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Abstract: Blurred image restoration poses a great challenge under the non-Gaussian noise
environments in various communication systems. In order to restore images from blur and
alpha-stable noise while also preserving their edges, this paper proposes a variational method to
restore the blurred images with alpha-stable noises based on the property of the meridian distribution
and the total variation (TV). Since the variational model is non-convex, it cannot guarantee a global
optimal solution. To overcome this drawback, we also incorporate an additional penalty term into
the deblurring and denoising model and propose a strictly convex variational method. Due to
the convexity of our model, the primal-dual algorithm is adopted to solve this convex variational
problem. Our simulation results validate the proposed method.

Keywords: image deblurring; variational method; alpha-stable noise; primal-dual algorithm;
total variational

1. Introduction

Noise interferences often occur in many systems such as wireless communications [1] and social
networks [2,3]. Hence, images are inevitably corrupted by both blur and noise during the acquisition
and transmission. Hence, the restoration of clean images from blurred and noisy observations is a
fundamental task in the image processing community. A wide range of approaches has been proposed
to remove additive Gaussian noise [4–6]. However, many other noises, such as impulse noise [7–12],
multiplicative noise [13,14], Poisson noise [15–17], Cauchy noise [18,19], and Rician noise [20],
commonly appear in the real world and thus are studied by many researchers. Another impulsive
noise is often caused by alpha-stable noise, which normally appears in many applications, such as
wireless communication systems, synthetic aperture radar (SAR) images, biomedical images, and
medical ultrasound images [21,22].

Mathematically, the image restoration problem can be expressed as

f = Ku + η (1)

where u ∈ Rmn is obtained from a two-dimensional pixel-array with dimension m× n and defined
on a connected bounded domain Ω ⊂ R2 with compact Lipschitz boundary, K ∈ Rmn×mn denotes a
known linear and continuous blurring operator, η is the noise obeys certain distribution (for example
alpha-stable noise is the noise which obeying alpha-stable distribution), and f ∈ Rmn is the blurred
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image with the additive noise. In particular, when f is corrupted only by noise, it is then given
by f = u + η.

It is well known that restoring u from f is normally an ill-conditioned problem. Variational
methods are proposed to handle this ill-posed inverse imaging problems. These methods are usually
summarized as convex and non-convex methods, respectively. The total variation (TV) regularization
method [23] plays a significant role in convex variational-based image processing, since it can preserve
sharp edges in images due to the piecewise smooth property of the TV norm.

The ROF (Rudin Osher and Fatemi) denoising model is one of the most famous total variational
models for restoring images with additive Guassian noise, which was proposed by Rudin et al. [6],
as given by

inf
u∈BV(Ω)

∫
Ω
|Du|+ λ

2

∫
Ω
(u− f )2dx (2)

where
∫

Ω |Du| is the TV regularization term, BV is the space of the functions of bounded variation,∫
Ω (u− f )2dx is the data fidelity term, and λ > 0 is the regularization parameter, which represents

the trade-off between the data fidelity term and the TV regularization term. It is possible to modify
the ROF denoising model to incorporate a linear blurring operator K [6]. The ROF deblurring and
denoising model is then given as follows:

inf
u∈BV(Ω)

∫
Ω
|Du|+ λ

2

∫
Ω
(Ku− f )2dx. (3)

Although the ROF deblurring and denoising model is a very useful deblurring and denoising
approach with additive Gaussian noise, it does not achieve good performance in the scenario of
non-Guassian environments. As a result, many kinds of variational models based on TV have been
proposed for restoring clean images from blurred and non-Guassian noise distribution, such as that
of impulse noise [7–12], multiplicative noise [13,14], Poisson noise [15], Cauchy noise [18,19], and
Rician noise [20]. Based on different noise distributions, and data fidelity terms, one can obtain
appropriate variational models for image denoising and deblurring in the presence of different noises.
For example,

∫
Ω |Ku− f |dx is the data fidelity term of TVL1 deblurring and denoising model with

impulse noise [11], and
∫

Ω log
(

γ2 + (Ku− f )2
)

dx is the data fidelity term of Cauchy deblurring and
denoising model with Cauchy noise [18].

Recently, some methods have been considered to mitigate alpha-stable noise. For example,
Zozor et al. [24] employed a parametric approach for suboptimal signal detection. They dealt with
the detection of a known signal embedded in alpha-stable noise and discussed the robustness of
the detector against the signal amplitude and the stability index. Sadreazami et al. [25] modeled
the contourlet coefficients of noise-free images with the alpha-stable distribution. They have also
presented a new approach for despeckling SAR images and a multiplicative watermark detection in
the contourlet domain using the alpha-stable distribution [26,27]. Yang et al. [28] proposed a total
variational method to restore images that are degraded by alpha-stable noise based on the property of
meridian distributed.

Until now, to the best of our knowledge, there is no paper reporting on a variational method
for blurred image restoration in the presence of alpha-stable noise. In order to restore images from
blur and alpha-stable noise while also preserving their edges, this paper proposes a novel variational
method based on the statistical property of meridian distribution and the TV, and our numerical
experiments demonstrate that it performs better than many standard deblurring and denoising method
in impulsive noisy environments (with small α values, i.e., α ∈ (0, 1.5)), while providing comparable or
better performance in less demanding, light-tailed environments (with high α values, i.e., α ∈ (1.5, 2)).

