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Abstract: Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small
size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications.
However, they are easily influenced by environmental effects such as temperature change, shock, and
vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and
system stability. The aim of this work is to investigate and present a systematic review of different
signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems
for human motion analysis or have the potential to be used in this area. A systematic search was
performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and
Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published
in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen
algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based
algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were
analyzed and presented along with their characteristics such as advantages, disadvantages, and
time limitations. A user guide to the most suitable signal processing algorithms within this area
is presented.

Keywords: drift; MEMS gyroscope; motion analysis; motion sensors; noise/error reduction; signal
processing algorithms; systematic review

1. Introduction

In contemporary/modern society, demographic changes of population and multiple diseases
lead to increasing demands on and costs for the healthcare systems [1]. Thus, home-based wearable
self-controlled medical sensor systems have become a research topic of interest in the healthcare area,
in which human motion analysis is important because of its crucial applications. For example, sensor
systems for rehabilitation, athletic performance evaluation/analysis, and monitoring of health for the
elderly who are alone at home are in extremely high demand [2].

Microelectromechanical system (MEMS) sensors have been widely used in many areas where
miniature sensors that are of a low cost and low weight are desired [3]. MEMS technology has
enabled the development of miniaturized inertial sensors, which have been used in motor activity
and other health status monitoring systems [4]. They have already been widely applied in motion
analysis systems in the medical field for knee/ankle joint measurement [5–8], gait analysis [9,10],
ambulatory measurement and analysis of the lower limbs [11,12], the collection of anatomical
joint angles during stair ascent [13], hand gesture recognition [14–16], head-motion-controlled
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wheelchairs [17], a head-motion-controlled mouse [18,19], and digital motion analysis systems for
rehabilitation from impairments such as those caused by accidents or stroke [20,21]. An MEMS-based
small wearable embedded sensor system for motion analysis is a typical solution for a free-living
measurement environment.

MEMS-based motion sensors such as MEMS gyroscopes and MEMS accelerometers are microscale
inertial sensors that have the advantages of a small size, light weight, low cost, low power consumption,
high sensitivity, and high precision [22]. However, the resolution and stability of MEMS inertial sensors
are not adequate and must be improved in sensor networking, for example, for the monitoring of
human motion, the distribution of earthquakes, and the vibration of buildings [23]. MEMS gyroscope
signal errors are often due to their high sensitivity to environmental disturbances such as shocks,
vibrations, and temperature changes [24]. For human motion analysis with wearable sensor systems,
large amounts of noise, such as human tremors and environmental vibrations, are included in the
measurement signals [25–27]. For position measurements, the angular position can be determined
by integrating the measured MEMS gyroscope signal. One step of integration is needed from the
measured MEMS gyroscope signal to the angular position. However, errors are accumulated by the
integration. Accumulated error can also be regarded as drift due to numerical integration during
the position calculation [28]. Signal processing algorithms/methods are an important part of motion
analysis system development with MEMS gyroscopes, which should be able to minimize the signal
errors, improve the signal quality, and further improve the system stability.

The aim of this paper is to present a systematic review of the signal error reduction
algorithms/methods that are used for MEMS gyroscope-based motion analysis systems for human
motion analysis or have the potential to be used in this area. The content is presented as a user guide
for selecting the most suitable signal processing algorithms for MEMS gyroscopes in various situations.

2. Methodology/Methods

2.1. Inclusion and Exclusion Criteria

The inclusion criteria were as follows:

1. The article was published as a journal article or a conference paper in English.
2. The article was published in the past 10 years (between 2007 and 2017).
3. The primary subject of the study was signal error reduction methods/algorithms for MEMS

gyroscope-based motion analysis systems that are intended for human motion analysis or have
the potential to be used in this area.

Articles were excluded from this paper if they instead focused on avoiding errors in the
development and fabrication of the MEMS gyroscope inertial structures or on systems that were
not intended for the application of human motion analysis but for other applications, e.g., navigation,
global positioning, attitude compensation, space contrail detection, missile control, and trajectory
analysis. Articles were also excluded if they focused on methods that were not intended for signal
error reduction or signal quality improvement, but rather for other special areas such as fall detection,
pedestrian indoor localization, and motion/gesture recognition.

