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Abstract: In this paper, a support stiffness monitoring scheme based on torsional guided waves for
detecting loss of rigidity in a support of cylindrical structures is presented. Poor support performance
in cylindrical specimens such as a pipeline setup located in a sloping terrain may produce a risky
operation condition in terms of the installation integrity and the possibility of human casualties.
The effects of changing the contact forces between support and the waveguide have been investigated
by considering variations in the load between them. Fundamental torsional T(0, 1) mode is produced
and launched by a magnetostrictive collar in a pitch-catch configuration to study the support effect in
the wavepacket propagation. Several scenarios are studied by emulating an abnormal condition in
the support of a dedicated test bench. Numerical results revealed T(0, 1) ultrasonic energy leakage in
the form of SH0 bulk waves when a mechanical coupling between the cylindrical waveguide and
support is yielded. Experimental results showed that the rate of ultrasonic energy leakage depends
on the magnitude of the reaction forces between pipe and support; so different levels of attenuation
of T(0, 1) mode will be produced with different mechanical contact conditions. Thus, it is possible to
relate a measured attenuation to variations in the supports condition. Results of each scenarios are
presented and discussed demonstrating the feasibility and potential of tracking of the amplitude of
the T(0, 1) as an indicator of abnormal conditions in simple supports.

Keywords: guided waves; supports monitoring; torsional waves; structural health monitoring (SHM);
finite elements modelling (FEM)

1. Introduction

Pipelines in service are continuously affected by corrosion, erosion, chemical attacks, stress,
extreme climate conditions, among others. Pipeline stresses have great influence in its performance
during operation, affecting strength, expected operational life and dimensional stability. Stresses
occurring in service, which are difficult to diagnose and identify, can unexpectedly appear and turn
into invisible due to the apparent absence of an external load, such as loss of rigidity in the foundation
of the pipeline supports. Besides, pipe and fluid masses may develop important normal stresses via
bending moment that can compromise the integrity of the pipelines.

Supports integrity inspection presents several challenges, e.g., mechanical stress variations are
produced along the pipeline when the support loads are changing. Therefore, any suitable support
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monitoring scheme should be focused on determining the variation of the axial stress condition
in the pipe or any other feature that revels varying load conditions in the supports since load
variations measurement in the support itself is difficult, impractical and often prohibitively expensive.
Additionally, this abnormal condition can appear suddenly as result of terrain movements or soil
weakening by variations in the soil’s water content.

Among the suitable techniques used to evaluate support integrity i.e., cracks [1], corrosion [2],
and contact loads [3,4], ultrasonic-based techniques are gaining attention. The successful detection of
abnormal load condition at support spots relies on the capability to discriminate the variation of the
ultrasonic guided wavepacket between the support on a normal load condition (even in presence of
discontinuities i.e., corrosion or notch reflected signals) and in abnormal condition (lack of rigidity
foundation in the support). Consequently, it is essential to estimate changes influence in the support
load condition in the guided wave; few works have been reported on this subject. The effect of clamped
supports on the propagation of the torsional mode T(0, 1) is studied in [3] by means of simulation and
experiments. The focus of this study was the attenuation caused by the presence of rubber gaskets
in the support and its consequences on the detectability of discontinuities located after the support.
Moreover, a growth of the reflection produced by the support is found, as the tightness of the clamp
support increase, for the T(0, 1) mode. In [5,6], the interaction of the torsional mode T(0, 1) with
a longitudinal welded support in a pipe is modeled using FEM. Energy leakage from the pipe to
the support via transmission and mode conversion are detected. The mode T(0, 1) is used in [7] to
evaluate the effect of a longitudinal support welded on the wavepacket propagation in a pipe using
both simulation and experimental methods. It is determined that reflected signals by the longitudinal
welded support are much greater than reflections from other discontinuities beyond the support.

The interaction of the fundamental torsional mode with simple supports is studied by
experimental tests and analytical methods, finite elements and Semi-Analytical Finite Elements
(SAFE) [4]. A SAFE analysis establishes which modes can propagate in a stress-free pipe.
They concluded that exist a mode conversion from T(0, 1) into a suitable mode which is propagated
along that supported section. The reflection coefficient for the support will be then high where there is
no mode similarity to T(0, 1) in the region around the support.