The main contributions of this paper are summarized as follows. (i) Based on the statistical
properties of meridian distribution and the TV, we propose a new variational method for restoring
blurred images with alpha-stable noise and then analyze the existence of the solution for the
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variational model. (ii) By adding a penalty term, we propose a strictly convex variational method
and prove the existence and uniqueness of the solution for the convex variational model. (iii) The
primal-dual algorithm is employed to solve the novel convex variational problem, with its convergence
being analyzed. (iv) We compare our proposed method to state-of-the-art methods such as the TVL1
model [11], the Cauchy model [18], and the meridian filter [29] and show the effectiveness of our
proposed method.

The rest of this paper is organized as follows. In Section 2, we describe the alpha-stable and the
meridian distributions. In Section 3, we propose a variational method for simultaneous deblurring and
denoising, and study the existence of the solution for the proposed model. We also propose a convex
variational method to restore blurred images with alpha-stable noise, and analyze the existence and
uniqueness of the solution for the convex variational model. The primal-dual algorithm for solving
the proposed convex restoration problems is given in Section 4. Section 5 presents extensive numerical
results to evaluate the performance of the proposed method in comparison with well-known methods.
Finally, concluding remarks are provided in Section 6.

2. A Brief Review of the Alpha-Stable and Meridian Distributions

The alpha-stable noise which obeys alpha-stable distribution is often found in radar- and
sonar-related applications. The heaviness of the alpha-stable distribution tails is controlled by the
parameter α ∈ (0, 2), namely, the tails grow thicker as α values becomes smaller. Hence, alpha-stable
noise can be seen as a type of impulsive noise with small α values (α ∈ (0, 1.5)) [21].

The alpha-stable distributions are closed under additions, i.e., the sum of two alpha-stable random
variables is still an alpha-stable random variable. Moreover, the alpha-stable random variables obey
the generalized central limit theorem [21]. However, this class of alpha-stable distribution random
variables has no closed-form expressions for densities and distribution functions (except for Gaussian
distribution, Cauchy distribution, and Levy distribution). The distribution with α = 2 corresponds to
the well-known Gaussian distribution, and the one with α = 1 corresponds to the Cauchy distribution.

Figure 1 shows the probability density functions (PDFs) of alpha-stable distributions S (α, 0, 1, 0)
with different values of α. We can see that the distributions of this class are all bell-shaped,
with increasing density on the left and decreasing on the right. In addition, the tail of the bells
becomes heavier as the value of α decreases.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Symmetric α−stable densities, β = 0, γ = 1, δ = 0

 

 
α = 0.5
α = 1.0
α = 1.5
α = 2

Figure 1. Probability density functions (PDFs) of alpha-stable distributions S (α, 0, 1, 0) with different
values of α.

The meridian distribution is a member of the generalized Cauchy distributions (GCD) family [30],
and it combines the advantages of the GCD and alpha-stable distributions. Moreover, an estimator
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derived from the meridian distribution is robust to the impulsive noise [30]. The probability density
function (PDF) of the meridian distribution is given by

pM (x) =
γ

2
1

(γ + |x− θ|)2 (4)

where γ > 0 is the scale parameter, and θ is the localization parameter. Without loss of generality,
we consider θ = 0 in our paper. A careful inspection of the meridian distribution shows that its PDF
tail decays slower than the Cauchy case, resulting in a heavier-tailed PDF, that is, the meridian PDF
exhibits tails heavier than that of the Cauchy PDF [29]. Moreover, by examining the well-established
statistical relation between the Laplacian and meridian distributions, we can find that the ratio of two
independent Laplacian distributed random variables is a meridian distribution [29].

The influence function of the meridian distribution is given by

ψ (x) =
sgn (x)
γ + |x| (5)

where sgn(·) is the sign function. The influence function determines the effect of contamination.
The rejection point of the meridian is smaller than that of the Cauchy distribution as it has a higher
influence function decay rate. This indicates that a signed detection algorithm in the presence of the
impulsive noise with the meridian distribution is more robust than that in the Cauchy distributed
noise [29].

3. The Proposed Variational Model

In this section, we propose a new variational model for restoring blurred images under the
alpha-stable noise environments.

Motivated by existing work [6,13,18,29], we propose a variational model by applying the Bayes
rule and the maximum a posteriori (MAP) estimator to restore the blurred images with alpha-stable
noise based on the property of the meridian distribution and the TV.

First, we focus only on the denoising scenario. Given a known image f , as in [6,13], by using the
Bayes rule as well as the MAP estimation, we have

û ( f ) = arg max
u

P (u| f ) = arg max
u

P( f |u)P(u)
P( f )

= arg min
u
− log (P ( f |u))− log (P (u)) + log (P ( f ))

= arg min
u
− log (P ( f |u))− log (P (u))

(6)

In obtaining Equation (6), we have omitted log (P ( f )) since it is a constant respect to u.
As the image is corrupted by alpha-stable noise, for each pixel x ∈ Ω, we have

P ( f (x) |u (x)) =
γ

2
1

(γ + |u (x)− f (x)|)2 (7)

where γ > 0 stands for the scale parameter. Therefore,

− log (P ( f |u)) = −
∫

Ω
log (P ( f (x) |u (x))) dx

=
∫

Ω
(2 log (γ + |u (x)− f (x)|) + log 2− log γ) dx

. (8)
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Inspired by the idea of Aubert et al. [13], u is assumed to follow a Gibbs prior distribution.
Therefore, we can obtain the TV regularization of u as follows:

− log (P (u)) =
∫

Ω
log (P (u (x)))dx =

∫
Ω
(β |Du (x)|+ log R)dx (9)

where β > 0 is a parameter, and R is the normalization factor. Hence, solving Equation (6) is equivalent
to find the minimization of the following logarithmic probability. That is,

− log(P ( f |u))− log(P (u)) = −
∫

Ω
log (P ( f (x) |u (x)))dx−

∫
Ω

log (P (u (x)))dx

=
∫

Ω
2 log

(
1 +
|u (x)− f (x)|

γ

)
dx

+
∫

Ω
(β |Du (x)|+ log 2 + log γ + log R)dx

. (10)

Here, please note that the log 2 + log γ + log R is omitted since the three terms are all constants
with respect to u.