2.2. Searching Strategy and Analysis

With the inclusion and exclusion criteria specified above, the search was performed in the
following electronic databases: Association for Computing Machinery (ACM) digital library within the
area of computer science [29]; IEEE Xplore with the contents of engineering science, scholarly journals,
conference reports, and IEEE standards [30]; PubMed with the contents of medicine and health science
and scholarly journal articles [31]; and Scopus, which is a multidisciplinary citation database [32].
The searched keyword string was set as (((signal processing OR noise OR drift OR error OR reduction)
AND motion*) AND “MEMS gyroscope”).
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Through database searching without a time limitation, 33 results from 2001 to 2017 were
initially found in ACM; 120 results from 1999 to 2017 were found in IEEE Xplore; three results
from 2010 to 2016 were found in PubMed; and 35 results from 2005 to 2017 were found in Scopus.
Within the publishing year limitation of the most recent 10 years, namely, from 2007 to 2017,
165 (28 from ACM + 104 from IEEE + three from PubMed + 30 from Scopus) results remained.
After eliminating the duplicates, 148 results remained. The main author read through the titles and
abstracts of the retrieved results and performed an initial analysis to determine whether the inclusion
criteria were fulfilled or not. The full texts of those articles that fulfilled the inclusion criteria based
on the title and abstract were assessed in detail by the main author. Irrelevant articles were excluded
based on the exclusion criteria. The eligibility was checked.

The searching and review procedure is illustrated in Figure 1.

Figure 1. Research method: Flow diagram of the search and review procedure.

3. Results

From the 16 reviewed articles, 17 algorithms/methods were identified. They were categorized
into four groups, namely, Kalman-filter-based algorithms, adaptive-based algorithms, simple filter
algorithms, and compensation-based algorithms, and are presented below. All algorithms/methods
were aimed at reducing different signal errors for the MEMS gyroscope-based human motion analysis
system (or had the potential for human applications). The proportions of the four types of algorithms
in the reviewed results are shown in Figure 2.



Sensors 2018, 18, 1123 4 of 18

Figure 2. Proportions of the four types of algorithms in the reviewed results. (Kalman-filter-based
algorithms 27.6%; Adaptive-based algorithms 44.8%; Simple filter algorithms 13.8%; Compensation-based
algorithms 13.8%).

3.1. Kalman Filter (KF)-Based Algorithms

3.1.1. Kalman Filter

The Kalman filter is a common filter that is used for sensors. It consists of a loop that contains two
steps: time updating, which is a prediction process, and measurement updating, which is a correction
process [33]. The Kalman filter process is as follows:

• First, initial estimates for x̂k−1 and Pk−1 are obtained.
• Then, the two-step loop is entered, as shown below:

Time updating process:
x̂−k = Ax̂k−1 + Buk−1 (1)

P−k = APk−1 AT + Q (2)

Measurement updating process:

Kk = P−k HT(HP−k HT + R)
−1

=
P−k HT

HP−k HT + R
(3)

x̂k = x̂−k + Kk(zk − Hx̂−k ) (4)

Pk = (I − Kk H)P−k (5)

where x̂ is the posteriori estimated state, x̂− is the priori state, u is the control vector, z is the
measurement signal, k is a discrete point in time, A is the state transition model, B is the control
input model, P is the error covariance, Q is the process noise covariance, K is the Kalman gain, H is
the measurement matrix, R is the measured noise covariance, and I is the identity matrix.

Some common applications of the Kalman filter are noise reduction and signal prediction and
estimation. It is one of the most common algorithms for sensor problems such as gyro sensor drift
compensation [34].

