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Abstract: Ship detection from synthetic aperture radar (SAR) images is one of the crucial issues
in maritime surveillance. However, due to the varying ocean waves and the strong echo of the
sea surface, it is very difficult to detect ships from heterogeneous and strong clutter backgrounds.
In this paper, an innovative ship detection method is proposed to effectively distinguish the vessels
from complex backgrounds from a SAR image. First, the input SAR image is pre-screened by the
maximally-stable extremal region (MSER) method, which can obtain the ship candidate regions with
low computational complexity. Then, the proposed local contrast variance weighted information
entropy (LCVWIE) is adopted to evaluate the complexity of those candidate regions and the
dissimilarity between the candidate regions with their neighborhoods. Finally, the LCVWIE values of
the candidate regions are compared with an adaptive threshold to obtain the final detection result.
Experimental results based on measured ocean SAR images have shown that the proposed method
can obtain stable detection performance both in strong clutter and heterogeneous backgrounds.
Meanwhile, it has a low computational complexity compared with some existing detection methods.

Keywords: SAR image; ship detection; maximally stable extremal region; local contrast variance
weighted information entropy

1. Introduction

With the development of marine traffic, the number of ships on the high seas has increased greatly.
The increased ships can improve seaborne trade. In the report of UNCTAD/RMT/2017, total volumes
of seaborne trade reached 10.3 billion tons in 2016, and especially the strong import demand in China
continued to support world maritime seaborne trade. However, in recent years, illegal activities such
as smuggling, sea-jacking and maritime terrorism have seriously affected maritime trade [1]. Therefore,
maritime security is vital to global, regional and national economies. In order to guarantee the safe
navigation of the vessel and the safety of sea activities, the surveillance of ocean ships has become a
very important issue for coastal countries [2,3]. As a main application of maritime surveillance, ship
detection has received more and more attention [4]. At present, the most common and effective ship
detection technologies are based on various sensors, such as radar and infrared sensor. In practice,
the ship detection system should have the capacity of all-time, all-weather and have a wide-area
observation. As synthetic aperture radar (SAR) can provide high-resolution images of the observed
ocean day and night and independent of weather condition, ship detection from SAR images is an
effective technology and has become a hot research field [5,6].
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In general, weak wind results in a smooth sea surface and weak radar backscatter, which appears
as a homogeneous background in a SAR image. This situation is advantageous for ship detection.
However, due to strong wind generating sea surface ripples, causing a rough sea surface and strong
radar backscatter, the sea background in the SAR image is spatially heterogeneous and has high
intensity. In this condition, ship targets are often overwhelmed by strong sea clutter, leading to a
low signal-to-clutter ratio (SCR). Consequently, ship detection from a SAR image is an extremely
tough task.

Many researchers have made efforts to deal with the heterogeneous and strong clutter
backgrounds in ship detection [7–10] and have achieved some valuable results. In addition, the studies
of sub-aperture-based [11] and physically-based techniques [12–14] in the ship detection field have
received much attention recently. Conventional ship detection methods generally utilize a constant
false alarm detection (CFAR) technique, such as CA-CFAR, OS-CFAR, etc. [15–17]. The CFAR-based
methods adopt a sliding window structure and compare the cell under test with a threshold estimated
by its surroundings within the window. These methods can obtain considerable detection results under
a complex background. However, these methods are seriously dependent on the prior knowledge of
the sea background and consume a huge amount of computational resource, leading to the limitation
of their application. In order to eliminate the dependence on the prior knowledge, an adaptive detector
based on local variance weighed information entropy (VWIE) was proposed [18], which has been
proven to be an effective method. The VWIE-based detector can effectively amplify the difference
between the target and its surroundings, suppressing sea clutter and the noise [19,20]. However, as
the VWIE-based detector adopts the sliding window technique, huge computational consumption is
required for large-sized ocean SAR images. Meanwhile, the selection of the sliding window size is
also a thorny problem, and the VWIE-based detector is not robust to the SAR images with complex
backgrounds. Wang et al. [21] improved the VWIE-based detector using the multiscale local contrast
measure (LCM) method [22] to determine the local optimal window size and proposed a multiscale
variance weighted information entropy (MVWIE) detection method, which can enhance the robustness
of the algorithm. However, the MVWIE method needs a huge number of repeated calculations around
a certain pixel region, adding to the extra computational burden sharply. Therefore, the MVWIE
method is not suitable for real-time detection from ocean SAR images.

