoor localization algorithm is proposed. In the traditional ICP
algorithm, the point cloud registration is achieved by means of NNS and there is no any other
information attached to those points. Therefore, it is prone to obtain incorrect correspondences. On the
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contrary, we present a novel WP-ICP algorithm that provides more information on the polished point
cloud. The WP-ICP consists of two ICP sources, one is corner features and the other is line features.
Owing to the parallel mechanism, it attenuates mismatch probabilities from corner to line matching or
from line to corner matching. As a result, the proposed algorithm results in faster convergence for pose
estimation. Moreover, since the full scan points are processed to extract fewer feature points, it also
enhances the ICP computation efficiency and therefore is suitable for low-cost CPUs. For environments
that possess fewer feature points, the WP-ICP together with a line interpolation is further verified.
Environments subject to static and dynamic unknown moving objects were also considered to verify
the feasibility and robustness of the proposed method.
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