Therefore, our pure denoising with alpha-stable noise is given by

inf
u∈BV(Ω)

E (u) :=
∫

Ω
|Du|+ λ

∫
Ω

log
(

1 +
|u− f |

γ

)
dx (11)

where λ = 2
β > 0 is a regularization parameter. As one can see, we keep the same regularization term

as in the ROF denoising model (Equation (2)) since the TV regularization term is useful for preserving
edges, but we adapt the data fidelity term to the alpha-stable noise, introducing one that is suitable for
such noise. We emphasize that the proposed model can be extended to other modern regularization
terms such as framelets, sharelets, rank surrogates, dictionary learning, or the tight-frame approach.
These regularization terms are effective for the restoration of blurred and noisy images.

Thus, we start to prove the existence of the solution for Equation (11).

Theorem 1. Let f ∈ L∞ (Ω) with inf
Ω

f > 0, then Equation (11) has a solution u∗ ∈ BV (Ω) satisfying:

0 < inf
Ω

f ≤ u∗ ≤ sup
Ω

f .

Proof. Set a = inf
Ω

f , b = sup
Ω

f , and let E0 (u) := λ
∫

Ω log
(

1 + |u− f |
γ

)
dx. Noting that

E (u) :=
∫

Ω |Du| + λ
∫

Ω log
(

1 + |u− f |
γ

)
dx, we have E (u) ≥ E0 (u) ≥ 0. This leads to E (u) being

lower-bounded, and we can find a minimal sequence {un} ⊂ BV (Ω).
In addition, for any fixed x ∈ Ω, let h(t) := log

(
1 + |t− f (x)|

γ

)
. Therefore, if t > f (x), we

have h′(t) = 1
γ+t− f (x) > 0, else if t < f (x), we get h′(t) = − 1

γ+ f (x)−t < 0. From the above
two inequalities, we know that the function h(t) is decreasing if t ∈ [0, f (x)] and increasing if

t ∈ [ f (x) ,+∞). This implies that h (min (t, M)) ≤ h(t) if M ≥ f (x). Hence, E0

(
inf
Ω

(u, b)
)
≤ E0 (u)

if M = b. Furthermore, it is known that
∫

Ω

∣∣∣∣D inf
Ω

(u, b)
∣∣∣∣ ≤ ∫Ω |Du| (see Lemma 1 in [31]). Therefore,

we can conclude that E
(

inf
Ω

(u, b)
)
≤ E (u). Similarly, E

(
sup

Ω
(u, a)

)
≤ E (u) with a = inf

Ω
f . Hence,

we can assume that 0 < a ≤ un ≤ b, which implies that un is bounded in L1 (Ω).
According to the definition of {un}, E (un) is bounded. In addition, it is proved that un is bounded

in BV (Ω) since
∫

Ω |Dun| is bounded [31]. Hence, there is a subsequence that converges strongly in
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L1 (Ω) and weakly in BV (Ω) to some u∗ ∈ BV (Ω). Furthermore, given 0 < a ≤ u∗ ≤ b, the lower
semicontinuity of the TV, and the Fatou’s Lemma, the solution to Equation (11) is obtained as u∗.

We then extend Equation (11) to the simultaneous deblurring and denoising scenarios.
The restoration is conducted by solving the following optimization model:

inf
u∈BV(Ω)

∫
Ω
|Du|+ λ

∫
Ω

log
(

1 +
|Ku− f |

γ

)
dx. (12)

It is worth mentioning that Equation (12) is also a non-convex problem, as in the scenario of the
pure denoising Equation (11). Since Equations (11) and (12) are both nonconvex, they cannot guarantee
a global optimal solution. To overcome this drawback, we incorporate an additional penalty term into
Equations (11) and (12) to obtain novel convex variational models in the following section. This penalty
term is based on the median-filtered result of the noise image.

In the following section, we propose a convex variational model for deblurring and denoising
images, which is corrupted by both blur and alpha-stable noise.

We first also focus on a convex variational model for denoising only. By introducing a penalty
term into Equation (11), we obtain a convex variational model as follows:

inf
u∈BV(Ω)

∫
Ω
|Du|+ λ

(∫
Ω

log
(

1 +
|u− f |

γ

)
dx +

µ

2
‖u− g‖2

2

)
(13)

where g = medfilt2 ( f ) (g is the median filter function of f ) [18], λ > 0 and µ > 0 are the regularization
parameters, respectively.

As a result, three theorems are provided to confirm that the above model is strictly convex under
certain conditions, and there is a unique solution to Equation (13).

Lemma 1. If µγ2 ≥ 1, the objective function in Equation (13) is strictly convex.

Proof. For each fixed x ∈ Ω, let the real function h on R+ ∪ {0} be defined as

h(t) := log
(

1 +
|t− f (x)|

γ

)
+

µ

2
(t− g (x))2.

We can easily compute the first and second order derivatives of h, as given by

h′(t) =
sgn (t− f (x))
γ + |t− f (x)| + µ (t− g (x))

h′′(t) = − |sgn (t− f (x))|
(γ + |t− f (x)|)2 + µ.