If the detected region can be restricted to a small range, not the whole SAR image, then the
detection efficiency can be significantly improved. Based on this analysis, regional pre-screening
technology can be employed to quickly achieve potential target regions, which are very smaller
compared to the whole SAR image. Then, further exploration can be done in these selected regions
to realize accurate ship detection with high efficiency. The maximally-stable extremal region (MSER)
method is a region detector used to extract the stable region (called the MSER region) from an
image [23]. It turns out that the features of the MSER region are identified with the characteristics of
the ship region in a SAR image. Besides, the MSER method has the advantages of stability compared
with other region detectors, fast computing and multiscale detection [24], which are very suitable for
quick target region extraction in ocean SAR images [25].

Considering the effectiveness and efficiency of ship detection, this paper proposes an innovative
ship detection method of SAR images named the MSER-based local contrast variance weighted
information entropy (LCVWIE) method. The proposed method can not only achieve a satisfactory
detection result in various ocean scenes, but also can reduce the computational time significantly.
First, we use the MSER method to extract the ship candidate regions from the original SAR image.
Then, the local contrast variance weighted information entropy (LCVWIE) of the extracted candidate
region slices is calculated. Finally, the LCVWIE values of the candidate regions are compared with the
proposed adaptive threshold to obtain the final detection result.

The proposed MSER-based LCVWIE method does not depend on the a priori knowledge of the
background and ship and can achieve quick and accurate ship detection results in various ocean scenes.
Experimental results based on different ocean SAR images have shown that the proposed method can
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obtain a commendable detection performance both in strong clutter and heterogeneous backgrounds;
meanwhile, the computational efficiency is significantly improved compared with some existing
detection methods.

The remainder of this paper consists of the following sections: Section 2 illustrates the proposed
ship detection method, and the experimental results are demonstrated in Section 3. The conclusion is
given in Section 4.

2. Proposed Ship Detection Method

Considering the real-time and accuracy requirements for practical detection applications,
we implement the ship detection in two stages. In the first stage, the ship candidate regions are
generated quickly by the prescreening algorithms. In the second stage, the correctness of each
candidate region is verified by the proposed LCVWIE method.

As the ships are mostly made of metal materials and they usually have large hulls containing a lot
of dihedral and trihedral structures, ships usually present as bright regions in SAR images. As a result,
the ship region can keep stable at a certain gray level range, which coincides with the features of the
MSER region. Therefore, the candidate region can be defined as the MSER region, and the prescreening
method in the first stage can adopt the MSER method.

Since strong clutter can form bright regions in a SAR image, the candidate regions obtained by
the MSER method may contain false alarms. It is necessary to verify these candidate region. Generally,
ship target regions have distinct gray values in a SAR image. Moreover, the target regions have
strong dissimilarity with respect to their surrounding regions, while the strong clutter regions usually
have similarities with their surrounding regions. Considering the features of the candidate region,
variance weighted information entropy (VWIE) [26] is an effective method to describe the difference of
gray level and the influence of high gray levels in the candidate region. Meanwhile, considering the
dissimilarity relationships between the candidate region and its surrounding regions, the local contrast
measure (LCM) [22] is introduced to verify the candidate region along with VWIE. Consequently, a
new LCVWIE method is proposed in the second stage for validating candidate regions.

From the above, we first prescreen the input image with the MSER method and obtain the
candidate regions. Then, the proposed LCVWIE method is used to verify the candidate regions,
and the final detection result is obtained by a threshold decision. The method is specified in the
following section.

