
sensors

Article

Feature Extraction for Track Section Status
Classification Based on UGW Signals

Lei Yuan 1,2 ID , Yuan Yang 1,*, Álvaro Hernández 2 ID and Lin Shi 1

1 Electronics Department, Xi’an University of Technology, Xi’an 710048, China;
yuanleixut@126.com (L.Y.); lincoding@163.com (L.S.)

2 Electronics Department, University of Alcala, Alcalá de Henares, Madrid 28805, Spain;
alvaro.hernandez@uah.es

* Correspondence: yangyuan@xaut.edu.cn; Tel.: +86-29-82312087

Received: 21 February 2018; Accepted: 11 April 2018; Published: 17 April 2018
����������
�������

Abstract: Track status classification is essential for the stability and safety of railway operations
nowadays, when railway networks are becoming more and more complex and broad. In this situation,
monitoring systems are already a key element in applications dedicated to evaluating the status of a
certain track section, often determining whether it is free or occupied by a train. Different technologies
have already been involved in the design of monitoring systems, including ultrasonic guided waves
(UGW). This work proposes the use of the UGW signals captured by a track monitoring system to
extract the features that are relevant for determining the corresponding track section status. For that
purpose, three features of UGW signals have been considered: the root mean square value, the energy,
and the main frequency components. Experimental results successfully validated how these features
can be used to classify the track section status into free, occupied and broken. Furthermore, spatial
and temporal dependencies among these features were analysed in order to show how they can
improve the final classification performance. Finally, a preliminary high-level classification system
based on deep learning networks has been envisaged for future works.

Keywords: track status classification; ultrasonic guided wave (UGW); feature extraction; temporal
and spatial dependencies; deep learning algorithm

1. Introduction

Railway transportation has improved rapidly in recent years, achieving significant and
widespread use in China, especially with the development of high-speed railway lines. As one
of the major components of railway transportation systems, tracks have been the subject of increased
engineering effort, not only in terms of design, manufacturing and deployment, but also with regard
to monitoring and safety issues. As a consequence of the long-term strain on tracks due to the
existing external forces [1,2], track degradation and breakage have become very important concerns.
Breakage poses a great threat to railway transportation security; in the best cases it can cause train
delays, but at worse it can lead to accidents and casualties. For this reason, the proposal and design of
accurate and real-time track status monitoring systems is still a relevant topic [3].

Different methods have already been applied to monitor track status. Among these, track circuits
are the most typically used and extended method. In their basic configuration, a track circuit provides
a certain energy to each rail, so a relay coil wired across rails can report the track condition based on its
own status (energized or de-energized). However, track circuits are significantly affected by the ballast
parameters, and this may lead to the appearance of false alarms with regard to short-circuits [4,5].
In [6], the Salient System Company proposed a method, which laid out sensors every 30~60 m along
the track, so every sensor can detect the track strain and temperature, as well as report data to a
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monitoring center through a wireless module. This method is suitable for new railway lines to be
built in the coming years, but not for existing ones, since it is complicated to determine the zero-strain
point (required by the algorithm) for a track already installed and in operation. In [7], a detection
method based on using the unbalanced traction return currents is proposed, although it is important
to note that this approach requires a train passing through the section under analysis to detect any
breakage status.

As a medium of solid sound propagation, tracks often have suitable acoustic features.
When ultrasonic waves are confined within the boundaries of a bar or tubular medium, the boundary
produces repeated reflections on the ultrasonic waves, thus forming ultrasonic guided waves (UGW),
which consist of a longitudinal wave, a surface wave, a lamb wave, as well as other basic ultrasonic
types in various ways. Compared to the traditional single-wave energy centralized ultrasonic waves,
UGW provide a relatively low detection frequency, and a long transmission and detection distance [8,9].

Taking that into account, in 2002, the RailSonic Company in South Africa took advantage of these
characteristics and proposed a novel detection system based on UGW. The system mainly consists
of ultrasonic transducers, transmitters and receivers, as well as the corresponding communication
modules, and tracks play the role of the transmission channel in the proposal [10]. This method
uses a mechanical wave as the detection signal, thereby it is not affected by any traction current or
track electrical parameter. Furthermore, the installation and maintenance of this type of device has
been proven to be convenient [1] and additionally, the power consumption is also relatively low.
The aforementioned advantages provided by this detection method have led to the fact that many
researchers and studies have been focused recently on detection systems based on UGW signals [11,12].