Since µγ2 ≥ 1, we have γ ≥ 1√
µ ; thus, γ + |t− f (x)| ≥ 1√

µ , or µ(γ + |t− f (x)|)2 ≥ 1, that

is h′′(t) ≥ 0, i.e., h is convex. Furthermore, the function h has only one minimizer, so h is strictly
convex when µγ2 ≥ 1. Since the total variation regularization is convex, we can also conclude that the
objective function in Equation (13) is strictly convex for µγ2 ≥ 1.

Based on Lemma 1, we can now prove the existence and uniqueness of the solution to
Equation (13).

Lastly, we also extend our convex variational model for the following simultaneous deblurring
and denoising case:

inf
u∈BV(Ω)

∫
Ω
|Du|+ λ

(∫
Ω

log
(

1 +
|Ku− f |

γ

)
dx +

µ

2
‖Ku− g‖2

2

)
. (14)
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Since the blurring operator K is linear and nonnegative, we can conclude that the model in
Equation (14) is convex when µγ2 ≥ 1. In the following theorem, we state the existence and uniqueness
of its solution.

Theorem 2. Let f ∈ L∞ (Ω) with inf
Ω

f > 0, g ∈ L2 (Ω), and a nonnegative linear operator

K ∈ L
(

L1 (Ω) , L2 (Ω)
)
. Assume that K does not annihilate constant functions, i.e., KI 6= 0. Therefore,

Equation (14) has a solution. Further, if µγ2 ≥ 1 and K is injective, the solution is unique.

Proof. Let {un} ∈ BV (Ω) be a minimizing sequence for Equation (14). Since the objective function
in (14) is bounded, we know that

{∫
Ω |Dun|

}
is bounded [13,18]. As in the proof of Theorem 2

of [18], we can verify that ‖un −mΩ (un)‖2 and ‖un −mΩ (un)‖1 are bounded for each n (where
mΩ (un) = 1

|Ω|
∫

Ω undx, |Ω| denotes the measure of Ω). Due to the continuity of the operator

K ∈ L
(

L1 (Ω) , L2 (Ω)
)
, we know that the sequence {K (un −mΩ (un))} is bounded in L2 (Ω) and

in L1 (Ω).
Moreover, for each n, the objective function in Equation (14) is bounded, hence (Kun − g)2 is

bounded in L1 (Ω). Thus, ‖Kun − g‖1 is bounded as well, and hence ‖Kun‖1 is bounded. One can
easily find that |mΩ (un)| ‖K1‖1 is bounded from Equation (15).

|mΩ (un)| ‖K1‖1 = ‖K (un −mΩ (un))− Kun‖1

≤ ‖K (un −mΩ (un))‖1 + ‖Kun‖1
. (15)

Since K1 6= 0, mΩ (un) is uniformly bounded. Moreover, {un −mΩ (un)} is bounded, so {un} is
bounded in L2 (Ω) and in L1 (Ω). Since BV (Ω) is closed and convex, {un} is also bounded in BV (Ω).

As a consequence, there is a possible subsequence
{

unk

}
, which converges in L1 (Ω) to some

u∗ ∈ BV (Ω), and
{

Dunk

}
converges slightly as a measure to Du∗. Since the linear operator K is

continuous,
{

Kunk

}
converges to Ku∗ in L2 (Ω). Thus, u∗ is a solution of Equation (14) according to

the lower semicontinuity of TV and Fatou’s lemma.
Based on Lemma 1, when µγ2 ≥ 1, Equation (14) is strictly convex. Furthermore, K is injective, so

its solution is unique.

4. Primal-Dual Algorithm

In this section, we employ the primal-dual algorithm [32,33] to solve the minimization problem
in (14) since it is easy to implement and its convergence is guaranteed [32]. Due to the convexity of
Equation (14), there are many algorithms that can be employed to solve the proposed image deblurring
and denoising model such as the alternating direction method of multipliers (ADMM) [5,34,35] and
the split-Bregman algorithm [36].

We address the general deblurring and denoising case, since the pure denoising case can be
considered special when K is an invariant parameter. At first, the discrete version of our proposed
image deblurring and denoising Equation (14) is derived, and the corresponding numerical solution is
then given.

Suppose that the noisy image f ∈ Rmn is obtained from a two-dimensional pixel-array with
dimension m× n, and K ∈ Rmn×mn is the discretization of the continuous blurring operator. Now we
introduce the discrete version of Equation (14):

min
u
‖∇u‖1 + λG (Ku) (16)

where G : Rmn → R is defined as

G (u) := ∑
i

log
(

1 +
|ui − fi|

γ

)
+ µ ‖u− g‖2

2 . (17)
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The first term of Equation (16) denotes the discrete total variation of the image u, and it is
defined as

‖∇u‖1 := ∑
i

√
(∇xu)2

i +
(
∇yu

)2
i (18)

where the discrete gradient ∇ ∈ R2mn×mn is given by ∇u =

(
∇xu
∇yu

)
.

The first term on the right side of Equation (17) is a robust distance metric, which can be defined as
the meridian norm. The meridian norm tends to behave like the L1 norm for points within the unitary
L1 ball and gives the same penalization to large sparse deviations as to small clustered deviations [30].