2.1. Candidate Region Generation

The MSER method is generally used to calculate image-stable regions based on the idea of the
watershed in geography. The stable regions are solely defined by an extremal property of the intensity
function in the region and on its outer boundary [23]. The MSER method is explained specifically
as follows.

For a given intensity image, assume that its gray level range is [0, I]; N equal-interval thresholds
of the gray level are set as {ηi|ηi+1 = ηi + ∆, ηi ∈ [0, I] , i = 1, 2, ..., N}, where ∆ means the interval
and ηi is the i-th threshold. For a certain threshold, if the gray level of the pixel in the image is
smaller than the threshold, then the gray level of the pixel is set to zero; otherwise, it is set as one.
In this way, we can get N binary images corresponding to the thresholds, and the region with a higher
gray level in each binary image is called the extreme region. Specifically, the extreme region is a
connected area corresponding to a certain gray level threshold, and the gray levels of all pixels in
this area are larger than the threshold, while the gray levels outside this area are all smaller than
the threshold. Then, a series of mutually extreme regions are generated, which are represented as
Qη1 ⊃ Qη2 ⊃ Qη3 ⊃ ...,⊃ QηN−1 ⊃ QηN in Figure 1.
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Figure 1. Calculation of the maximally-stable extremal region (MSER) region: (a) extremal regions’
generation; (b) top view of extremal regions; and (c) area variation rate calculation for extremal regions.

An extremal region is stable if it satisfies the requirements shown in Equation (1):
S
(
Qηi

)
∈ [a, b]

qηi =

∣∣∣S(Qηi+1)−S(Qηi )
∣∣∣

S(Qηi )
< ε

(1)

where S (·) represents the area of the region, [a, b] is the range of the area size, qηi means the area
variation rate of extremal region Qηi and ε is the upper limit of the area variation rate.

In practice, it is very important to select appropriate parameters. The interval [a, b] is estimated
by the area range of ships and SAR image spatial resolution. This means that the range of the area
size parameter should cover the area sizes of the vast majority of ships navigating in monitoring the
ocean. As for the setting of ∆, a large ∆ is too coarse to reflect the accuracy of qηi , while the small ∆
will increase the calculation burden. Considering the tradeoff between the calculation efficiency and
accuracy of qηi , ∆ can be set between 10 and 16. For the intensity image of the ship target, the larger
the ∆ is, the bigger the ship’s area variation rate is. When ∆ is fixed, too large a ε will screen out a large
number of candidate regions, which is disadvantageous for calculation efficiency. Conversely, too
small a ε will leave out dominated area variation, which is detrimental to target detection. Practically,
the range of ε can be set as 0.2 to 0.4, which have been tested to be suitable for most of the SAR images.

It is obvious that the smaller the area variation rate is, the more stable the region is. Therefore,
the maximally-stable extremal region is defined as the extremal region that minimizes the area variation
rate that satisfies Equation (1). Using mathematical expression, that is:

QMSER = arg min
Qηi

{
qηi , i = 1, 2, ...

}
(2)

Figure 1 shows the calculation of the MSER region, where Figure 1a represents the generation of
extremal regions, Figure 1b is the top view of Figure 1a and gives the normalized area of the mutually
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extreme regions and Figure 1c gives an example of the calculation to determine the MSER region.
Take Figure 1 as an example: assume the normalized area range of a ship is set as [0.25, 1], and ε is set
to 0.45. According to Equation (1), the extremal regions Qη5 to QηN do not satisfy the area constraint.
In the remaining extremal regions, the Qη3 ’s area variation rate qη3 > ε, so it does not satisfy the area
variation rate constraint. In the remaining extremal region

{
Qη1 , Qη2 , Qη4

}
, as qη1 < qη2 < qη4 , Qη1 is

selected as the MSER region, according to Equation (2), which is also the final target candidate region.
By the MSER method, the potential target regions can be obtained by prescreening the

input SAR image. As the MSER method only require a small amount of computational resource,
the computational efficiency of ship detection can be significantly improved. However, in high a
sea state, rough sea surfaces are stirred by the fierce wind, which will lead to strong scattering returns
for SAR. These strong scatter regions caused by sea waves are similar to the ship regions in the SAR
image, which easily cause false alarms. In order to reduce the false alarms, the candidate regions
should be verified, which is described in the following section.