As mentioned above, variations of the normal stress in pipelines can be attributed to the changes
in the supports load conditions. Therefore, tracking stress variations along the pipe in a region
close to the support should provide information of the support integrity. Presence of stress in
the structure affects damage localization in the case of using methods that utilize elastic wave
propagation. Wave propagation velocity decreases with increasing stress [8]. The study of the
guided wave propagation in stressed specimens is mainly based on the acoustoelasticity effect (stress
dependence of acoustic bulk wave velocities i.e., shear and longitudinal velocities). The foundation of
the acoustoelasticity theory can be endorsed to the Murnaghan [9] and Hughes and Kelly [10] works
in the middle part of the last century. Since, part of the research has been aimed to the determination
of the acoustoelastic guided wave dispersion curves [11–13]; others are devoted to determine the
load condition or the residual stress of the specimen based on the velocity change of the guided
waves [14–18]. On the other hand, an investigation of wave propagation in double cylindrical rods
based on Hertz contact theory and considering the effect of prestressing found that at low frequencies,
group velocity of torsional-like modes are very sensitive to the variation of prestress [19]. In [20] the
effect of stress applied perpendicular to the propagation-direction on guided wave propagation is
accounted for through nonlinear elasticity and finite deformation theory (Acoustoelasticity). Emphasis
is placed on the stress dependence of the energy velocity of the S0 lamb modes. For this purpose,
an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. The transfer
of energy inside a multi-wire cable with a SAFE method has been investigated by [21]. An energy
transfer parameter has been proposed in order to determine the power flow distribution inside the
cable and the exchange of energy between wires. Based on this parameter, a new compressional
mode excited with an axial excitation of the central wire mainly localized inside the central wire has
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been found. Finally, some specific engineering applications such as bolted structural connections,
grouted tendons and steel stands, have been object to monitoring using the acoustoelasticity effect of
guided waves [22–25].

In summary, previous research works have been focused on the study the influence of the support
material changes (cracks, pinholes, corrosion, contact loads) in the guided wave propagation and how
the presence of the support in the propagation path affects the detection of material discontinuities in
the waveguide under investigation. The work presented here is focused specifically on formulate a
methodology to monitoring changes in the load condition in the support. To do that, it is needed an
understanding of how the mode T(0, 1) interacts with simple supports under varying support load
conditions. Experimental and numerical tests reveal a greater effect of the energy leakage instead of
velocity changes as a result of the Acoustoelasticity effect.

2. Theoretical Background

2.1. Axisymmetric Torsional Guided Waves Propagating in Cylindrical Waveguides

To develop an axisymmetric wave propagation model for torsional guided waves, certain
assumptions are needed. The model assumes that the cylindrical system is geometrically axisymmetric,
infinitely long, stress-free in the boundaries for some specific directions and surrounded of vacuum.
The material is elastic, homogeneous and isotropic (Its mechanical and thermal properties are the same
in all directions). The waves will be assumed to be continuous, the frequency real (transients effects
are no considered), and the energy is finite and constant. The solutions to motion equation will only be
sought explored for guided waves, which are propagated axially.

Three guided waves modes can be developed in cylindrical systems: longitudinal (L), flexural (F)
and torsional (T). Although the formers (L and F) are widely used in Structural Health Monitoring
(SHM) applications, they are strongly affected by an acoustic coupling between these modes and the
surroundings. On the contrary, the latter does not. The torsional modes are characterized mainly
by a displacement primarily in the θ-direction. The axisymmetric torsional mode corresponds to
an uniform azimuthal displacement in θ-direction (angular displacement) of the entire cylindrical
waveguide; the higher order torsional modes exhibit a more complicated behavior. However, the
angular displacement is not constant through the radius of the cylinder. Different locations through
the radius of the cylinder can twist in different directions and nulls of displacement can exist. Figure 1
depicts cylindrical θ and z directions.

Figure 1. Schematic representation of cylindrical coordinates for the cylindrical waveguide.

The guided waves propagation model is based on the combination of Euler’s equation of motion
and the generalized Hooke’s law. Both relations yield the Navier’s displacement equation of motion
which decoupled solution (Φ scalar field and H vector field) can be expressed in cylindrical coordinates
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Equation (1). The solution may be divided into the product of functions of each one of the spatial
dimensions as:

Φ, H = ΓΦ,H (r) ΓΦ,H (θ) ΓΦ,H (z) ei(kr−ωt), (1)

where k is the wavenumber vector, ω is the circular frequency, t is the time and ΓΦ,H (r) , ΓΦ,H (θ),
and ΓΦ,H (z) describe the field variation in each spatial coordinate. Assuming that the wave does not
propagate in the radial direction (r) and that the displacement field does not vary in the θ-direction
either z-direction except for the harmonic oscillation described by the wavenumber as follows

Φ, H = ΓΦ,H (r) eipθei(ξz−ωt), (2)

where ξ is the component of the complex vector wavenumber in the z-direction, p is referred to as the
circumferential order; which must be a whole number, since only propagation in the direction of the
axis of the cylinder is considered and the field variables must be continuous in the angular direction.
Displacements and stresses can be expressed in terms of potential functions, which can be numerically
solved (see [26–29] for more details on this subject).

On the other hand, the family of torsional modes results when only the uθ displacement is
assumed to exist (ur, uz = 0). Such a displacement field is obtained only if rotational potential function
in z, hz 6= 0. Then, for sake of brevity, only the expressions for uθ , hz, and the stress (σrθ as boundary
condition), are used in forward to study the axisymmetric torsional modes as follows [29].

hz (r) = C1 Jp(βr), (3)

uθ = hz′ (r) cos (pθ) ei(ξz−ωt), (4)

σrθ = µ
[
−
(

2hz′′ − β2hz

)]
, (5)

β2 =
ω2

C2
2
− ξ2, (6)

where C2 is the bulk shear velocity, Jp is the Bessel function of the first kind an order p, r is the cylinder
radius, and C1 is a constant. The family of Bessel functions Jp represent standing waves. For the
case of the axisymmetric modes, p=0, and by using the property of Bessel functions J0’ (x) = −J1(x),
the corresponding uθ can be expressed as follows.