In [13], different experiments were carried out to test the suitable driving frequency and
transmission distance for the UGW signal and a novel breakage detection method using the echo
impulse was also proposed [14]. UGW signals were also studied in [15], where a detection method
based on a fixed threshold was developed. Furthermore, a monitoring system for continuous welded
railways (CWR) based on UGW signals was proposed in [16,17], where the electronic architecture
involved in the experimental implementation included an ARM processor and a field-programmable
gate array (FPGA) device, thus achieving two km long track sections. Similarly, time-frequency analysis
methods, such as the Short-Time Fourier Transform (STFT) and Pseudo Wigner Ville Distribution
(PWVD) have focused on the attenuation characteristics of UGW signals as well [18,19]. On the other
hand, in [20] a signal processing approach with a smooth empirical mode decomposition applied to
UGW signals was proposed. In [21,22], UGW signals were applied to pipeline flaw identification.
An amplitude dispersion compensation for damage detection using UGW signals was studied in [23,24],
and a study of non-detection zones in conventional long-distance UGW inspection on square steel bars
was presented. Finally, various previous works have also dealt with mode identification and denoising
methods for UGW signals [25,26], as well as with modelling of a UGW transducer [27]. However,
ways to extract the features and regular rules of UGW signals in the track status monitoring system are
still very important for track status detection.

This work proposes a method to extract features from the UGW signals involved in a monitoring
system, so they can be applied to distinguish three different track statuses; free, occupied and broken.
The main contribution is the extraction of these three features from the UGW signals; the RMS value and
the energy in the time domain, as well as the frequency component with the highest amplitude in the
frequency domain. Since these features often follow a certain variation or trend over time, the temporal
dependencies have been also considered. Furthermore, taking into account that a railway line consists
of a set of successive track sections, where the status of one is also related to the status of previous
and later ones, the existing spatial dependencies between successive track sections have been studied.
The analysis of the aforementioned features, together with the temporal and spatial dependencies
along the successive track sections of a railway line, allow the track section status classification to be
carried out correctly. It is worth noting that the use of UGW-based detection systems in this type of
application is still an open and challenging question, where certain drawbacks should be addressed in
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the coming years. The propagation of UGW signals can be affected by environmental factors, and this
can lead to different issues in the practical implementation, with high false alarm rates in the track
status classification. Therefore, in long-term, complex and large-scale railway transportation networks,
it is necessary to apply certain high-level techniques, such as deep learning algorithms [28], which can
deal with varying situations and conditions in a reliable way. Some experimental tests have verified
the correctness and suitability of the selected features. The rest of the manuscript is organized as
follows: the existing UGW-based track detection system is described in Section 2; Section 3 explains the
proposed feature extraction scheme; Section 4 shows some experimental results regarding the railway
status classification; future works are proposed in Section 5, and finally, conclusions are discussed
in Section 6.

2. UGW-Based Track Detection System

An already available UGW-based track monitoring system has been used here to estimate the
track status, and, especially to detect possible breakages [29,30]. The general overview of the system is
depicted in Figure 1; it includes a monitoring center and a set of nodes distributed along the railway.
Every node mainly involves a solar power supply system, a transmitter or a receiver (depending on the
type of node), as well as a wireless communication module. The solar power supply system provides
the power required by each node, and transmitters and receivers are placed alternately every 1 km.
Each transmitter or receiver is connected to the rail waist through two UGW transducers (one per
rail), again with a distance of 1 km from each other. The rail segment between a transmitter and the
following receiver is known as a track section. Through a wireless communication module, based on
General Packet Radio Service (GPRS), information gathered for every track section can be sent to a
remote monitoring center.

Figure 1. Typical structure for the UGW-based track monitoring system.