As in [32], we introduce new variables v ∈ R2mn and w ∈ Rmn, and Equation (16) is then clearly
equivalent to the following constrained optimization problem:

min
u,v,w
‖v‖1 + λG (w) , s.t. v =

(
vx, vy

)T
= ∇u, w = Ku. (19)

To employ the primal-dual algorithm, we study the following optimization problem:

min
u,v,w∈X

max
p,q∈Y

‖v‖1 + λG (w) + 〈v−∇u, p〉+ 〈w− Ku, q〉 (20)

where p ∈ R2mn and q ∈ Rmn are the dual variables, X is a real vector space Rmn, and

Y =
{

q ∈ R2mn : ‖q‖∞ ≤ 1
}

, where ‖q‖∞ is defined as ‖q‖∞ = max
i∈{1,2,··· ,mn}

√
q2

i + q2
i+mn.

Now we apply the primal-dual algorithm to the optimization problem of Equation (20).
The primal-dual algorithm is defined through the following iterations:

pk+1 = arg max
p

〈
v̄k −∇ūk, p

〉
− 1

2σ

∥∥∥p− pk
∥∥∥2

2
(21)

qk+1 = arg max
q

〈
w̄k − Kūk, q

〉
− 1

2σ

∥∥∥q− qk
∥∥∥2

2
(22)

uk+1 = arg min
u
−
〈
∇u, pk+1

〉
−
〈

Ku, qk+1
〉
+

1
2τ

∥∥∥u− uk
∥∥∥2

2
(23)

vk+1 = arg min
v
‖v‖1 +

〈
v, pk+1

〉
+

1
2τ

∥∥∥v− vk
∥∥∥2

2
(24)

wk+1 = arg min
w

λG (w) +
〈

w, qk+1
〉
+

1
2τ

∥∥∥w− wk
∥∥∥2

2
(25)

ūk+1 = 2uk+1 − uk (26)

v̄k+1 = 2vk+1 − vk (27)

w̄k+1 = 2wk+1 − wk. (28)

In the following, we provide details on how to solve them. Since the objective functions of
Equations (21)–(23) are quadratic, the update of p, q, and u can be computed efficiently by

pk+1 = σ
(

v̄k −∇ūk
)
+ pk (29)

qk+1 = σ
(

w̄k − Kūk
)
+ qk (30)

uk+1 = uk + τ
(

KTqk+1 − divpk+1
)

(31)
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where the divergence operator div = −∇T. The update in Equation (24) can be obtained by applying
the soft thresholding operator as

vk+1 = arg min
v
‖v‖1 +

1
2τ

∥∥∥v− tk
∥∥∥2

2
=

tk∣∣tk
∣∣ ·max

{∣∣∣tk
∣∣∣− τ, 0

}
(32)

where tk = vk − τpk+1. The optimality condition for (25) is given by

wk+1 = arg min
w

λ log
(

1 +
|w− f |

γ

)
+

µλ

2
‖w− g‖2

2 +
〈

w, qk+1
〉
+

1
2τ

∥∥∥w− wk
∥∥∥2

2

= arg min
w

log
(

1 +
|w− f |

γ

)
+

1 + µλτ

2λτ

∥∥∥∥w− 1
1 + µλτ

(
µλτg− τqk+1 + wk

)∥∥∥∥2

2

; (33)

that is

wk+1 = γ.sgn(ak) ·max


∣∣∣ak
∣∣∣− 1 +

√(∣∣ak
∣∣+ 1

)2 − 4λτ
γ2(1+µλτ)

2
, 0

+ f (34)

where ak = 1
γ(1 + µλτ)

(
µλτg− τqk+1 + wk

)
− f

γ .
We remark that, if K is the identity operator, i.e. the degraded image f is not blurred but is only

corrupted by noise, there is no need to introduce the primal variable w and the dual variable q, and the
algorithm can be simplified accordingly.

The primal-dual algorithm above to solve the optimization problem of Equation (20) can be
summarized in the following table.

The termination condition in Algorithm 1 will be discussed in Section 5.
In the rest of this section, we study the existence of the solution to Equation (20) and the

convergence of Algorithm 1.

Define A =

(
−∇ I 0
−K 0 I

)
, x =

 u
v
w

, y =

(
p
q

)
, such that Equation (20) is equivalent to

min
x∈X

max
y∈Y

H(x) + 〈Ax, y〉 (35)

where H(x) = ‖v‖1 + λG (w).

Proposition 1. The saddle-point set of Equation (35) is nonempty.

Proof. The proof of the above proposition is the same as that for Proposition 2 of [37]. We remark
that we can easily verify that the required conditions in [38] are satisfied for the proposed
primal-dual formulation:

(H1): X and Y are nonempty closed convex sets;
(H2): The objective function (denote Φ (x, y) ) of (35) is convex-concave on X×Y in the following

sense: for each y ∈ Y, the function Φ (·, y) is convex, for each x ∈ X, the function Φ (x, ·) is concave;
(H3): X is bounded, or y0 ∈ Y such that Φ (x, y0)→ +∞ when ‖x‖ → +∞;
(H4): Y is bounded, or x0 ∈ Y such that Φ (x0, y) → +∞ when ‖y‖ → +∞; Thus, there exists a

nonempty convex compact set of saddle-points on X×Y of Equation (35).
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The following proposition shows the convergence of Algorithm 1.