Kalman filters have also been applied for human tremor estimation [35,36] and can improve the
human-operated MEMS gyroscope signal by removing human tremors.
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3.1.2. Discrete KF in an Optimal Approach

A Kalman filter is designed based on a steady-state filter gain that is obtained from an analysis of
Kalman filter observability with the aim of reducing the bias drift and noise from the outputs signal of
the MEMS gyroscope [37]. The Kalman filter is designed with a system state vector that is modeled
based on both the true angular rate ω and the bias drift b. The parameters of covariance matrices Q
and R are derived from the noise variance of the angular random walk (ARW) and the rate random
walk (RRW) and the variance qω . The steady-state Kalman filter gain Ks is analyzed off-line in advance.
Parameters A and B are calculated based on the eigenvector matrix S and eigenvalues λ1 and λ2.
Finally, with these parameters, the discrete-time KF is applied as shown in Figure 3, which is derived
from the figure in the original paper.

Figure 3. Estimation process of the discrete Kalman filter.

3.1.3. Simplified Basic KALMAN Filter

The simplified basic Kalman filter can be used to reduce the noise [25] and temperature
drift [26,27]. It is used digitally/discretely to reduce the noise and to estimate the temperature
drift trend. The Kalman filter is used to estimate the offset and drift trend. The structure of drift/offset
reduction by the Kalman filter is illustrated in Figure 4.

Figure 4. Structure of the Kalman filter algorithm for drift/offset estimation.

3.1.4. Kalman-Filter-Based Position Estimation Algorithm

A Kalman-filter-based position estimation algorithm for correcting the yaw was presented by
Pedro Neto et al. [38] and is illustrated in Figure 5. Figure 5 is derived from the figure in the original
paper and shows the relationship between the MEMS gyroscope, the Kalman filter, and the additional
accelerometer and magnetometer.
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Figure 5. Structure of the Kalman-filter-based position estimation algorithm.

3.2. Adaptive-Based Algorithms

3.2.1. Least Mean Square (LMS) Algorithm

The LMS algorithm was applied in a MEMS gyroscope-based computer head-borne mouse to
reduce the noise [25]. The structure of the LMS adaptive filter is illustrated in Figure 6, where d is the
desired signal, x is the input, d̂ is the output of the adaptive filter, e is the error signal, and W is the
LMS adaptive filter.

Figure 6. Structure of the LMS adaptive filter.

3.2.2. Adaptive Sliding Mode Controller

The adaptive sliding mode controller for the MEMS gyroscope was introduced in [39], which can
compensate in real time for the fabrication imperfections and estimate the angular velocity and the
damping and stiffness coefficients. The block diagram is shown in Figure 7, where W stands for the
adaptive indirect sliding mode controller. Figure 7 is derived from Figure 2 in the original paper.

Figure 7. Indirect adaptive sliding mode control for an MEMS gyroscope. (W is the indirect sliding
mode controller with an adaptive law).
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3.2.3. Adaptive Bandpass Filter (ABPF)

The ABPF algorithm is a basic algorithm for reducing the typical noises and tremors in inertial
sensor data [40]. As described in the paper, tremor patient data were collected with both a gyroscope
and an accelerometer. A Butterworth second-order bandpass filter with an adapted center frequency
was designed in the program in a MATLAB Simulink environment. As shown in Figure 8, the method
can be mainly summarized as bandpass filtering and filter center frequency adaption. The bandpass
filter transfer function is:

H(s) =
√

2ωas
s2 +
√

2ωas + ω2
a

(6)

where ωa is the filter center frequency, which is adapted in the closed loop based on the dominant
frequency of the input signal. In Figure 8, frequency f is equal to 2πωa. The damping block limits the
changes of the tremor frequency estimation with the frequency step ∆f according to the input modal
frequency fmod to adjust the speed of the adaptation.

Figure 8. Main structure of the adaptive bandpass filter.