The block diagrams for both the transmitter and the receiver can be observed in Figures 2 and 3,
respectively. The transmitter structures are denoted within the dotted box, where the available
ARM core is in charge of generating the driving square signals. Then, these signals are sent to two
identical processing lines. By means of an optical coupler, the aforementioned square signals are
connected to a MOSFET driver and a transformer. The final output signals are used to energize the
UGW transducers and generate the corresponding UGW signals. The transducer TA is connected
to rail no. 1, whereas the TB transducer is connected to rail no. 2. At a distance of 1 km from
there, the receiver is placed, according to the scheme shown in Figure 3. The corresponding UGW
signals are captured by transducers RA and RB, which are connected to rail no. 1 and rail no. 2,
respectively. Both received signals are processed and acquired in two different processing lines. These
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lines consist of an amplification stage (based on an operational amplifier) and a band-pass filter to
discard undesired noise. Through the Analog-Digital Converter (ADC), the digital signals are sent
to the ARM core for further processing. By checking the time and frequency characteristics of the
received signals over a certain interval containing the UGW signals transmitted by TA and TB, the
status of the corresponding track section under analysis can be determined.

Figure 2. Block diagram for the UGW transmitter.

Figure 3. Block diagram for the UGW receiver.

Under the ordinary working conditions of the system, all the odd-numbered transmitters
simultaneously drive their ultrasonic transducers TA and TB to transmit their own characteristic signal
S1 to both sides, left and right, along the rails. After thirty seconds, all the even-numbered transmitters
proceed in the same way to generate their own signal S2 to both sides. Therefore, transmitters TA and
TB can alternately emit the corresponding signals S1 and S2 every 30 s. Examples of signals S1 and S2

captured in the transmitter, after the transducers are plotted in Figure 4, where common amplitudes
are around 500 V. Both signals S1 and S2 consist of three typical trains of UGW pulses (every train
formed by 30 square pulses with a length of 33.33 µs). Though the waveform of both signals is similar,
the interval among these three trains of UGW pulses is 3 s for the signal S1, whereas it is only 1 s in
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the case of S2. Since the receivers and transmitters are fully synchronized, receivers can detect which
signal, S1 or S2, is received at any moment and then manage the ADC to acquire the corresponding
signals every 3 s or 1 s, respectively, all of them inside a time window of 20 ms to include a train of
UGW pulses. Note that the sampling frequency in the ADC is fs = 250 kHz.

Figure 4. Example of UGW signals S1 and S2.

According to the experiments carried out on the BART railway line [13], as well as those on the
Spoornet track section [10], the transmission rail channel affects the UGW signals in different ways,
depending on the main frequency components used for that propagation. For the same propagation
distance, tracks often have a relative low impedance in the range of the 20 kHz–40 kHz UGW frequency
band, thus implying that UGW signals get less attenuation and achieve longer distances, so the received
signals can be detected more easily. Due to this, the main frequency component considered for the
UGW signals S1 and S2 was 30 kHz. This also defines the central frequency for the band-pass filter in
Figure 3 at 30 kHz, with a bandwidth of 6 kHz.

When a track section is free, the corresponding receiver can acquire the aforementioned signals S1

and S2. On the contrary, the receiver has difficulty detecting the arrival of these identifying signals
when a train is in a certain track section, or if a track breakage occurs. Nonetheless, the receiver
can acquire the signals again once the train leaves the corresponding track section, whereas in case
of breakage, the characteristic signals will still be missing over time, no matter the presence of a
train in the track section. In any case, receivers report information to a remote monitoring center
through a wireless communication module, warning of any possible breakage or occupancy alarm, so,
if necessary the follow-up maintenance can be scheduled and carried out, avoiding any further impact
on train circulation.