2.2. Candidate Region Verification

In this section, the LCVWIE method is proposed to measure the candidate regions obtained in
Section 2.1 by comprehensively considering the features of the candidate region and the relationship
between the candidate region and its surrounding regions. Then, the final ship detection result
is implemented by comparing the LCVWIE values of the candidate regions with the proposed
adaptive threshold. Finally, the whole flowchart of the proposed ship detection method is given.

2.2.1. LCVWIE Method

Assuming K candidate regions obtained by the MSER method are denoted as u1, u2 · · · uK,
whose gray level ranges from zero to I, the VWIE of the k-th candidate region uk can be expressed as:

H(k)
VWIE = −

I

∑
i=0

(
i− Ī(k)

)2
Pk (i) log2Pk (i) (3)

where Ī(k) denotes the mean gray level of the k-th candidate region, Pk (i) means the occurrence

probability of the pixels with gray level i in the k-th candidate region and
I

∑
i=0

Pk (i) = 1. It is stipulated

that if Pk (i) is equal to zero, then Pk (i) log2Pk (i) is set to zero. In terms of ship detection from the

SAR image, the smaller the H(k)
VWIE is, the more likely that the k-th candidate region contains the

ship target.
To take the local contrast characteristics of the candidate region into account, the surrounding

regions for each candidate region should be constructed. Figure 2 shows the illustration of the local
contrast calculation stencil. As shown in Figure 2, uk denotes the k-th candidate region obtained
by the MSER method, and {v1, v2, .., v8} represents the surrounding regions corresponding to uk.
Assuming the mean gray level of the j-th surrounding region vj is mvj , it can be expressed as follows:

mvj =
1

Nvj

Nvj

∑
n=1

I
vj
n (4)

where Nvj denotes the total number of the pixels in region vj, and I
vj
n is the gray level of the n-th pixel

in region vj. The contrast between the central region uk and the j-th surrounding region is calculated
by Equation (5).

ck
vj
=

Uk
mvj

(5)
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where Uk represents the maximum gray level in central region uk, Uk = max
n=1,2,...,Nuk

{
Iuk
n
}

, Nuk means

the total number of the pixels in region uk and Iuk
n denotes the gray level of the n-th pixel in region uk.

Then, the LCM value of the k-th candidate region uk is defined as:

Ck = min
vj

Uk × ck
vj

= min
vj

Uk × Uk
mvj

= min
vj

U2
k

mvj

(6)

As the LCM value reflects the contrast between the central region and its surrounding regions,
the bigger the Ck is, the more dissimilar the central region to its neighborhoods is, which means the
central region is more likely to be a ship region. Once the LCM values of all the K candidate regions
have been calculated, the normalized LCM of the k-th candidate region can be given by Equation (7).
The normalized LCM ranges from zero to one.

C̄k =
Ck

max
h=1,2,...,K

{Ch}
(7)

Then, the VWIE value of the k-th candidate region can be modified by the normalized LCM,
which is called LCVWIE and can be written as:

H(k)
LCVWIE = C̄k · H

(k)
VWIE (8)

From Equation (8), it can be seen that the VWIE value of the central region is weighted by
the normalized LCM value. In this way, the LCVWIE can not only describe the distribution of the
gray level in the candidate region, but also reflects the dissimilarity between the candidate region
and its surrounding regions. As the normalized LCM value of the false candidate regions caused
by strong clutter is usually very small, the VWIE value of the false candidate region is reduced by
LCM considerably, while the LCVWIE value of the ship region can still have a relatively large value.
Then, through a threshold decision of LCVWIE, the false alarms and ship targets can be distinguished.
This is how the LCVWIE method reduces false alarms of ship detection in the SAR image.