3.2.4. Weighted-Frequency Fourier Linear Combiner (WFLC) Algorithm

The WFLC algorithm is the most widely used algorithm for tremor modeling [35]. It is a type
of adaptive algorithm. It was used to reduce the noise that is associated with human tremors and
electrical noise in the application of an MEMS gyroscope-based computer head-borne mouse [25,27].
The discrete WFLC algorithm is:

xrk =

{
sin(r∑k

t=0 w0k ), 1 ≤ r ≤ M
cos((r−M)∑k

t=0 w0k ), M + 1 ≤ r ≤ 2M
(7)

yk+1 = yk + WTX (8)

εk = sk − yk − wbiask
(9)

wbiask+1
= wbiask

+ 2µbεk (10)

w0k+1 = w0k + 2µ0εk

M

∑
i=1

(wixM+i − wM+ixi) (11)

Wk+1 = Wk + 2µ1Xkεk (12)

where M is the number of harmonics; µ0, µ1, and ub are the adaptive parameters; sk is the input and εk
is the error signal at time point k; and Wk = [w1k , ..., w2Mk ]

T , Xk = [x1k , ..., x2Mk ]
T .
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3.2.5. Bandlimited Multiple Fourier Linear Combiner (BMFLC) Algorithm

The BMFLC algorithm is derived from the Fourier Linear Combiner (FLC) and was proposed
more recently [35]. Similar to the WFLC algorithm, it can be used to estimate tremors [35]. As shown
in the paper [35], the discrete BMFLC algorithm can be described as:

xrk =

{
sin(ω0 + (ω f −ω0)

r−1
G+1 k), 1 ≤ r ≤ M

cos(ω0 + (ω f −ω0)
r−1
G+1 k), M + 1 ≤ r ≤ 2M

(13)

εk = sk −WT
k Xk − µb (14)

Wk+1 = Wk + 2µXkεk (15)

where M is the number of harmonics; G is the number of FLC-filters in between; µ is the amplitude
adaptation gain; ω0 and ω f are the lower and upper frequencies of the FLC bank, respectively; and µb
is a bias weight.

3.2.6. Sensor Fusion

Sensor fusion approaches are adaptive algorithms that combine sensory data from independent
sources, irrespective of their advantages and disadvantages, to optimize the system performance,
as mentioned in [41]. They often involve combining accelerometer and magnetometer data for their
compensation characteristics, which is a good solution for complementing the drift-free gyroscope [41].

A sensor fusion method is often applied to reduce error propagation and obtain the integration
process initial conditions [42]. In these cases, the MEMS gyroscope signal is still the basis for orientation
estimation, but it is refined with the data from the MEMS accelerometer and magnetic sensors in the
Miniature Inertial Measurement Unit (MIMU) [43], where the MEMS gyroscope is not used alone,
but together with the MEMS accelerometer and magnetometer.

The main structure of the sensor fusion approach exploiting accelerometer and magnetometer
data is presented in Figure 9. The detailed algorithms depend on different filter algorithms. The most
common filter algorithm used is the Kalman filter, which consists of prediction and correction steps
and connects for the adaption of accelerometer and magnetometer estimation.

Figure 9. Main structure of the sensor fusion approach using accelerometer and magnetometer data.

3.3. Simple Filter Algorithms

3.3.1. Low-Pass Filter

A simple digitally implemented RC low-pass filter was applied in the MEMS gyroscope-based
motion detection system for noise reduction [25]. The low-pass filter can be described as [44]:

yi = yi−1 + α(xi − yi−1) (16)
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where α is the low-pass cut-off frequency parameter, which has a value from zero to one. Using a
suitable parameter value, the high-frequency noise can be filtered out.

3.3.2. High-Pass Filter

Analogous to the low-pass filter that is described above, a simple digital high-pass filter was
implemented in a similar way in a MEMS gyroscope-based motion detection system for drift/offset
reduction [26]. The digitally implemented high-pass filter can be described as [26]:

yi = βyi−1 + β(xi − xi−1) (17)

where β is the parameter of the cut-off frequency for the high-pass filter, which has a value from zero
to one; xi and xi−1 are the input signals at time points i and i−1, respectively; and yi and yi−1 are the
output signals at time points i and i−1, respectively.

The high-pass filtering operation was also used to remove most of the sensor measurement
biases [45].