3. Proposed Track Status Feature Extraction

With regard to any high-level techniques, such as deep learning networks, which can be applied
to the classification of the track status based on UGW signals, they require the availability of certain
information about how identifying features extracted from UGW signals behave under the considered
conditions for a track section: free, occupied and broken. In that way, the more relevant the feature
differences between different track status are, the higher the success rate for the status classification
becomes. Considering all these aspects, a track status feature extraction based on UGW signals is
proposed hereinafter, keeping in mind the improvement of the classification accuracy.
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As has already been mentioned, in the proposed UGW-based track monitoring system, a
receiver acquires the transmitted signals S1 and S2 coming from the next emitters in both directions.
The corresponding track status can be estimated by analyzing those signals. For every section under
analysis, the track status can be mainly classified into three types: free, occupied and broken. For that
purpose, the received UGW signals are processed over a time window of 20 ms. The status of the
corresponding track section is proposed to be determined by extracting the following three identifying
features: the root-mean-square (RMS) value VRMS and the energy E from the received signals, and their
more relevant frequency component fP (corresponding to the amplitude peak). For clarity’s sake, it is
worth noting that both rails, no. 1 and no. 2 have the same setup, so only those signals coming from
rail no. 2 will be described in detail here for the three considered cases (free, occupied and broken),
thus assuming that similar conclusions can be extended to the other rail.

It is important to note that the following description of the proposed feature extraction will be
illustrated by means of experimental signals acquired by the corresponding electronic equipment
installed on the railway line from Baoji to Chengdu (China). The distance between transmitters and
receivers is 1 km, and the weather conditions were relatively dry. Also, the UGW signals adopted in
this work were designed to reach as far as 1.5 km, thus ensuring that receivers can only capture UGW
signals coming from their two immediate transmitters.

3.1. Track Status: Free

For many railway lines, the free track status is often the most common one, which means tracks
are intact and there are no trains occupying the corresponding sections. Then, under this track status
trains are allowed to go into those sections without any potential security risk. Figure 5 shows an
example case for one period of the received signals S1 and S2 acquired by the ADC for rail no. 2,
coming from both the left and right neighboring sections. As can be observed, whether the track is free
or not, the receiver in the middle can acquire the characteristic UGW signal S1 from the left side, as
well as the signal S2 from the right one. Note that these two signals are still 30 s apart. Furthermore,
the 20 ms long window used to deal with a train of UGW pulses is also plotted in Figure 6 (after
removing the DC offset). This signal is processed in order to determine the aforementioned identifying
features (VRMS, E, fP) for the estimation of the current status in the involved track section.

Figure 5. Example of a reception in rail no. 2 including both signals S1 and S2 for a free track section.
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In this work, the RMS feature VRMS of the received signal is used to quantify the voltage variations,
and its value is calculated over a one-cycle-long window (20 ms). Note that, at the receiver end, the
UGW signals processed by the ARM core have been sampled at fs = 250 kHz, so a window of UGW
pulses with a length of 20 ms is composed of N = 5000 discrete samples. In this case, the RMS value
VRMS for a train of UGW pulses can be defined by (1).

VRMS =

√√√√ 1
N

N

∑
n=1

v2
n (1)

On the other hand, the time-domain energy E for a train of UGW pulses is also calculated
according to (2), for the 20 ms long UGW signal

E =
N

∑
n=1

|vn|2 (2)

Finally, the frequency analysis is carried out by computing an FFT (Fast Fourier
Transform) algorithm. As an example, the FFT outcome for the UGW signal with a length of 20 ms
shown in Figure 6 is represented in Figure 7. As expected, the dominant frequencies are mainly focused
around 30 kHz; furthermore, though there is a peak at 92 kHz, its amplitude is low, and this is caused
by the mix of traction currents and environmental noise In this work the focus was on the highest
frequency component fP and its amplitude P in the received signal, about 30 kHz for the example
shown in Figure 7.

Figure 6. Zoom of an UGW train of pulses received for a free track section.

Figure 7. Example of the FFT for the train of UGW pulses shown in Figure 6.
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3.2. Track Status: Occupied

The status of a track section is occupied when there is a train rolling through it, so no other trains
are allowed to use it. As the train gets closer to the track section under analysis, the typically received
UGW signals are gradually masked by the mechanical noise produced by the train wheels and axles.
In the same way, as soon as the train leaves the mentioned track section, the UGW signals start to
gradually reappear. When the track is occupied by a train, the UGW signals are completely lost in the
added noise, as can be observed in the corresponding plot in Figure 8.

Figure 8. Example of received UGW signals in rail no. 2 for an occupied track section.