Algorithm 1: Primal-dual algorithm for solving model (20)

1. Initialization: Given σ > 0, τ > 0, starting points p0 = 0, q0 = 0, u0 = ū0 = f ,
v0 = v̄0 = ∇u0 and w0 = w̄0 = Ku0, and iteration index k = 0

2. Calculate: pk+1, qk+1, uk+1, vk+1, wk+1, ūk+1, v̄k+1 and w̄k+1 from

pk+1 = σ
(

v̄k −∇ūk
)
+ pk

qk+1 = σ
(

w̄k − Kūk
)
+ qk

uk+1 = uk + τ
(

KTqk+1 − divpk+1
)

tk = vk − τpk+1

vk+1 =
tk∥∥tk
∥∥

1
·max

{∥∥∥tk
∥∥∥

1
− τ, 0

}
ak =

1
γ (1 + µλτ)

(
µλτg− τqk+1 + wk

)
− f

γ

wk+1=γ.sgn(ak) ·max


∣∣∣ak
∣∣∣− 1 +

√(∣∣ak
∣∣+ 1

)2 − 4λτ
γ2(1+µλτ)

2
, 0

+ f

ūk+1 = 2uk+1 − uk

v̄k+1 = 2vk+1 − vk

w̄k+1 = 2wk+1 − wk.

3. The iteration is terminated if the termination condition is satisfied; otherwise,
set k := k + 1 and return to Step (2).

Proposition 2. Let ‖A‖2 be the operator 2-norm of A , and the iteration of
(

xk, yk
)

be defined by Algorithm 1.

If στ‖A‖2
2 < 1, then

(
xk, yk

)
converges to a saddle point(x∗, y∗) of primal-dual problem in Equation (35).

Proof. The proposition can be seen as a special case of Theorem 1 in [32]. The conclusion (a) of
Theorem 1 in [32] establishes that

(
xk, yk

)
is a bounded sequence, so that some subsequence

(
xkl , ykl

)
converges to some limit (x∗, y∗). Observe that the conclusion (b) of Theorem 1 in [32] implies that
lim
k→∞

(
xk − xk−1

)
= lim

k→∞

(
yk − yk−1

)
= 0, and xkl−1 and ykl−1 in particular converge, respectively, to

x∗ and y∗. It follows that the limit (x∗, y∗) is a fixed point of the iterations of Algorithm 1, hence a
saddle-point of our problem.

Since ‖∇‖2
2 ≤ 8 (see [4]), ‖K‖2 ≤ 1 (see [37]), and ‖A‖2

2 ≤ ‖∇‖
2
2 + ‖K‖

2
2 + 1 (see [18,39]),

‖A‖2
2 ≤ 10. Therefore, in order to ensure the convergence of our algorithm we just need to choose σ

and τ such that στ < 0.1.
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5. Experimental Results and Analysis

In this section, numerical results are obtained by applying our proposed models to blurred
images corrupted by alpha-stable noise. We also compare our models with other existing and
well-known models.

We take six images—Cameraman (256 × 256), Peppers (256 × 256), Lena (256 × 256),
Phantom (256 × 256), Boat (256 × 256), and Fruits (256 × 256)—for experiment and comparison.
For further comparison, four objective image quality metrics—the peak signal noise ratio (PSNR) in dB,
the measure of structural similarity index (SSIM) [40], the multiscale SSIM (MS-SSIM) [41], and the
feature similarity index (FSIM) [42]—are used to measure the performance of the proposed models for
the test images. Each of the same experiments is repeated 10 times, so the PSNR, SSIM, MS-SSIM and
FSIM values are the averaged results of 10 experiments. The PSNR and SSIM are respectively defined
as follows:

PSNR =10 lg

(
2552mn

‖û− u‖2
2

)
(36)

SSIM =
2µûµu (2σûu + c2)(

µ2
û + µ2

u + c1
) (

σ2
û + σ2

u + c2
) (37)

where û is the restored image, u is the original image, µû and µu are their respective mean, σ2
û and σ2

u
are their respective variances, σûu is the covariance of them, and c1, c2 > 0 are constants. PSNR, SSIM,
MS-SSIM, and FSIM are all measures of the performance of an image. A higher PSNR indicates that
the better restored image will be picked up, and the SSIM, MS-SSIM, and FSIM values are closer to 1.
The characteristic of the restored image is more similar to the original image.

In our numerical simulations, we terminate the algorithm when the relative change of the objective
function between two consecutive iterations becomes small enough, i.e.,

E
(

uk
)
− E

(
uk+1

)
E
(
uk
) < ε (38)

where E(·) denotes the objective function of the proposed Equation (14), and ε > 0 is a tolerance.
For Algorithm 1, we have found that smaller tolerance values (e.g., ε = 10−4) do not consistently
improve the relative error as the runtimes increase, so we set ε = 10−3 in our numerical experiments.

Since γ depends on the noise level, we take the same value of the parameter found in [30], that

is, γ =
f(0.875) − f(0.125)

2 (where f(c) denotes the cth quantile of f ). We chose σ = τ = 0.3 and µγ2 = 1.
In addition, the regularization parameter λ balances the trade-off between the TV regularization term
and the data fidelity term. We manually tune it in order to obtain the highest PSNR values of the
restored image.

We would first like to illustrate the different effects of Gaussian noise, impulse noise, and
alpha-stable noise. Figure 2a shows the original Cameraman image, and Figure 2b–d represent,
respectively, the images degraded by Gaussion noise, impulse noise, and alpha-stable noise (with
α = 0.5). Figure 2e–h show the zoomed top left corner of Figure 2a–d.
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(a) Original image            (b) Gaussian noise          (c) Impulse noise          (d) Alpha-stable noise 

    
(e) Zoom of (a)               (f) Zoom of (b)             (g) Zoom of (c)              (h) Zoom of (d) 

    
(e) Zoom of (a)               (f) Zoom of (b)              (g) Zoom of (c)              (h) Zoom of (d) 

 

 
 

Figure 2. Different noisy images.