3.3.3. Threshold with Delay Method (TWD)

Based on the original threshold method, the threshold with delay (TWD) method is developed
with a delay parameter with the aim of not interrupting the continuity of the movement signal when
using a threshold method [27]. The algorithm can be described mathematically as:

yk =

{
xk, xk ≥ T ‖ ty≤T < D
0, xk < T & ty≤T > D

(18)

where x and y are the input and output signals, k is the discrete point in time, and D is the delay.
With suitable threshold and delay values, the TWD algorithm can be used to filter out the noise
around zero and obtain a smooth continuous signal, even if the movements make the signal cross the
threshold level several times. The threshold level is usually set to as close to the noise level as possible,
but slightly above it [27].

3.4. Compensation-Based Algorithms

3.4.1. Drift and Offset Compensator (DOC)

The drift and offset compensator (DOC) is a model-free method for compensating for the drift
and offset in the MEMS gyroscope signals [45]. It employs FIR/IIR filtering techniques and lends itself
to implementation in hardware such as DSPs and FPGAs [45]. The simplified main structure of the
filtering process of DOC is illustrated in Figure 10, which is derived from Figure 1 in the original paper.

To compensate for the drawbacks of the angular rate estimation based on only the encoder
signals if the encoder step size is higher than the angle that is passed during the sampling interval
or of the same order of magnitude [45], an enhanced DOC is also presented in the paper [45].
As shown in Figure 11, the enhanced DOC employs both an accelerometer and a gyroscope for
angular rate estimation.

Figure 10. Structure of the DOC.
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Figure 11. Structure of the enhanced DOC.

3.4.2. Compensation Method with Temperature

This method employs orientation-based gyroscope compensation, including temperature,
and further employs a Kalman-based model that uses an orientation sensor and temperature [46].
The corrected value of the gyro sensor is expressed as [46]:

GCorr = Greal − Sbias − tbias −Merror − ε (19)

where Greal is the gyro sensor value, Sbias is the static bias, tbias is the bias due to temperature, Merror is
the error during motion, and ε is white noise.

The median filter on a moving window of size 7 is used to remove the white noise [46]. Then,
static bias prediction is used to capture the static drift parameter for static drift compensation. With a
separate chip for measuring the temperature of the sensor, the static sensor data variation with the
temperature for each axis is analyzed to determine the temperature bias. The total bias is the sum of
the temperature bias and the static bias, which can be expressed as:

Bias = m × T + C, (20)

where T is the temperature mean, m × T is the temperature bias, and C is the static bias.
After removing the static bias and the bias due to temperature, to eliminate the misalignment

error that results in incorrect distribution of the angular velocity along different axes in a tri-axial
gyroscope, the Kalman filter is used to remove the noise and compensate for the orientation error by
compensating for the value of gyroscope with the values of the orientation sensors [46]. The state
space equation is [46]:

θt+∆t = θt + ∆t×
.
θ (21)

where θt is the value from the orientation sensor,
.
θ is the value from the gyroscope sensor, and ∆t is the

sampling time. For the Kalman filter coefficients, the state transition matrix and the observation matrix

are A =

[
1 ∆t
0 1

]
and H =

[
1 0
0 1

]
, respectively [46]. The processing noise and experiment noise

are Q =

[
0.00009 0

0 0.00009

]
and R =

[
0.002 0

0 0.002

]
, respectively [46]. The input of the Kalman

filter is Xinput =

[
Orientation_angle

Gyroscope_data

]
[46].

The procedure of the filter method is illustrated in Figure 12.
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Figure 12. Structure of the compensation method with temperature.

This gyro drift compensation method is not implemented in hardware, such as a microprocessor
or dsPIC, but over the sensor service layer of the existing Android sensor stack [46].

3.4.3. Compensation Method with Accelerometer and Magnetometer Data

A complementary-filter-based filter is designed for estimating the angle in the application of
a mini wearable wireless sensor system for rehabilitation [47]. It has the advantages of a lower
computational burden and higher precision than the Kalman filter [47]. However, it requires the
accelerometer data and magnetometer data to be analyzed together with the gyroscope data [47].