In the case of an occupied track section, though all the UGW signals are masked by noise, the
receiver can still obtain the 20 ms long signals, including the transmitted train of pulses, thanks to the
existing synchronization between transmitters and receivers. For example, Figure 9 shows an interval
of 20 ms, which contains the masked UGW signals for an occupied track section, whereas the same
signals in the frequency domain have been plotted in Figure 10. Due to the 30 kHz band-pass filter, the
frequency spectrum is still focused around that value; nevertheless, when compared to the frequency
spectrum in Figure 7, the energy is more spread in the frequency domain under the occupied situation.

For an occupied track section, the RMS value VRMS and the signal energy E in the time domain
are also calculated, although both values may be useless due to the influence of the noise produced by
the train on the values. Besides, both values are much higher than those for a free track section. On the
other hand, because of the impact from the band-pass filter, the frequency fp, at which the maximum P
is achieved in the spectrum of the received signal, is similar to that estimated for the free section.
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Figure 9. Example of a train of UGW pulses masked under noise for an occupied track section.

Figure 10. Frequency-domain representation of a train of UGW pulses for an occupied track section.

3.3. Track Status: Broken

The UGW signals are attenuated at a certain level when propagating through rails. Furthermore,
in the case of a breakage happening in any rail, the energy of the UGW signals is partially lost
and reflected, thus causing a significant energy attenuation in the transmissions and the maximum
propagation distance is consequently shortened. This implies that the receivers will not be able to
properly detect the transmitted UGW signals. Figure 11 depicts an example where four possible
breakages, E, F, G and H have been considered. Due to these, the UGW signals in the corresponding
section are lost. In the following graph, the UGW signals captured for rail no. 2 are represented, and
only breakage G has been taken into account. Thereby, the three trains of UGW pulses S1 coming
from the left transmitter are visible, whereas the pulses S2 from the right transmitter are practically
negligible (see Figure 12). In the same way as before, if the FFT is applied to a 20 ms window of the
received signals, where pulses S2 should appear but will not, it is possible to check in Figure 13 that
no frequency components are available in the same range around 30 kHz, with only one maximum
at 92 kHz.



Sensors 2018, 18, 1225 10 of 22

Figure 11. Diagram and example of UGW signals received in rail no. 2 for a broken track section.

Figure 12. Zoom for a 20 ms window in the received UGW signal where pulse S2 should be included,
considering a breakage G.

Finally, for a broken track section, both values VRMS and energy E in the time domain are much
lower than those for a free track section. Furthermore, the corresponding frequency fp for the largest
component P in the signal spectrum is roughly at 92 kHz, similar to the noise component in a free track
section, so there is no trace about the transmitted signals S1 and S2 in the frequency domain.

Taking into account the comments above, it is possible to observe that the RMS value VRMS, as
well as the energy feature E, have the same variation trend for the three considered track statuses,
where the broken track section has the minimum energy value and the occupied track section provides
the maximum value, mainly due to existing noise. With regard to the frequency feature fp, which
represents the largest amplitude P in the signal spectrum, it is similar for the free and occupied sections,
but it can be clearly distinguished in a broken track section. All three features combined together make
it possible to classify the three considered track statuses.
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Figure 13. Frequency-domain representation for a train of UGW pulses S2 in a broken track section,
according to Figure 11.

4. Experimental Results

As has been already mentioned, the proposal for the track section status classification was
experimentally validated by installing the corresponding equipment on the railway line from Baoji to
Chengdu (China). The experimental equipment for every node along the railway line can be observed
in Figure 14, whereas the installation of an ultrasonic transducer in the rail is shown in Figure 15.
The distance between transmitters and receivers is 1 km, and the weather conditions were relatively dry
during testing. The UGW transducers installed along the track were a type of sandwich piezoelectric
ceramic UGW transducer, which are customized according to the requirements of transmission distance
and the environment of the railway line.

For each section Si, the three features [VRMSi Ei fPi] were determined. Therefore, it was possible
to analyse the representative collected data for the three track statuses considered and to verify the
correctness of the feature extraction proposed in this work. In Figure 16, three different plots allowed
us to observe how the three estimated features [VRMSi Ei fPi] behave for each of the different track
statuses considered in rail no. 2. For every feature, 200 representative sample values were available.
As can be observed in Figure 16, if the track section is free, all three features [VRMSi Ei fPi] achieve their
ordinary values; for the occupied track status, the features VRMSi and Ei are much higher than those
of the free status, although the frequencies fPi are similar to those in the free track section. Finally, if
a breakage occurs, the received UGW signals are lost, and VRMSi and Ei are closed to zero, although
the frequency component fPi with the largest amplitude P under this track status, are higher than
those for a free track section. Also, Figure 17 shows that the three features for rail no. 1 behave in a
similar way. Thus, by combining the three features together, the three different track statuses can be
clearly classified for both rail no. 1 and rail no. 2.

