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Abstract: Indoor localization estimation has become an attractive research topic due to growing
interest in location-aware services. Many research works have proposed solving this problem by
using wireless communication systems based on radiofrequency. Nevertheless, those approaches
usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation.
On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination
systems has provided the emergence of Visible Light Communication technologies, in which data
communication is performed by transmitting through the visible band of the electromagnetic
spectrum. This brings a brand new approach to high accuracy indoor positioning because this
kind of network is not affected by electromagnetic interferences and the received optical power is
more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning
estimation system based on neural networks to predict the device position in a 3D environment.
Neural networks are an effective classification and predictive method. The localization system is built
using a dataset of received signal strength coming from a grid of different points. From the these
values, the position in Cartesian coordinates (x, y, z) is estimated. The use of three neural networks is
proposed in this work, where each network is responsible for estimating the position by each axis.
Experimental results indicate that the proposed system leads to substantial improvements to accuracy
over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an
average error distance of 0.4 mm.

Keywords: indoor localization; neural network; visible light communication; received signal strength

1. Introduction

The Global Positioning System (GPS) is the best known satellite-based navigation system which
has been applied into various location-based services. However, the GPS system does not work
well for indoor environments because it does not have lines-of-sight (LOS) for signal transmissions
from satellite, and therefore, it has a low accuracy [1]. Indoor localization has gained considerable
attention over the past decade due to the emergence of numerous location-aware services. These new
services have made it possible to develop applications capable of sensing location to offer services
or dynamically adjusting their settings and functions [2]. In fact, many positioning systems based
on radiofrequency communication systems, such as WiFi [3,4], Bluetooth [5], Zigbee [6] or RFID [7]
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have been proposed, mainly for having been globally deployed and for their low cost. Nevertheless,
multipath fading causes the received signal to fluctuate around a mean value at a particular location [8].
Hence, those systems usually deliver an accuracy of above two metres, and could not be suitable for
environments with high accuracy requirements. Thus, precise indoor localization is a still critical
missing component which has gained a growing interest from a wide range of location based
applications, such as robotics, tracking of disabled people, etc.

On the other hand, optical wireless communications based on visible light [9], named Visible Light
Communications (VLC), are used to transmit data by modulating intensity in light emitting diodes
(LED), employing faster switching rates than the persistence of the human eye to avoid flickering in
data/light sources. The increasing use of LEDs in illumination systems has conducted the emergence of
the VLC technologies, both in indoor and outdoor environments [10]. In indoor location applications,
VLC allow for a greater precision than outdoors.

In recent years, positioning systems based on VLC have been an attractive research topic. VLC
can offer high accuracy in positioning, mainly due to the fact that this kind of networks is not affected
by electromagnetic interference and because the optical signal is more stable than radio frequency
signals. Indoor localization systems using LEDs have shown to be more accurate with 0.1–0.35 m
positioning error when compared to WiFi (1–7 m) and Bluetooth (2–5 m) [11]. Thus, in this manuscript
a discrete indoor localization system using a VLC infrastructure and based on three neural networks
is proposed. Each neural network is responsible for infering a value of X, Y or Z axes and thus the
coordinate of device location is estimated. RSS values from the transmitters located in the ceiling are
used as input in each neural networks. To evaluate the effectiveness of the proposed model, a dataset
has been created considering LOS and reflections. The dataset also includes variations in the tilt of
angle of the receivers with regard to the transmitters. The simulation results yield a 99.80% accuracy
and an average error of 0.4 mm.

The paper is organized as follows: Section 2 summarizes the related work about indoor
localization using VLC. Section 3 explains the optical channel model and the characteristics of
simulation scenarios used to generate the RSS dataset using CandLES tool. Next, in Section 4,
the location system based on neural networks is described. In Section 5, the results are discussed and
the performance and robustness are analysed. Finally, in Section 6 the conclusions and future work
are presented.