1v 2v 3v

4v 5v

6v 7v 8v

ku

Candidate Region

Surrounding Region

1v 2v 3v

4v 5v

6v 7v 8v

ku

Candidate Region

Surrounding Region

Figure 2. Illustration of the local contrast calculation stencil.
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2.2.2. Adaptive Threshold Calculation

In order to ensure the robustness of the proposed method, we adopt an adaptive LCVWIE
threshold calculated from the whole SAR image, rather than a fixed one. Taking the characteristics of
the SAR image into account, the LCVWIE threshold T is calculated by Equation (9).

T = c× Hω (9)

where Hω represents the VWIE value of the original SAR image and c is the adaptive
adjustment parameter, which is calculated by Hω as described in the literature [18]. As Hω and
c can adjust adaptively with the input SAR image, the threshold T determined by Hω and c is adaptive.
For the k-th candidate region, if H(k)

LCVWIE ≥ T, then the k-th candidate region is considered as a
ship target, otherwise it is determined as a false alarm.

So far, the ship detection method has been described. The whole process of the proposed method
is summarized in Figure 3.

LCVWIE 
threshold decision

Origin SAR Image

MSER-based Candidate 
Region map

LCVWIE map

Detection result

MSER region Generation

1
0



maxI

Surrounding Region

Candidate Region

LCVWIE Calculation

( ) 1

0

D
k

LCVWIE
D

T 

Step 1

Step 2

Step 3

Figure 3. The flowchart of the proposed detection method. LCVWIE, local contrast variance weighted
information entropy.
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Now, we analyze the computational complexity of the proposed method. In the candidate region
generation stage, the MSER method adopts the BINSORTalgorithm [27] to implement pixel sorting, and
after sorting, the efficient union-find algorithm [27] is used to maintain the list and area of connected
regions [23]. The computational complexity of the BINSORT algorithm and the Union-Find algorithm
are O (N) and O (N log log N), respectively; where N is the number of pixels in the original SAR image.
Therefore, the candidate region generation step has an approximately linear complexity.

In the candidate region verification stage, the computational complexity is mainly determined by
the calculation of the LCVWIE value in Equation (8). We assume that the image gray level is [0, I],
and a total of K candidate regions has been obtained by the MSER method, during which the largest
candidate region contains Nt pixels. For the convenience of illustration, it is reasonable to assume the
time of performing one multiplication and that of performing one addition are equal. The complexity of
the LCVWIE method is determined by the calculation complexities of Equations (3), (7) and (8). After some
simple calculations, it can be obtained that the complexity of calculating

{
H(k)

VWIE, k = 1, 2, . . . K
}

in Equation (3) is K (5I + 2Nt), while K (9Nt + 15) + (2K− 1) operations are needed to calculate{
C̄k, k = 1, 2, . . . K

}
in Equation (7). In addition, K operations have been done to obtain the LCVWIE

value by multiplying Equations (3) and (7) in Equation (8). Therefore, the computational complexity of
the LCVWIE method can be calculated as K [11Nt + 5I + 18]− 1 operations. In general, the density of
the vessels in the sea scene is very low [28], which means KNt � N. Therefore, the total computational
complexity of the algorithm is close to O (N).

Based on the analysis above, it can be concluded that the proposed method has approximately
linear complexity, which is very important for real-time processing.

3. Experiments and Results

In order to verify the proposed detection method, we execute experiments with three ocean
SAR images containing different scenes, namely a homogeneous scene, a heterogeneous scene and
a strong clutter scene, which are shown in Figures 4a, 5a and 6a, respectively. The SAR images of
homogeneous and heterogeneous scenes come from Sentinel-1A C-band SAR images with an image
size of 1000 × 1000 pixels and a 10-m pixel size. The SAR image of the strong clutter scene comes
from ERS C-band SAR image with an image size of 1000× 1000 pixels and a 12.5-m pixel size.

In the experiments, the proposed method will be compared with the VWIE method [18] and
CA-CFAR method based on the G0 distribution [29], and the detection performance and computational
efficiency of these methods are analyzed. The area range of ship target is set as [3, 300], and the area
variance rate threshold is set to 0.3 for the proposed method. In the VWIE method, the window size
ranges from six to nine. The CA-CFAR method is presented at a false alarm probability of 10−4, and
the sliding window size is 71, where the clutter ring window size is 15 and the guard ring window
size is 20.