A robust and easy-to-implement method for calibrating an inertial measurement unit (IMU) with
an MEMS gyroscope, accelerometer, and often a magnetometer, without any external equipment,
is introduced in the paper by D. Tedaldi et al. [48]. The calibration protocol can be summarized as
the following steps: Let IMU be static for T seconds. Then, rotate the IMU to a different attitude and
wait at least twait seconds. Finally, repeat the rotation process N times to estimate the parameters by
the calibration algorithm. The signal must be averaged over a suitable time interval. The accuracy
of the calibration strongly depends on the reliability of the classification between static and motion
intervals: static intervals are used to calibrate the accelerometers, while motion intervals are also
included between consecutive static intervals for gyroscopes [48].

3.5. Category of the Algorithms

The reviewed articles, with their corresponding algorithms, were categorized into four groups.
The details of their classifications, characteristics/functions, supplements/requirements, related
applications, and numbers of papers are summarized in Table 1.

In Table 2, these algorithms were also categorized into groups, and details regarding the main
functions, advantages, disadvantages, and numbers of studies are specified.
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Table 1. Reviewed algorithms with references.

Algorithm Group Algorithms Characteristics/Functions
with References

Number
of Papers

Supplements/Requirements
ApplicationsLimited

Calculation Time
Real Time/on- or

off-Line
Working

Environment Need for Combination

Kalman-filter-based
algorithm

Kalman filter
(KF)

Noise reduction; signal
prediction and estimation:
human tremor estimation
and modeling [35];
physiological tremor
estimation [36]; drift
compensation together
with a compensation
method [47]

3 - 1 Real-time estimation of
tremor parameters MATLAB

Together with the WFLC
algorithm to estimate the
instantaneous tremor
frequency; together with a
compensation method to
compensate for the drift

Tremor motion extraction
from voluntary movement
(hand motion/wrist
rotation) estimation with
MEMS gyroscope;
Drift compensation for
MEMS gyroscope in mobile
devices for human motion
analysis

Discrete KF in
an optimal way

Optimal estimation of the
bias drift and noise from
MEMS gyroscopes
signals [37]

1 Simplification of KF
implementation Real-time processing Digital signal

processor (DSP)
Without needing other
sensor’s information

MEMS gyroscope (not
human motion in the
article, but with potential
to be used in human
motion analysis)

Simplified basic
Kalman filter

Noise reduction [25];
temperature drift
estimation [26,27]

3 Within limited
calculation time Real time MATLAB and DSPs Can be used alone Gyroscopic head-borne

computer mouse

KF based
position
estimation
algorithm

Yaw correction during
position estimation [38] 1 - 1 Real time MATLAB

Need additional
accelerometer and
magnetometer/compass
data

Hand motion and hand
position estimation

Adaptive-based
algorithm

Least Mean
Square (LMS)

Noise reduction [25];
tremor modeling [35] 2 Within limited

calculation Real time MATLAB and DSPs Can be used alone Gyroscopic head-borne
computer mouse

Adaptive slide
mode controller

Fabrication imperfection
compensation, external
disturbances reduction [39]

1 - 1 Real time MATLAB/Simulink Need a reference model
(ideal oscillator)

Oscillatory motion by
MEMS z-axis vibrating
gyroscope system (with
potential to be used in
human motion analysis)

Adaptive
bandpass filter

Typical noise/pathological
tremor reduction [40] 1 Simple and easy to

implement Real time MATLAB Simulink Both gyroscope and
accelerometer Volitional hand movement

WFLC

Noise reduction [25,27];
human tremor frequency
tracking [35]; physiological
tremor estimation [36]

4 Within limited
calculation time Real time MATLAB and DSPs Can be used alone Gyroscopic head-borne

computer mouse

BMFLC
Human tremor frequency
tracking [35]; physiological
tremor estimation [36]

2 - 1 Real time MATLAB Can be used alone

Tremor motion extraction
from voluntary movement
(hand motion/wrist
rotation) estimation with
MEMS gyroscope
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Table 1. Cont.

Algorithm Group Algorithms Characteristics/Functions
with References

Number
of Papers

Supplements/Requirements
ApplicationsLimited

Calculation Time
Real Time/on- or

off-Line
Working

Environment Need for Combination

Sensor fusion

Integration drift error
reduction and error
propagation reduction
during orientation/position
estimation [42,43]; drift
compensation [41];, etc.