2. Related Work

Recently, authors in [12] mainly classified VLC based positioning techniques into four groups:
proximity, fingerprinting, triangulation and vision analysis. In the proximity method, the location of
the device is determined on the basis the signal coming from a single LED base station. Each LED
base station has an identifier code. When a device receives the signal from a LED base station, it also
receives its identifier code. The receiver has a database that associates IDs with locations. The position
of mobile device is determined as the whole area covered by the light radiated from the LED whose ID
is received by the device. This technique cannot give absolute or relative positions but only proximity
location information.

On the other hand, the fingerprinting technique estimates the position by matching online
measured data with pre-measured location-related data, such as RSS. Localization based on
fingerprinting is usually carried out in two phases. In the first phase, normally termed the offline
phase, a database of the RSS samples is built from different base stations at each reference location for
the target environment. With the samples as training set, a position model is learned using a particular
machine learning technique. During the second phase, online phase, the location is determined by
means of new RSS measurements collected in a particular position and the built model.

In the third technique, triangulation, the position is calculated by using properties of triangles,
based on geometrical properties: latitude and angulation. The lateration method estimates the target
position, by measuring distances from the receiver to multiple LEDs that work as access points.
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The positions of these access points are known. The distances can be estimated by the time of arrival
(TOA), time difference of arrival (TDOA) and the RSS. In the second method, called angulation or angle
of arrival (AOA), the target position is estimated by measuring the angles to multiple base stations
or access points. Frequently, all these techniques require additional hardware, time synchronization
between emitters and receivers, being necessary to know the coordinates of the access points and also
demand computational cost.

Finally, the technique of vision analysis relates geometrically 3D positions of objects with their 2D
projection on an image sensor. Geometric relationships are obtained with a pinhole camera model.

Nowadays, the indoor localization based on fingerprinting is one of the most used technique [13].
The simplest system only needs RSS information and additional sensors are not needed.
Many researchers apply new machine learning prediction techniques in order to get best results.
Thus, neural networks are an effective classification in machine learning and can be applied for
positioning estimation. Neural networks are trained to recognize a set of patterns. Some research apply
neural networks as a fingerprinting positioning method. Authors in [6] employed two feed-forward
neural networks using three fully connected layers and trained with the back propagation algorithm.
One of the networks estimates the Cartesian coordinates and the other one estimates the polar
coordinates. RSS values from Zigbee wireless sensors are used as input to the networks. Also, authors
in [14] proposed the use of two multilayer neural networks trained independently to estimate the
(x, y), coordinates from WiFi RSS. Furthermore, the use of a multilayer neural network using a back
propagation algorithm to estimate the coordinates (x, y) is proposed in [15]. Contrary to other jobs,
the inputs to the neural network are normalized RSS samples and standardized multipath parameters
from several access points are used as input to the neural network. All these works are focused on
the estimation of the coordinates in the bidimentional plane using communication systems based
on radiofrequency.

On the other hand, some research works estimate three-dimensional coordinates using a visible
light communication infrastructure. These works are based on estimating the position from RSS
samples, TDOA technique and the application of the algorithms for solving equations. In [16]
a three-dimensional positioning scheme for indoor VLC systems is proposed. Precise location
estimation of the terminal device can be achieved by measuring RSS through LOS channels.
The average error is about 2.5 mm. In order to get this accuracy, the mobile device has multiple
PD (Photodiodes), receivers, where relative positions have to be known. This system uses all the RSS
of all PDs to estimate the position. Authors in [17] proposed a wireless accurate three-dimensional
localization system using white LED lights, using frequency division multiplexing (FDM) and the
TDOA technique for 3D localization. The average error is very small, below 1 mm, but the experiments
were made with all receivers located on the same plane. The authors measure phase differences
among the received signals with respect to a reference LED that along with a positioning algorithm
returns the coordinates of location by solving a set of linear equations. In [18] a three-dimensional
positioning algorithm is also proposed using RSS, which changes according to the angle and distance
between transmitters and receivers. The accuracy of this system is about 3 cm, but to estimate the
position, the system requires other data or parameters as the tilting, and also the application of an
angle compensation algorithm in addition to the received signal RSS. At last, a genetic algorithm to
solve the positioning problem using a VLC network is described in [19], yielding an average error
of 5.55 cm. To estimate the coordinates, each LED transmitter has an ID, combined with intensity
attenuation information and CDMA modulation.