uθ = −∂hz

∂r
= (C1β) J1 (βr) ei(ξz−ωt). (7)

The frequency equation for the torsional modes may be obtained by using the boundary condition
σrθ |rext

= 0, for the studied case only σzz 6= 0, in this way[
β2a2 J0 (βa)− 2βaJ1 (βa)

]
−
[

β2b2 J0 (βb)− 2βbJ1 (βb)
]
= 0. (8)

Noting that this equation belongs to the dispersion equation for the torsional waves propagating in
the axial direction of a cylinder of inner and outer radius a and b respectively. The lowest axisymmetric
torsional mode, the first root of Equation (8), is β = 0, in which involves the rotation of each
transverse section of the cylinder as a whole about its center, is not adequately described by the
Bessel equations [30]. This mode corresponds to the zero order torsional mode T(0, 1) and, therefore
using Equation (6), and considering β = 0, it is obtained that

ω = ξC2. (9)
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Considering the previous result and the phase velocity definition, let state the following relation:

Vp =
ω

ξ
= C2. (10)

The last expression shows that T(0, 1) propagates at a constant phase velocity equivalent to the
bulk shear velocity of the material. The T(0, 1) mode is preferred in pipeline monitoring for two main
reasons: (i) it propagates non-dispersively at the shear velocity of the medium and, (ii) since the fluid
layers do not support shear waves, the T(0, 1) propagates solely in the steel wall of the pipe with no
energy leakage to the fluid and no attenuation. On the other hand, The zero order torsional modes can
be expressed analytically in a similar fashion as the ’SH’ modes in a plate.

2.2. Generation of Torsional Modes by the Magnetostrictive Principle

In this work, the fundamental torsional mode is generated and captured by using the
magnetostriction principle. One advantage of this cost-effective method of transduction is the fact
that coupland is not required between the specimen and the transducer [31]. On the other hand,
the magnetostriction principle provides better performance in varying temperature environments
compared to the piezoelectricity-based transducer, mainly for the absence of a couplant. In the
literature, it is reported that the temperature influence in the propagation of guided waves for a range
(from 20–200 ◦C) generates a drop in amplitude (9 db) [32]. The basic configuration of the transducer
is illustrated in Figure 2b. The set is comprised of two parts. The first one is a solenoid coil which
provides a dynamic magnetic field to the pipe or measures the induced magnetic field through the
propagation of the torsional guided wave in the waveguide. The second one, is a magnetostrictive strip
which supplies a residual circumferential bias static field. The residual magnetization of the strip is
obtained rubbing it with a magnet in the circumferential direction. Thus, the most critical component
of a magnetostrictive system is the magnetostrictive material (ferromagnetic strip) used to transform
electrical energy into mechanical and vice versa. Its transduction efficiency in both acquisition and
transmission mode depends mainly on its physical properties. As a consequence, these physical
parameters must be considered to select the right ferromagnetic material to be used in magnetostrictive
transducers. For this reason, a magnetostrictive probe was acquired from Guided Wave Analysis
LLC company. The MsS probe consists of amorphous cobalt–iron alloy strips (0.15 mm thick), which
have lower eddy current loss and larger magnetostriction [31]. The solenoid coil was constructed of
enameled wire of 0.32 mm of diameter (28 aws) copper wound around the strip with 50 turns along its
width, a system with an Arbitrary Wave Generator (AWG) and amplifiers was used to excite the coil
with the modulated pulse. In general, to create a torsional stress, a helical magnetization is induced in
the ferromagnetic strip through the following procedure:

1. A bias magnetization (H0), static magnetic field, in the strip is induced in circumferential direction
through the passage of a permanent magnet as shown in Figure 3a.

2. A second alternate magnetic field HD of lower magnitude than H0 is created in axial direction by
the current flowing into a coil that surrounds the pipe circumference at the strip position as seen
in Figure 3b.

3. Finally, the combined magnetic fields generate an applied alternate helical field that according to
the Villari effect will create torsional vibrations via shear stress.
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(a)
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(Dynamic field) 

Dynamic Field 

(b)

Figure 2. Magnetostrictive transducer used in the test bench. (a) Picture of the transducer and
(b) Schematic representation of the magnetostrictive strip and the coil.

 

H0

Fe-Co Strip

Waveguide

(a)
 

Coil 

HD 

(b)

Figure 3. Steps for torsional guided wave generation based on magnetostriction principle. (a) Induced
static magnetic field “H0” in the FeCo strip and (b) Dynamic magnetic field “HD” in the specimen.

2.3. Single Mode Generation of T(0, 1)

A key element of the inspection system is the selection and exploitation of a single mode.
In general, an excitation source can excite all of the modes which exist within its frequency bandwidth.
Therefore, although troublesome to achieve, it is essential to design the transducers and the signal to
excite only the chosen mode. In the experiments covered by this work, the chosen mode for excitation
in the inspection system is T(0, 1). This mode is very attractive because is non-dispersive over a wide
bandwidth, so the signal shape and amplitude are retained as it travels. The T(0, 1) mode consists of
an axisymmetric torsion of the pipe and it can only be produced by shearing stresses (circumferential
motion). In order to excite only this mode, some aspects must be considered.