3

Developed with
shorter
computation time
(than rotation
matrix)

Real time [42] MATLAB; Mobile
phone API, IoT

Need to exploit
accelerometer and
magnetometer aiding
sensors, and need reference
data

3D human movement
analysis; rehabilitation
application, monitoring
dynamic changes of
movement for clinical
prognosis

Simple filter algorithm

Low-pass filter Noise reduction [25] 1 Within limited
calculation time Real time MATLAB and DSPs Can be used alone Gyroscopic head-borne

computer mouse

High-pass filter Drift/offset reduction [26];
bias reduction [45] 2 Within limited

calculation time Real time MATLAB and DSPs Can be used alone Gyroscopic head-borne
computer mouse

TWD
Noise reduction around
zero within the
threshold [27]

1 Within limited
calculation time Real time MATLAB and DSPs

Followed with other
algorithms to obtain better
results

Gyroscopic head-borne
computer mouse

Compensation-based
algorithm

Drift and offset
compensator
(DOC)

Drift/offset
compensation [45] 1 Low computational

demands Real time DSPs and FPGAs

Based on encoder
measurement.
Combination of encoder
and even MEMS
accelerometer

Demanding robotic and
mechatronic systems;
parallel or serial kinematic
machines such as industrial
manipulators (with the
potential to be used in
human motion analysis)

Compensation
method with
temperature

Noise reduction and drift
compensation (including
bias due to
temperature) [46]

1 - 1 Real time Android Combination of Median
filter, Kalman filter

Drift compensation for
MEMS gyroscope in mobile
devices that are in motion,
static, or with temperature
variance.
This method optimally
filters drift to be usable in
MARG, IMU, indoor
navigation and human
activity classification

Compensation
method with
accelerometer
and magnetometer

Noise reduction and angle
estimation [47] 1 Required less

computation Real time Microprocessor
Need to combine with
MEMS accelerometer and
magnetometer data

Capture real time body
movement with a mini
wearable wireless sensor
system for rehabilitation

IMU calibration
method

Absolute error reduction;
calibration parameter
estimation [48]

1 Robust and easy to
implement Real time MATLAB

An IMU consists of a
tri-axial MEMS gyroscope,
an accelerometer and often
a magnetometer. Does not
require other external
equipment

Low-cost IMU sensors
equipped on smartphones
and similar devices for
motion analysis of robotics.
It is possible to use it for
human motion analysis

1 ‘-’ indicates that no information could be found in the original paper.
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Table 2. Summary of error reduction algorithms in groups with corresponding functions, advantages, and disadvantages.

Main/Common Functions Advantages Disadvantages Number of Studies

Kalman-filter-based algorithm

• Noise reduction
including tremors

• Signal prediction
and estimation

• Offset/drift error estimation
• Yaw correction

• One of the most common
signal processing algorithms
for the MEMS gyroscope

• Can be implemented in
real time

• Can be simplified for limited
calculation capacity

• Sometimes requires
information from another
sensor, e.g., MEMS
accelerometer
or magnetometer

• or must work together with
other algorithms for specific
applications, e.g., with WFLC
for tremor motion extraction

8

Adaptive-based algorithm

• Noise reduction
• Tremor modeling

and estimation
• Tremor modeling

and estimation
• Drift compensation

• The most common signal
processing algorithm for the
MEMS gyroscope

• Can be implemented in
real time

• Can be simplified for limited
calculation capacity

• Some algorithms (e.g., sensor
fusion) must be combined
with other sensors, e.g.,
accelerometer
or magnetometer

• Or require a reference model

13

Simple filter algorithm

• Noise reduction
• Or offset/drift reduction,

integration drift reduction

• Simple to implement
• Can be implemented in

real time

• Usually for a single
simple function

• Need to be combined with
other algorithms for a
better result

• Some algorithms need to be
combined with other sensors,
e.g., MEMS accelerometer

• Common in practical
applications but not in
research publications

4

Compensation-based algorithm

• Offset/drift compensation
• Noise reduction
• Angle estimation

• Can be implemented in
real time

• Can demand low computation

• Usually combined with other
hardware, e.g., encoder,
accelerometer,
or magnetometer