Figure 14. Experimental equipment for each node.
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Figure 15. Installation of ultrasonic transducer at rails.

Figure 16. Comparison of three features [VRMSi Ei fPi] for each different track status for rail no. 2.

In Figures 16 and 17, it is possible to see that the track status can be easily distinguished in a
permanent situation. Nevertheless, in some cases, it is also important to determine the status trend: that
is, the temporal behaviour for every track section Si under analysis. Information about the evolution
over time of a track section status can be used to distinguish more complex conditions or effects, such
as the influence of weather or rail degradation. For that purpose, the temporal trend of the three
features [VRMSi Ei fPi] for the collected experimental samples for a certain track section Si was analysed
and this is shown in Figures 18–20. Each figure includes six different statuses over time. As can be
observed in Figure 18, if the track section Si is free, the feature VRMSi stays at a lower constant value.
When there is a train passing along the track section Si, the values for VRMSi start to increase as the
train approaches, reaching a maximum when the track section is completely occupied by the train.
In the same way, VRMSi decreases gradually as the train exits from the track section Si, and then it
recovers the previous low value for a free status. Finally, when a breakage occurs in section Si, the
feature VRMSi drops abruptly to almost zero. With regard to the temporal trend of the energy Ei shown
in Figure 19, it has a similar evolution as VRMSi. As far as the frequency component fPi is concerned,
no matter whether the track section Si is free, the train is approaching or exiting, or the section Si is
occupied by the train, the maximum frequency component fPi maintains an almost constant value
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around 30 kHz. Nevertheless, this value sharply increases up to fPi = 92 kHz when the track status is
broken, as can be observed in Figure 20.

Figure 17. Comparison of three features [VRMSi Ei fPi] foreach different track status for rail no. 1.

Figure 18. Example of a temporal trend for the feature VRMSi in a certain track section Si.

On the other hand, it is important to note that the features from other neighbouring track sections
can also provide additional information about the status of the specific track section Si under analysis,
due to the spatial dependencies existing among them. Taking those into account, in the proposed
UGW-based monitoring system, the broken status is assumed to influence only one track section,
whereas the occupied status is likely to influence all the track sections in the specific moving path of
the train. This implies that some information from neighbouring track sections can enhance the status
classification for a certain track section Si. In this work, the three aforementioned features [VRMSi
Ei fPi] for six neighbouring track sections Si, i = 1, 2, . . . , 6 are considered to explore their spatial
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dependencies. Firstly, it is assumed all the six track sections in rail 2 are free at the same time, so the
three features for the six track sections Si, i = 1, 2, . . . , 6 present a similar value, as is shown in Figure 21.
Secondly, Figure 22 shows an example case, when the status of track section S3 is broken, whereas the
others are free. Compared with the situation in Figure 21, it can be observed that the broken status
only affects track section S3 where it occurs, and not the neighbouring ones.

Figure 19. Example of a temporal trend for the feature Ei in a certain track section Si.

Figure 20. Example of a temporal trend for the feature fPi in a certain track section Si.

Finally, an illustrative situation, at which a train is passing from track section S1 to track section
S6 in rail 2, is described. The spatial and temporal dependencies of three features [VRMSi Ei fPi] for this
situation can be observed in Figure 23, from (a) to (f), at different times. Firstly, at t1, the track section
S1 is occupied by a train, so the features VRMS1 and E1 are the highest. Even though the other five
sections are free, due to the influence of the mechanical noise caused by the train, the neighbouring
section S2 has relatively higher values than the others. When the train is moving from track section S2

to track section S5 (from t2 to t5), no matter which section is occupied, the features VRMSi and Ei in the
corresponding section Si are the highest, although their immediate neighbours still present relatively
higher values than the other three free sections. Finally, when the train arrives in the track section S6,
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the feature VRMSi and Ei for track sections S1 to S4 are similar, the values for track section S5 are slightly
higher, and the highest values are obtained for track section S6 (time instant t6). It is worth noting
that no matter where the train is, the frequency components fPi for the six track sections Si always
show quite stable behaviour. Figure 23 allows us to conclude that a train occupying a certain track
section affects, not only that particular track section, but also the immediate neighbouring sections.
This spatial dependency can be used to improve the final track section status classification.