• At low excitation frequency, the possibility to generate longitudinal and flexural modes is reduced.
• As the flexural modes are not axisymmetric, they can be avoided when the transducer elements

are arranged axisymmetrically.
• Excitation frequency must be chosen below or equal to 50 kHz because the cutoff frequencies of

the lowest longitudinal and flexural modes in the dispersion phase velocity curve are above.
• Due to that the dynamic magnetic field imposed over the pipe is smaller than the bias magnetic

field, it is not expected a meaningful magnitude of longitudinal modes.
• The width coil should be small or equal to half the wavelength of the target wave mode at an

excitation frequency; otherwise, the vibration caused by the wire at the end of the coil will offset
each other, reducing the vibration intensity of the expected guided wave mode [33].

Based on the previous considerations and the recommendations of the magnetostrictive transducer
provider, an excitation frequency of 32 kHz was chosen. For this frequency a wavelength of 0.1 m is
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calculated. Thus, according to the provider the strip has to be smaller than a 1/3 of the wavelength at
the excitation frequency. Therefore, a strip and coil of 2 cm of width are used.

3. Experimental Setup

Variations in the support’s loading will produce an increment in the normal stress along the pipe.
Therefore, tracking the axial stress could provide an indication of abnormal loading condition in the
support. Thus, a test bench is implemented to emulate a failure or a change in the loading support
conditions. In the proposed methodology, a scheme of two magnetostrictive collars in a pitch-catch
configuration is adopted to produce the T(0, 1) torsional mode.

Experimental tests were performed on a test bench, which represents a scaled mimic of a current
installation. A 1′ ′, L = 6 m of length, schedule 40 (external diameter = 33.4 mm and thickness = 3.3 mm),
A-106 pipe supported at the free ends by fixed support, where the different stressed scenarios are
produced by changing the magnitude of the reaction in the variable support located in the middle of
the pipe (L/2), as shown in Figure 4. The phase velocity dispersion curves of the axisymmetric modes
of 1′ ′, A-106 pipe are presented in Figure 5.

(a) (b)

Figure 4. Implemented test bench to emulate different support stiffness. (a) Schematic representation
of the hollow cylinder test bench and (b) Picture of the actual test bench.
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Figure 5. Torsional and longitudinal axisymmetric modes phase velocities for a homogeneous isotropic
hollow cylinder (A-106, 1′ ′, Sch 40).

The waveguides are excited with a sinusoidal pulse of 5 cycles Gaussian-modulated at 32 kHz
via magnetostrictive actuator (see Figure 6). The magnetostrictive actuator is composed by two
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elements wrapped around the pipe; a thin FeCo alloy strip (adhered to the pipe by epoxy) to yield
a circumferential magnetic field and, an electromagnetic coil with an alternate current flowing in
circumferential direction used to produce an axial magnetic field. The combined action produces
a helicoidally strain pulse along the pipe. Therefore, torsional guided waves are generated by
axisymmetric surface loading. In order to launch only the T(0, 1) mode, an appropriate selection of the
excitation frequency and wide of the strip must be performed (See Figure 2). The torsional guided
wave propagates along the pipe and it is captured 1.5 m. ahead of the actuator with a magnetostrictive
sensor. As it is expected, the velocity of propagation was very close to the shear velocity for the
material of the pipe 3200 m/s). No other modes were detected in the tests. A picoscope 2208 is used as
DAQ system.

Time (ms)

0 0.1 0.2 0.3 0.4 0.5 0.6

A
m

p
li

tu
d

e

-15

-10

-5

0

5

10

15

Incident pulse

Captured pulse

Figure 6. Experimental incident and captured T(0, 1) pulses at excitation frequency of 32 Khz in a 1′ ′

A-106 Sch. 40 pipe.

The experiments were conducted in such a way that it replicates a common real pipe under a
simplified loading and support conditions. Variations in the stiffness are emulated by changing the
magnitude of the variable support. First the nominal condition is determined considering the absence
of deflection with respect to the vertical (g-direction) in the middle variable support. Under this
condition the middle part of the pipe (L/2) is experimenting a negative bending moment and the
pipe develops an internal stress of around 5% of the yield strength, under this scenario the load in
Newtons between support and pipe is 92.2 N (reference stiffness). The magnitude of the load applied
for the variable support to the pipe is decreasing for D1 − D4 scenarios for deflections in gravity
direction and is increasing for D6 − D9 in opposite direction. In this way, D1 belongs to a deflection of
10 mm downwards (74.1 N), D2 to 20 mm (57.03 N), D3 to 30 mm (39.46 N) and D4 to 40 mm (21.9 N).
Similarly, D6 belongs to 10 mm upwards (109.75 N), D7 to 20 mm (127.3 N), D8 to 30 mm (143.9 N) and
D9 to 40 mm (160 N). The test are configured in such way that the stresses correspond to an incipient
strength condition (<30% of yields strength). The variation of the deflection yields an increase in the
magnitude of the bending moment in the middle part of the pipeline, as shown in Figure 7.