It is clear from Figure 2 that the image corrupted by Gaussian noise looks different from the
images corrupted by impulse noise and alpha-stable noise (with α = 0.5), while to some extent the
alpha-stable noise and impulse noise are close to each other. For example, some pixels are degraded
to white or black with the impulse noise and the alpha-stable noise (with α = 0.5), while the image
corrupted by Gaussian noise is uniformly modified and all the pixels are corrupted by noise (see
Figure 2f). Although the alpha-stable noise is similar to the impulse noise, there are also some very
important differences, for instance, in the impulse noise, some pixels are noise-free (see Figure 2g),
while in the alpha-stable noise, the noise free pixels are very rare (see Figure 2h). Thus, due to the
impulsive character of the alpha-stable noise, we employ the meridian norm in our proposed model.

5.1. Image Denoising

In this subsection, we first focus only on the pure denoising case. The noisy image f is generated
as f = u + η = u + ξρ where ρ follows the alpha-stable distribution, and ξ > 0 gives the noise level.
We compare the proposed image denoising model with the Cauchy model [18], the TVL1 model [11],
and the meridian filter [29]. These models are all efficient for recovering images in impulsive noise.

The proposed image denoising model is applied to the Cameraman image in the presence of
alpha-stable noise at different tail parameters α (with ξ = 0.04 and ρ following the alpha-stable
distribution S (α, 0, 0.2, 0)). In order to evaluate quantitatively the performances of the proposed image
denoising model, two objective criteria, PSNR and SSIM, are computed and provided in Figure 3.
The Cauchy and TVL1 models for image denoising perform similarly, so we only provide the results of
the Cauchy model in Figure 3.

Figure 3 gives the PSNR and the SSIM of the noisy Cameraman image and the recovered images
resulting from the proposed image denoising model, the Cauchy model, and the meridian filter at
different tail parameters α. As the tail parameter α increases, the PSNR values and the SSIM values
become higher in all of these methods; And as the tail parameter α decreases, the superiority of the
proposed method becomes obvious. Moreover, our proposed image denoising model outperforms the
Cauchy model and the meridian filter in terms of the PSNR and SSIM at the same tail parameter. In all,
the proposed model significantly outperforms the commonly employed image denoising models in
impulsive noisy environments (with small α values) while providing comparable performances in
less demanding, light-tailed environments (with high α values). In particular, the PSNR values of our
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proposed model are all above 30 dB at the tail parameter of α ≥ 1, and such values are considered to
be perfect recovery results, so we employ the value of ρ, which, in this part, follows the alpha-stable
distribution S (1, 0, 0.2, 0).

  

Figure 3. Performances of the noisy image and the recovered images at different alpha parameters.

For comparison of the performance quantitatively, the PSNR in dB and the SSIM are used to
measure the performance of different models for the three noisy test images: Cameraman, Peppers,
and Lena. The PSNR values in dB and the SSIM values for noisy images (ξ = 0.04 and ρ obeying
S (1, 0, 0.2, 0)) and recovered images given by different methods are listed in Table 1.

Table 1. The PSNR (dB)/SSIM for noisy images and recovered images.

Models
Different Test Images

Cameraman Peppers Lena

Noise 18.218/0.351 18.463/0.463 18.372/0.458
Our proposed 31.772/ 0.674 32.869/ 0.856 32.571/ 0.849

TVL1 [11] 28.936/0.623 32.383/0.838 31.959/0.823
Cauchy [18] 28.825/0.621 32.287/0.834 31.853/0.821

Meridian filter [29] 26.883/0.587 30.612/0.812 30.279/0.801

Table 1 gives the PSNR values and the SSIM values for three different test images and the recovered
results of these noisy images resulting from our proposed image denoising model, the Cauchy model,
the TVL1 model, and the meridian filter, respectively. Obviously, our proposed image denoising model
outperforms the TVL1 model, the Cauchy model, and the meridian filter in terms of the PSNR and
SSIM at the same noise levels (ξ = 0.04 and ρ following S (1, 0, 0.2, 0)). Take the Cameraman noisy
image as an example, with our method, we can increase the PSNR values of the recovered images by
2.836 dB at the same noise levels and obtain the largest SSIM values.

5.2. Image Deblurring and Denoising

In the following subsection, we focus on the deblurring and denoising case. Here, we consider the
recovery of the blurred images corrupted by both the Gaussian blur (a window size 9× 9 and standard
deviation of 1) and alpha-stable noise (ξ = 0.04). As in the previous subsection, we compare our
proposed deblurring and denoising model with other well-known image deblurring and denoising
methods for impulsive noise, such as the TVL1 model [11] and the Cauchy model [18].

The proposed image deblurring and denoising model is applied to the blurred and noisy
Cameraman image at different tail parameters α. The PSNR and SSIM are computed and provided
in Figure 4.
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Figure 4. Performances of the blur and noisy images and the recovered images at different tail
parameters alpha.

Figure 4 provides the quantitative results of our proposed image deblurring and denoising model,
the TVL1 model, and the Cauchy model. It is clear that these methods perform well. As the alpha
values increase, the PSNR and SSIM values become higher for all these methods. And, as the alpha
values decrease, the superiority of our proposed model becomes obvious. Hence, our proposed model
has better performance at the same tail parameter α than that of the TVL1 model and the Cauchy model.

Since the PSNR and SSIM performances depend on the tail parameter, it is necessary to choose an
appropriate tail parameter for image deblurring and denoising. In the following test, the tail parameter
is set to α = 1. In practice, we can see from Figure 4 that the recovered results with α = 1 are of good
quality for all models.