Figure 21. Spatial dependencies of features [VRMSi Ei fPi] for six neighbouring track sections Si, i = 1, 2,
. . . , 6 in rail no. 2 under free status.

Figure 22. Spatial dependencies of features [VRMSi Ei fPi] for six neighbouring track sections Si, i = 1, 2,
. . . , 6 in rail no. 2 when section S3 is broken.
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Figure 23. Cont.
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Figure 23. Spatial dependencies of features [VRMSi Ei fPi] for six neighbouring track sections Si, i = 1, 2,
. . . , 6, in rail no. 2 when a train is moving through them.
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The same analysis for the spatial dependencies of features [VRMSi Ei fPi] for six neighbouring
track sections in rail no. 1, can also be seen in Figure 24, where similar behaviours as those previously
presented for rail no. 2 in Figure 23 were observed. Figure 24a shows the case when all the six track
sections Si are free, whereas in Figure 24b track section S3 is broken and in Figure 24c track section S3

is occupied by a train.

Figure 24. Spatial dependencies of features [VRMSi Ei fPi] for six neighbouring track sections Si, i = 1, 2,
. . . , 6 in rail no. 1 under three different track statuses.
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5. Future Work

Previously, received UGW signals have been analysed for three different track statuses,
the associated features have been extracted, and they have been validated by means of experimental
tests. These features are thought to be useful as inputs in a future high-level system that carries out the
status classification and decision making. In this way, it is intended to apply a recurrent neural network
(RNN) [31–33], where previous knowledge regarding the dependencies among the three track statuses
will not be explicitly integrated. It is, however, important to give the network a structure that enables
it to learn these dependencies from data. It is worth noting that for detecting temporal dependencies,
a RNN is a natural choice, since the recurrent connections in the network allow memories of past
events to be stored.

Since both rails, no. 1 and no. 2, present the same setup, similar networks can be applied in
both cases. This is why the status classification is only detailed for rail no. 2, assuming that it can
be extended to rail no. 1. A preliminary approach for the status classification process is depicted in
Figure 25, where, six track sections Si, i = {1, 2, . . . , 6} are involved in the lower part. As was described
earlier, the three features [VRMSi Ei fPi] are calculated for every 20 ms long UGW signal window and
for each section Si, thus becoming the inputs for the RNN. Through the RNN processing, the output
layer of the network consists of 18 track status classification units, each three belonging to a section Si

and denoting the three statuses mentioned before: free, occupied and broken.

Figure 25. Preliminary approach for the track section status classification process.

It is worth noting that, whether the track section Si is free or occupied, the final track section
status classification should be unified for both rails, no. 1 and no. 2. Furthermore, in the case that
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different breakages happen in all the neighbouring sections at the same time, which is actually very
improbable, the classification output for rail no. 1 and rail no. 2 may also be different. In this particular
case, the final classification result is decided in accordance with safe rail operation.

6. Conclusions

A monitoring system based on UGW signals, consisting of the distribution of transmitters and
receivers every 1 km along the track, has been described in this work. Every receiver can acquire and
process the UGW signals coming from neighbouring transmitters. In order to classify three different
track statuses (free, occupied and broken), the main contribution of this work is the extraction of
three features from the UGW signals: the RMS value and the energy in the time domain, and the
frequency component with the highest amplitude in the frequency domain. The analysis of these
three features, together with temporal and spatial dependencies along the successive track sections of
a railway line, allow the track section status classification to be carried out correctly. Experimental
tests have successfully validated the proposed approach. Finally, a recurrent neural network has
been envisaged as a feasible solution to implement a high-level classifier based on the three features
already mentioned.
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