Figure 7 provides an estimation of the normal stresses along the pipe (z-direction), expressed
in terms of percentage of yield strength, generated by bending. The maximum bending stress in a
cross-section for a specific position along the pipe axis is located at the outer distance (the exterior
radius) which means the pipe’s surface is the area under highest stress.

Therefore, as shown in Figure 7, changes in the supports reaction will produce a distributed
normal stress response along the path of propagation. In fact, the longitudinal normal stress varies from
point to point along the pipe’s axis, and linearly with the radius, passing from tension to compression
in the neutral axis or cylinders center; reaching a maximum normal stress value at the outmost



Sensors 2018, 18, 1263 9 of 20

distance from neutral axis or external radio. As shown in Figure 8, the wave structure obtained by
using the GUIGUW software [34], the maximum azimuthal displacement component of the torsional
wave expressed in the wave structure matches the maximum azimuthal axial stress obtained in pipes
cross-section. Changes from tension to compression in a specific cross section in the cylinder must
produce variations of phase velocity of T(0, 1) in the same plane. Therefore, different phase velocities
around V0 for the same cross-section may result when the torsional mode is propagating in a bending
pipe. On the other hand, variations in the guided waves velocities can also be attributed to a thickness
reduction of the waveguide produced by corrosion or erosion. Nevertheless, these discontinuities
slowly appear in the waveguide in a much greater time scale compared to the most probable scenario
of unexpected change in the supports reaction. Therefore, any suddenly change in the TOF of the wave
can be interpreted as a modification in the stress condition in the waveguide.
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Figure 7. Stress variation along the pipe subject to different reaction forces in the support.
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Figure 8. Sample wave structure of Uθ for T(0, 1) at 32 kHz in a 1′ ′ sch. 40 pipe.

4. Experimental Results

This section provides the results of the experiments carried out under the conditions described
above. One hundred tests were conducted in each scenario and the propagated torsional wave were
captured. As an example, in Figure 9 one of the captured signals for the scenarios D3 and D1 is shown.

On the other hand, when considering the acoustoelasticity effect, variations in the pipe’s stress are
not enough to produce any significant change in the TOF of the torsional guided wave under the test
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experimental conditions, not even the material elongation effect is observed. Considering the DAQ
sampling frequency (18 MHz), the frequency of the signal (32 KHz) and the velocity of the torsional
wave (around 3200 m/s), the minimal change of velocity that can be detected is 0.38 m/s (without
considering noise), which represent a capability to detect phase velocity variations around 0.012%.
The inability to detect ∆ (TOF) may be attributed to the phase velocity in a specific pipe cross-section
for a bending pipe is radius dependent due to the linear stress distribution in r, going from tension to
compression or vice versa at the same cross section, i.e., the magnetostrictive sensor is capturing at the
same time, torsional waves propagating at different phase velocities, in the case of tension stresses
Vσ < V0 and Vσ > V0 for compression stresses.
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Figure 9. Captured fundamental torsional signals for D3 and D1.

On the other hand, as it is expected, no dispersion is observed in the captured torsional wave.
Therefore, only amplitude changes are observed in the wavepackets when they are compared in time
domain. The variations in the wave amplitude, which can be interpreted as energy variations, could
be attributed to the fact that the interaction between the torsional guided wave and the support has
been altered. Although the experimental tests reveals tiny amplitude changes in the captured signal,
the abnormal condition to be monitored, a decrease of the support stiffness, produces an anomalous
behavior in the guided wave, i.e., an increase of the transmitted pulse magnitude.

In order to create a feature associated with the amplitude variation of the captured signal as a
result of the acoustic coupling between pipe and support, an auto correlation of the incident signal,
rxx, and a cross correlation between the current sensed signal S1(t) and the incident signals S0(t), rxy,
are used instead of the raw signals to produce a relation between both signals. Autocorrelation and
cross correlation are calculated as follows:

rxx(n) =
1
N

N

∑
n=0

S0(n)S0(n− t), (11)

rxy(n) =
1
N

N

∑
n=0

S0(n)Si(n− t), (12)

where N is the number of signal samples, t is defined in the interval (−N ∗ Ts, (N − 1) ∗ Ts).
Then, the Root Mean Square Deviation (RMSD) is calculated as:

RMSD =

√√√√√ N

∑
i=1

(Gi − re f )2

N
, (13)
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where Gi is a scalar calculated using the peak values of the correlated signals:

Gi =
max(rxy)

max(rxx)
. (14)

Gi denotes the peak value of the current scenario, re f is the peak value of the averaged signal
(100 experiments) at nominal condition, (no deflection in the pipe at the center). Since only magnitude
changes are expected in this monitoring scheme, RMSD is proposed to evaluate the supports rigidity.
In Figure 10, it can be seen the RMSD values for the different scenarios. Now, ten runs were averaged
and presented in Figure 11 and finally, Figure 12 presents the relation between force and RMSD for the
different cases.