3.1. Experiment Results

3.1.1. Homogeneous Scene

Figure 4 shows the detection results of the three methods under a homogeneous background.
The original SAR image of the homogeneous scene is shown in Figure 4a, which contains 15 ships,
labeled by white rectangles. Figure 4b–d demonstrate the detection results of the VWIE method, the
CA-CFAR method and the proposed method, respectively, where the green rectangle means the correct
detection. As the signal-to-clutter ratio (SCR) is high for a homogeneous scene, the three methods
successfully detected the ship targets without false alarm and missing inspection.

It should be noted that as the sliding window containing part of the target will lead to a large
VWIE value, the VWIE method may cause the phenomenon of target boundary broadening [18].
By contrast, the proposed method shows promising detection results.
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Figure 4. Detection results of a homogeneous scene: (a) original SAR image, (b) detection result
of the VWIE method, (c) detection result of the CA-CFAR method and (d) detection result of the
proposed method.

3.1.2. Heterogeneous Scene

In general, an ocean ship is made of metal, and its scattering could last a longer time than sea
clutter in the azimuth [30], so its scattering intensity is stronger than the sea surface’s. As a result, the
ship is brighter than the sea background in the SAR image, which is helpful for detecting the ship
target. However, in a heterogeneous scene, the sea spikes may be as bright as ship targets in the SAR
image. It is quite difficult to distinguish the ship target in this situation. Therefore, examining the
performance of the detectors under heterogeneous background conditions is quite necessary.

Figure 5 shows the detection results of three methods under a heterogeneous background.
Figure 5a is the original SAR image of the heterogeneous scene, which contains seven ships. Figure 5b–d
present the detection results of the three detection methods, respectively, where the green rectangle
means the correct detection and the red circle represents the false alarm. It can be seen that the
VWIE and the CA-CFAR methods lead to false alarms to different degrees. In contrast, the proposed



Sensors 2018, 18, 1196 10 of 15

method shows satisfactory detection performance, which means the proposed method has sufficient
applicability under a heterogeneous background.

 

(a)

 

(b)

 

(c)

 

(d)

Figure 5. Detection results of a heterogeneous scene: (a) original SAR image, (b) detection result
of the VWIE method, (c) detection result of the CA-CFAR method and (d) detection result of the
proposed method.

3.1.3. Strong Clutter Scene

A strong clutter background is a common phenomenon when SAR observes the sea surface at
a high grazing angle, and the SCRwill become lower in this scenario, which is a big challenge for
ship detection. Consequently, the performance of the detector in this scenario should be investigated.
Figure 6 shows the detection results of the three methods under a strong clutter background.
The original SAR image of the strong clutter scene is shown in Figure 6a, which contains eight ships.
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Figure 6. Detection results of the strong clutter scene: (a) original SAR image, (b) detection result
of the VWIE method, (c) detection result of the CA-CFAR method and (d) detection result of the
proposed method.

Figure 6b–d give the detection results of the three detection methods, respectively, where the
green rectangle means the correct detection and the red circle represents the false alarm. It can be
seen in Figure 6 that the proposed method has less false alarms than the VWIE method and the
CA-CFAR method. In contrast to the other two methods, the proposed method takes the local contrast
between the target regions and the surrounding regions into account, which can effectively distinguish
the target and the clutter, and achieves better detection results.

Figure 7 shows the detection results of one ship slice in the experiments. The original SAR
image of the ship slice is shown in Figure 7a–d, giving corresponding detection results of the three
detection methods, respectively. It can be seen from the results that the VWIE method makes the ship
boundary broaden, and a shrinkage of the ship area has appeared in the G0-based CA-CFAR method.
In contrast, the proposed method basically maintained the original boundary and area of the ship.
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(a) (b) (c) (d)

Figure 7. Detection results of one ship slice: (a) original ship slice, (b) detection result of the VWIE method,
(c) detection result of the CA-CFAR method and (d) detection result of the proposed method.