• Combined with other
algorithms, e.g., median filter,
Kalman filter

• The accuracy of the calibration
method strongly depends on
the reliability of the
classification between static
and motion intervals

4
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4. Discussion

A systematic review was performed with a focus on error reduction algorithms in MEMS
gyroscope-based motion analysis systems within the area of human motion analysis or with a clear
potential for use in this area (e.g., for robotics). A total of 17 algorithms have been classified into
four categories: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms,
and compensation-based algorithms. The most commonly used solution for MEMS gyroscope error
reduction within this area is adaptive-based algorithms, followed by Kalman-filter-based algorithms.
The majority of them (12 of 17) showed the potential to be simplified to limit the calculation time.
All the algorithms can be implemented in real time and used alone or combined with other algorithms
or sensors, e.g., accelerometers and/or magnetometers. They are suitable for use in human motion
analysis systems, especially for hand, wrist, and head movements.

Kalman-filter-based algorithms are commonly applied for error compensation, position
correction, and orientation estimation in different areas. With a focus on error reduction, related
Kalman-filter-based algorithms, including the Kalman filter, discrete Kalman filter in an optimal way,
simplified basic Kalman filter, and Kalman-filter-based position estimation algorithms, are presented
in this paper. They are all based on the Kalman filter and have the main function of noise reduction
and offset/drift signal prediction and estimation, including human tremor reduction, drift estimation,
and yaw correction during motion analysis.

Adaptive-based and related algorithms, such as LMS, the adaptive sliding mode controller,
the adaptive bandpass filter, WFLC, and the sensor fusion algorithm, were used for noise reduction,
error compensation and estimation, and human tremor reduction, modeling, and estimation.
Sensor fusion algorithms often combine accelerometer and magnetometer data to achieve their
compensation characteristics.

Some simple filter algorithms, such as the low-pass filter, high-pass filter, and TWD algorithm,
were also applied to reduce signal errors, e.g., noise, drift/offset, and integration drift. They have
simple characteristics and thus simple functions. They are simple and easy to implement in real time,
but only with simple functions. They are good solutions for simple tasks. However, a better result is
usually achieved if they are combined with other algorithms.

Compensation algorithms include DOC, compensation with temperature, compensation with
accelerometer and magnetometer data, and the IMU calibration method. They can be applied for noise
reduction and angle estimation by compensating for the related gyroscope errors, e.g., drift/offset and
bias due to temperature. The compensation algorithms are satisfactory solutions for complementing
the drift-free gyroscope, but require other resources in combination to perform their function, including
other filter algorithms and additional hardware, such as accelerometers and magnetometers, or even
the same sensor unit as a reference.

5. Conclusions

This paper presents a systematic overview of signal processing algorithms with a focus on MEMS
gyroscope error reduction for human motion analysis systems. Sixteen MEMS gyroscope-related signal
processing papers that were published in the past 10 years were reviewed to evaluate their functions,
error reduction/minimization, and signal improvements. All of them are within the area of human
motion analysis applications or have a clear potential for use in this area. Seventeen algorithms, which
were categorized into four main groups (Kalman-filter-based algorithms, adaptive-based algorithms,
simple filter algorithms, and compensation-based algorithms), were investigated and summarized in
terms of their characteristics, functions, supplements/requirements, related applications, advantages,
and disadvantages. Some signal processing algorithms can be used alone for MEMS gyroscope
error reduction, whereas others should be used with other signal processing algorithms to achieve
better results. Some algorithms combine MEMS gyroscope data with data from other sensors as
accelerometers or both accelerometers and magnetometers, while some require a reference sensor
model. This study also showed the possibility of simplifying the algorithms for a limited calculation
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capacity and real-time implementation. The algorithms that were investigated in this paper are useful
for signal error reduction and signal quality improvement for MEMS gyroscope-based human motion
analysis. With a focus on MEMS gyroscope-based movement measurement, the paper aims at being a
user guide on when to use which algorithms in related studies.
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