Although D6 to D9 are improbable scenarios in a real installation, deflection opposite to the
gravity, here, they are used to determine in a wide perspective how the torsional guided wave interacts
with the reaction force exerted by the simple support. Variations in RMSD are the result of change
in the contact conditions or the magnitude of the supports force. Clearly, as the magnitude of the
supports reaction decrease, the amplitude of the wave captured by the sensor increase. This result can
be explained from an energy perspective, in which, a reduction of the force between the pipe and the
support produce a decrease of the transmitted energy to the supports material and therefore, a greater
wave refraction.
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Figure 10. RMSD for the studied scenarios.
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5. Finite Element Modeling Analysis

Considering the previous results—a very small acoustoelastic effect and a change in the amplitude
of the wave—in the following numerical analysis, we investigate the influence of the interaction
between support and the waveguide in the T(0, 1) propagation by means of FEM simulations.
This analysis has been restricted to the transmission of ultrasound energy to the support. Thus, the FEM
does not pretend the estimate the actual change of the magnitude of the transmitted pulse, its only aim
is to observe the relation between reaction force and SH0 generation. A mode conversion of T(0, 1)
transmitted through the support, modeled as a plate, is expected because the tangential nature of the
T(0, 1) and the mechanical coupling between the pipe (cylinder) and the simple support (plate).

Since surfaces between pipe and support are rough, a contact interface can be assumed as a series
of parts in contact and voids. Due to the high acoustic impedance of the air, voids act as reflectors
for the ultrasonic waves. Thus, an increase of force will result in a reduction of the number and size
of these voids and, at the same time, an increase of the ultrasound energy transmitted through the
interface. When two surfaces of the same material are in contact, there are no variations of acoustic
impedance in the contact area created by the matching micro-asperities generating the absence of
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material discontinuities for the transmission of the ultrasonic waves [35]. In numerical analysis, a real
contact in metallic interfaces (no perfect) is not an easy task to model, a simple version of the contact
area is implemented in the performed simulations.

A 3D FEM model was built representing a scaled but equivalent version of the experimental
setup to reduce the size of the FEM model and consequently the computational cost. The steel pipe
of 1 inch schedule 40 (outer diameter: 33.4 mm and wall thickness: 3.38 mm) is modeled as a hollow
cylinder with an axial length of 0.4 m. The simple support is represented by a steel plate of 6 mm of
thickness and with the same material as the pipe, two boundary conditions in the cylinder constrain
the displacement in y-direction of both extremes of the cylinder. Changes in support stiffness are
configured varying the magnitude of a vertical concentrated force in upward direction situated in the
middle part of the plate as shown in Figure 13.

The material properties used for steel were assumed as follows: Density ρ = 7830 kg/m3,
Young’s modulus (E) = 210 GPa and Poisson’s ratio ν = 0.3. To ensure an adequate mesh refinement
level, the minimum allowed inter-nodal length Lmin is calculated. The lowest phase velocity CT
(i.e., transverse or shear wave speed), and consequently the shortest wavelength establishes the
minimum permissible mesh size so spatial aliasing due to the finite element discretization does not
occur [36]. Considering the frequency and the steel shear wave velocity, Lmin is calculated as follows:

Lmin =
CT

nmin fmax
=

λmin
nmin

, (15)

where, nmin is the number of elements across the smallest wavelength of interest (assumed in this case as
nmin ≥ 10) [37], and fmax the maximum frequency of interest. Considering nmin = 15, fmax = 3200 Hz
and CT = 3200 m/s, the minimum element length results, approximately 6.66 mm. Therefore, seeds
size of 2 mm can be considered as a sufficient mesh refinement. In addition, for time domain models
solved with an explicit scheme, an adequate integration time step ∆t assures a more accurate solution.
In general, simulation accuracy can be increased with increasingly smaller integration time steps but
punished by a higher computational cost. So, the time step ∆t has to be smaller than the critical time
step ∆tcr which is the transit time of a dilatational wave through the smallest element in the model can
be calculated as follows [38]:

∆t ≤ ∆tcr =
Lmin
CL

, (16)

where CL is the velocity of the dilatational wave. A ∆t of 5ns meets these criterion (Considering
Lmin = 2 mm and CL = 5944 m/s) and it is used to solve the model. A total of 9980 linear eight node
brick element (C3D8) has been used with 52 elements around the circumferential section of the pipe.

The torsional wave is produced by a shear load at the left end face of the cylinder by a 5 cycles
Hanning-window tone burst of 32 kHz. The model is configured such as the torsional wave freely
propagates along the z-axis for 50 mm until a contact with the simple support. A 12 mm contact line
is established between the pipe and the support. The whole length of the pipe model is 0.2 m with
a mesh of 9980 C3D8 elements and 104 semi-infinite CIN3D8 elements. In Figure 13, a schematic
representation of the simulated geometry is presented. The latter elements are used at the cylinder
right face to avoid reflections (absorbing boundary) [37]. The torsional wave propagates continuously
into the absorption elements without any reflection.



Sensors 2018, 18, 1263 14 of 20

Figure 13. Schematic representation of the simulated pipe with a simple support.