In order to evaluate quantitatively the performance of the proposed image blurring and
denoising model, we apply it now to recover three different images (Phantom, Boat, and Fruits)
with the Gaussian blur (a window size 9× 9 and standard deviation of 1) at the same noise level
(ξ = 0.04 and ρ following S (1, 0, 0.2, 0)). Experimental results on these test images are shown in
Figures 5–7, respectively.

Figure 5a is the Phantom blurred and noisy image, and Figure 5b–d are the recovered images
from our proposed image blurring and denoising model, the TVL1 model, and the Cauchy model,
respectively. The source images in Figures 6 and 7 have similar situations for the Boat and Fruits images,
respectively. It is clear from Figures 5–7 that the recovered images of our proposed image blurring and
denoising model have more detailed information and are much closer to the original test images as
compared with the recovered images from the TVL1 model and the Cauchy model.

Figure 8a–d are the magnified top left regions of Figure 7a–d, respectively. It is clear from Figure 8
that the reconstruction result obtained with our proposed method produces characterizations that
are superior to those of the TVL1 and Cauchy methods. We also can see that the restored result of
the proposed method can maintain salient features of the line in the original image and has clearer
outlines and reduced noise and blur effects.

For further quantitative comparison of the performance of the proposed image deblurring and
denoising model, the PSNR in dB and SSIM were computed using the different models for the three
different groups of blurred and noisy test images.

The PSNR and SSIM values for blurred and noisy three different test images: Cameraman,
Peppers, and Lena (the Gaussian blur with a window size 9× 9 and standard deviation of 1, ξ = 0.04
and ρ following S (1, 0, 0.2, 0)). The recovered images given by different methods are listed in Table 2.
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(b) Our proposed (c) TVL1(a) Blur & Noise (d) Cauchy

(f) Residual of (b) (g) Residual of (c)(e) Residual of (a) (h) Residual of (d)

Figure 5. Recovered Phantom images from different methods.

(b) Our proposed (c) TVL1(a) Blur & Noise (d) Cauchy

(f) Residual of (b) (g) Residual of (c)(e) Residual of (a) (h) Residual of (d)

Figure 6. Recovered Boat images from different methods.

(b) Our proposed (c) TVL1(a) Blur & Noise (d) Cauchy

(f) Residual of (b) (g) Residual of (c)(e) Residual of (a) (h) Residual of (d)

Figure 7. Recovered Fruits images from different methods.
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For easy observation, we took the Fruits image as an example and magnified the top left regions
of the restored results with different algorithms. The magnified local regions of the restored results
with different algorithms are shown in Figure 8.

  

(a) Zoom of Figure 7 (a)      (b) Zoom of Figure 7(b)      (c) Zoom of Figure 7(c)       (d) Zoom of Figure 7(d) 

             

 

 
 

Figure 8. The magnified local regions of the recovered Fruits images from different methods.

Table 2. The PSNR (dB)/SSIM for blurred and noisy images and recovered images.

Models
Different Test Images

Cameraman Peppers Lena

Blur and Noise 17.556/0.254 18.048/0.391 18.006/0.389
Our proposed 28.327/0.533 29.872/0.766 29.667/ 0.762

TVL1 [11] 27.283/0.501 29.247/0.739 28.971/0.736
Cauchy [18] 26.244/0.472 29.201/0.724 28.583/0.721

In general, larger PSNR values indicate that the recovered image can pick up more information.
It is obvious from Table 2 that a notable performance improvement has been achieved by the proposed
image deblurring and denoising model as compared with the TVL1 model and the Cauchy model.
For example, the PSNRs of the Cameraman image, resulting from the TVL1 model and the Cauchy
model are 27.283 dB and 26.244 dB, respectively, while our proposed model gives 28.327 dB, implying
that our proposed model provides an improvement of 2.083 dB, as compared with the Cauchy model.
This is consistent with the visual effects of Figures 5–8.

To further verify the performance of the algorithm, the PSNR, SSIM, MS-SSIM, and FSIM for
blurred and noisy Phantom images and recovered images given by different methods are listed
in Table 3. It is obvious from Table 3 that a notable performance improvement has been achieved
by the proposed image deblurring and denoising model as compared with the TVL1 model and the
Cauchy model in terms of these four image quality metrics. This is also consistent with the visual
effects of Figure 5. In addition, we have employed other classical test images to evaluate the deblurring
and denoising performance and found that a similar performance gain in terms of the PSNR, SSIM,
MS-SSIM, and FSIM has been achieved by the proposed method.

Table 3. Different image quality metrics for blurred and noisy Phantom images and recovered images.

Models
Different Quality Metrics

SSIM MS-SSIM FSIM PSNR

Blur and Noise 0.323 0.741 0.592 18.281
Our proposed 0.981 0.997 0.985 34.623

TVL1 [11] 0.959 0.994 0.921 30.748
Cauchy [18] 0.918 983 0.894 30.292

6. Conclusions

In order to restore images from blur and alpha-stable noise while also preserving their edges,
we have proposed a new variational method for restoring blurred images with alpha-stable noise
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in this paper. Inspired by the ideas of the ROF model and the Cauchy model as in [18], we have
obtained a convex model. Theoretical results support the existence and uniqueness of the solution
to our proposed model. In addition, we have employed the primal-dual algorithm [32] to solve the
corresponding convex problem involved in our proposed model and show that the convergence is
guaranteed. Experimental results demonstrate that the proposed method significantly outperforms the
commonly employed image deblurring and denoising models in impulsive noisy environments (with
small α values, i.e., α ∈ (0, 1.5)), while providing comparable or better performance in less demanding,
light-tailed environments (with high α values, i.e., α ∈ (1.5, 2)).
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