3.2. Performance Analysis

3.2.1. Detection Performance

To evaluate the detection performance of the proposed method and the other two methods,
the figure-of-merit (FoM) [31] is introduced to assess the detection results. The FoM of the detection
result can be calculated by Equation (10).

FoM = Ncd

/(
N f a + Ntt

)
(10)

where Ncd means the number of correct detections, N f a denotes the number of false alarms and Ntt is
the number of real targets in the original SAR image. It is obvious that the bigger the FoM is, the more
accurate the ship detection results are.

Table 1 shows the FoMs of detection results for the three methods. From Table 1, it can be seen
that the proposed method performs much better than the VWIE method and CA-CFAR method in the
three sea scenes. Moreover, The variances of the FoM for the VWIE method, the CA-CFAR method
and the proposed method are 0.0312, 0.0443 and 0.0027, respectively. It is clear that the FoM variance
of the proposed method is significantly smaller than the other two methods, which means that the
proposed method has better robustness.

Table 1. FoMs of the detection results for the three methods.

Ncd N f a Ntt FoM

Homogeneous scene (Figure 4)

VWIE method 15 0 15 1
CA-CFAR method 15 0 15 1
Proposed method 15 0 15 1

Heterogeneous scene (Figure 5)

VWIE method 7 4 7 0.636
CA-CFAR method 7 6 7 0.538
Proposed method 7 0 7 1

Strong clutter scene (Figure 6)

VWIE method 8 5 8 0.615
CA-CFAR method 8 6 8 0.571
Proposed method 8 1 8 0.889

3.2.2. Computational Efficiency

Computational efficiency is a key indicator of the real-time processing performance for a
detection algorithm. In order to evaluate the computational efficiency of the three detection methods,
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all the experiments are accomplished by MATLAB R2015b on a computer with the hardware
environment of Pentium Dual-Core CPU i3-3220 3.3 GHz and 8 GB RAM. Therefore, the computational
time of each method can measure the computational efficiency. Table 2 shows the computational
times of the three methods. The computational times of the proposed method are sharply reduced
compared with the other two methods, which makes the proposed method available in the application
of real-time ship detection.

Table 2. Computational times of the three detection methods.

Proposed Method VWIE Method CA-CFAR Method

Homogeneous scene 1.55 s 143.06 s 167.16 s
Heterogeneous scene 1.52 s 144.31 s 159.61 s
Strong clutter scene 1.36 s 148.09 s 142.01 s

From the experimental results and performance analysis, it can be seen that our method has the
advantages of accurate detection, strong robustness and high computational efficiency, which proves
that it is valuable in practical application.

4. Conclusions

In this paper, an effective ship detection method is proposed to detect the ship targets from SAR
images. Considering the real-time and accuracy requirements for the practical detection applications,
we implement the ship detection in two stages. First, the ship candidate regions are generated by the
MSER method. Then, the LCVWIE method is proposed to validate the candidate regions by taking
the characteristics of the ship regions into account. Compared with the conventional methods, the
proposed method does not require any prior knowledge, and it is available for heterogeneous and
strong clutter scenes. Moreover, the computational consumption is sharply reduced. Experiments
are carried out based on the spaceborne SAR images, and the results demonstrate that the proposed
method can achieve more accurate detection results with much less computational time in three
different sea scenes than some existing detection methods. The ship detection performance of the
proposed method makes it able to be applied to the field of marine surveillance.

However, there is still room for improvement. As the proposed method adopts image processing
technology, too small targets may be missed in the processing of the morphology. Additionally, in harsh
weather conditions, ships may present a backscattering value similar to the surrounding sea clutter,
leading to degradation of detection performance. In the future, we will research the detection for small
targets, explore an approach to realize effective ship detections in harsh weather conditions and verify
the influence of azimuth ambiguities. Furthermore, polarization information can be introduced to
improve the detection performance [32,33].
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