A key aspect of the problem at hand is the surface contact FEM modeling between the pipe
and simple support. This part of the modeling must be exhaustively considered in order to derive
the most realistic acoustic coupling. Nevertheless, it is worth noting that though the connection
between applied force and the transmission of ultrasonic waves from the interface is qualitatively
known, it is not so easy to establish a general quantitative relationship, since too many parameters
(surface roughness, type of material and frequency of incident wave) influence the phenomena. The
acoustic interaction between two bodies in mechanical contact is a relatively complex model, therefore
several simplifying assumptions are made: The Contact between the two surfaces is assumed to have
smooth surfaces, applied normal stress within the elastic limits of their materials and contact surface
be non-conformable. Now, Considering a portion of pipeline lying on a simple support, represented as
a plate, such as that shown in Figure 13. A idealized contact interface (line) occurs between the two
specimens with an extent l along the axial direction of the pipe, a width w along the pipe perimeter.
In Hertzian contact theory, two stiffness must be defined, a normal stiffness Sn that acts in the radial
direction, and a tangential stiffness St that acts in the θ and z directions. In order to simplify the use
of the Hertzian contact theory the assumption of non-conformable contact between the two bodies is
assumed, i.e., both surface keep their shape around the contact zone during the contact. In practice,
this assumption is not realistic because under loading, the plate may curve around the pipe, or the
pipe may flatten around the contact zone depending on their stiffness. In such case, the contact
model increases its degree of complexity since the contact stiffness can vary considerably along the
interface. This complex model is beyond to the scope of the study of the acoustic coupling between the
fundamental torsional mode T(0, 1) and the SH0 mode of a plate Because the contact is assumed to
occur in a line, infinitely long cylinders with parallel axes come into contact; away from end effects,
the (2D) Hertzian theory must be used. Hertzian approach provides the width in the interface of
the contact area when a normal load is applied to the contact surface. Assuming Young’s modulus
and Poisson ratio is close enough in magnitude between the two bodies in contact. The following
expression is used to determine the width of the contact area:

w =

√
8FR∗

eE∗
, (17)
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where F, also referred as contact loading, is the total normal force by the two bodies are pressed
together along the interface length e, E∗ is the contact module and R∗ is the relative radius between
the two bodies, determined by:

1
R∗

=
1

R1
+

1
R2

. (18)

Note, Equation (18) is originally expressed for an interface between two cylinders, where R1 and
R2 are, respectively, the radius of the first and second cylinder. Notice, for the studied case, the contact
interface is produced by a cylinder (pipe) of exterior radius R1, and a plate with R2 tends to infinity.
Therefore, The relative radius R∗ is R1. The contact modulus E∗ for the same material is given by

E∗ =
E

2 (1− ν2)
(19)

The interface width obtained by Equation (17) to simulate contact between the 1′ ′ pipe and the
plate of (6 × 9 × 20 mm), result be smaller than the gap between nodes (mesh size) used for the guided
wave simulation. Therefore, the interface width is assumed as a line of shared nodes between the
cylinder and the plate.

Contact treatment is internally represented by linear springs between the slave nodes (plate)
and the nearest master segments (pipe). The stiffness of these springs determines the force that will
be applied to the slave nodes and the master nodes. The mathematical model chosen to enforce the
contact compatibility is the penalty method which requires the estimation of normal and tangential
contact stiffness. In [39], it is reported that normal interface stiffness Sn for contact between two bodies
of identical material properties is given by:

Sn =
πe

2
(

1−ν2

E

)
d∗ − 1

E∗
, (20)

where,

d∗ = 2 ln
(

4d
w

)
− 1, (21)

d = 2R1. Although there is a lack of knowledge with respect to the small-scale properties and the
small-scale dynamics of the contact interface, one of the most convenient ways to establish a realistic
value for the tangential stiffness of a contact interface is to use empirical models such as the one for
contact between rough surface using ultrasonic method developed by [40]

St

Sn
=

2(1− ν)

2− ν
(22)

Equation (22) describes a constant ratio between tangential and normal stiffness. It is
acknowledged that there is not an effective analytical method to determine contact properties when the
bodies in contact are real. Therefore, here it is assumed values close to the obtained by the expressions
cited above and checking the result against experimental evidence.

Some details of the contact implementation are the following: The interface between cylinder
and plate is performed by a surface-surface contact and their interaction is achieved using a dynamic
coupling between the nodes belonging to the contact line as presented in Figure 14. Discretization of the
contact area into elementary units (contact nodes) is responsible for the contact stress (strain) acoustic
transmission of the guided wave from pipe to support. The node to node discretization is appropriate
for ultrasonic transmission problems because this method is suitable for small deformations and small
slip. Although both materials are modeled with the same mechanical properties, the pipe is assumed
as master surface and the support as slave. Besides, a linear behavior of the Pressure-Overclosure
relation is assumed.
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Figure 14. Coupling nodes in the simulated contact interface.

The Finite Element Analysis (FEA) has been performed to study the effect of the supports stiffness
(plate) in the transmitting potential of ultrasound energy through the contact interface between the
cylinder and plate. T(0, 1) mode primarily has a tangential displacement Uθ which is transmitted by
coupling to the plate. As previously mentioned, the frequency spectrum of T(0, 1) has the same shape
as for SH waves in a plate. In fact, the torsional modes for a cylindrical waveguide are considered the
analogue of the SH plate modes [29]. Thus, for the studied case is highly likely the generation of SH
waves in the support.

The excitation and the fundamental torsional mode T(0, 1) captured by the nodes that represent
the sensor in the model are illustrated in Figure 15. The FEM simulation results of the interaction
between cylinder and plate when a torsional guided wave T(0, 1) mode is propagating is presented in
Figure 16a. This Figure reveals that when the T(0, 1) mode impinges on the support, some portion of
the ultrasound energy is transmitted to the plate producing SH lamb waves.

In Figure 16b, it is depicted the generated wavepacket in the plate, it is identified as a SH0

mode by using three different tests. First, the calculation of the phase velocity of the generated pulse
belongs to velocity of the SH0 mode reported in the dispersion curves. Second, although in Figure 16b,
the generated pulse seems dispersive, variations in the wave pattern are attributed to plate edge
reflections. Shorter time period FEM simulations, (not showed here) reveals a non-dispersive behavior.
Lastly, after several simulations by using different plate thickness, in all cases the magnitude of the
SH0 phase velocity is constant and equal to the velocity of the shear wave. Therefore, SH0 phase
velocity is independent to plate thickness.
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Figure 15. Numerical results of T(0, 1) mode captured at 0.12 m of the excitation surface and at 0.07 m
of the interaction point between support and pipe for the nominal condition.
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Figure 16. Numerical results of interaction between T(0, 1) and the simple support. (a) Snapshots of
T(0, 1) mode propagation in a pipe with a simple support and (b) SH0 generated in the plate for mode
conversion of T(0, 1).

On the other hand, as long as the contact force between pipe and support is increasing, a higher
ultrasonic energy is transmitted to the plate in the shape of SH0 waves. This fact is revealed in
Figure 17; where it is noted an amplitude reduction in the captured pulse for a node which it is set
up as a sensor in the model; for loads which emulate different support stiffness i.e., (0, 100, 200 and
500 N). Although in Figure 17 the zoom view correspond to the highest peak, the described behavior,
decrease of the wave magnitude, is presented along the simulated T(0, 1). Therefore, a reduction of
the reaction force between the pipe and the support by a loss of rigidity in the support foundation
produces an increase with respect to a pre-defined stiffness in the magnitude of the T(0, 1) captured
pulse located ahead the support contact area.



Sensors 2018, 18, 1263 18 of 20

Time (sec) ×10
-5

8.07 8.08 8.09 8.1 8.11 8.12 8.13 8.14

A
m

p
lit

u
d

e
×10

-4

9.11

9.12

9.13

9.14

9.15

9.16
No load

100 N

200 N

500 N
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the plate.

6. Conclusions

The effects of supports external loading, stiffness, on the propagation of torsional guided wave
mode T(0, 1) was investigated. Experimental tests were conducted for various magnitudes of loading
in a one-inch sch 40 pipe. Experimental results showed an unnoticeable influence of pipe normal
stress levels, generated by bending, in the velocity of the T(0, 1) mode as a consequence of the
acoustoelasticity effect. No change in the TOF were reported among the different stress levels under
loading varying reactions in the supports. FEM simulations of the effect of the mechanical contact
between pipe and support in the propagation of T(0, 1) revel a mode conversion in the interface from
T(0, 1) propagating in the pipe to SH0 generated in the support, modeled as a plate. The leakage is
identified comparing the magnitude of T(0, 1) propagating with and without mechanical contact with
the support. No damping is considered in both conditions. Experimental results exposed amplitude
change of the captured torsional guided wave for different stiffness in the supports. Although the setup
is plenty of symmetry (geometry of the waveguide, in loads, in the guided wave propagated, in the
energy and stress distribution in the cross-section) the only asymmetric effect was the variations in the
amplitude of the captured torsional wave. It is noted an attenuation growth in the transmitted wave for
an increment of the supports reaction force, independent of the shape adopted by the pipe, i.e., concave
upwards and concave downwards. Additionally, scattering, variations in the thickness, notches are
absent in the experimentation performed. Based on these, it can be concluded that the mechanism
responsible of the variations of the magnitude in mode T(0, 1) transmitted in a pipe in mechanical
contact with a support is the transmitted ultrasonic energy for the guided wave to the support via
mode conversion from T(0, 1) to SH0 in the support. On the other hand, the presence of geometrical
and material acoustic discontinuities in the guided waves such as notches, changes in the dimensions
of the members cross section, corrosion or erosion, produce a reduction of the transmitted energy due
to the interaction of the wave with the discontinuity (scattering, mode conversion, reflection). For all
the cases, the energy reflection and mode conversion will produce a decrease in magnitude in the wave
transmitted past the discontinuity. Therefore, any ultrasound wavepacket magnitude increment for a
pitch-catch configuration located in the path of a support with nonexistence of an extra ultrasound
source must be unequivocally considered as a loss of rigidity in the support. Besides, the material
discontinuities appear in the waveguide in a much greater time scale compared to the most probable
scenario of unexpected change in the supports reaction. Therefore, it can be proposed a dedicated
supports stiffness monitoring scheme which basis is the tracking of short time amplitude increments
of T(0, 1) mode propagated in the path of the support.
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