There is no doubt that significant progress has been made in the field of indoor localization using
VLC networks. However, an improvement to the actual approaches is needed, giving a better and
precise three-dimensional indoor positioning. The main novelty of this work comes from the fact
of applying neural networks as a predictive technique for three-dimensional positioning systems.
That is, the proposed system processes a grid of received signal strength (RSS) to estimate the Cartesian
coordinates (x, y, z) of the mobile device. To the best knowledge of the authors, the application of



Sensors 2018, 18, 1040 4 of 17

neural networks to the positioning problem has been just implemented in radiofrequency environments
and only estimate coordinates on a plane. This work includes the experiments of working with
tridimensional positions, for which the combination of three neural networks is used, where each
of them is responsible for estimating positions within the X-axis, Y-axis and Z-axis respectively.
The positioning system proposed in this article has an accuracy of above 99% with an average error
distance of 0.4 mm, using only the power received signals as input to the neural networks. In addition,
it is a low complexity system, therefore it is suitable for integration into mobile devices.

3. Simulation Model

In a VLC positioning system, the characteristics of the LEDs, transmitters, the PD receivers, as well
as the channel model must be taken into account. In this section, basic aspects of the channel model
and transfer function of these systems are given.

3.1. Channel Model in VLC

The optical channel components are the followings: optical transmitter (LED), photo detector
(PD) and transmission medium. For VLC links, intensity modulation (IM) is used, in which the
waveform of the signal to be transmitted is modulated onto the instantaneous power of the optical
carrier. The technique used in reception is direct detection (DD), in which a photo detector produces
an electrical current proportional to the received optical instantaneous power. Usually, optical wireless
systems based on IM/DD are modeled as a base band linear, time-invariant system [20], see Figure 1.

Figure 1. Optical channel modeled as a base band linear system.

In Figure 1, X(t) is the instantaneous input power, Y(t) is the output current, and h(t) is the
impulse response. N(t) is the signal-independent additive noise and R is the receiver responsivity.
This base band channel model can be expressed by Equation (1), where ⊗ symbol denotes the
convolution operation.

Y(t) = R · X(t)⊗ h(t) + N(t) (1)

The impulsive response, h(t), is determined by transmitter and receiver characteristics, but also
depends on their position, orientation and optical signal reflections as well. Plenty of works have been
published to characterize optical wireless channel and its impulsive response h(t), such as [21] based
on evaluating of measures, Lopez-Hernandez et al. [22] which applies iterative algorithms, or [23]
based on statistical methods. Others works have been also published focusing on studying the VLC
channel, such as [24–26].

In VLC, the received power can be expressed as the sum of LOS and non line of sight (NLOS)
components [26]. In directed LOS links, the h(t), hence the DC gain can be computed fairly accurately
by considering only the direct LOS propagation path. Figure 2 shows an example of a directed LOS
link. An optical source can be modeled by its position vector, a unit-length orientation vector ~ot,
transmission power Pt and a radiation intensity pattern I(θ, m) emitted in direction θ. Here m is the
mode number of the radiation lobe, which specifies the directionality of the source, and is related to
the transmitter half power angle θ1/2. Similarly, a receiver is defined by its position, orientation~or,
the photo detector area A, and the field of view (FOV). The angle formed between the optical incident
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signal and the orientation vector~or is called the incident angle ψ. The maximum incident angle defines
the receiver FOV.

 

Figure 2. Transmitter and receiver in directed LOS link configuration.

According to [20], when considering only the direct LOS propagation path, the channel DC gain
H(0) is given by Equation (2), where T(ψ) is the signal transmission coefficient of the optical filter in
receiver, G(ψ) is the receiver optical concentrator gain, and d is the distance between transmitter and
receiver. Equation (2) is based on considering the optical transmitter as a single point source, though
VLC transmitters tend to be composed by a large LED array in order to improve illumination capacity.

H(0) =
Pr

Pt
=

{
m+1
2π·d2 · cosm(θ) · A · G(ψ) · T(ψ) · cos(ψ) 0 < ψ ≤ FOV
0 ψ > FOV

}
(2)

Authors in [27] compared the channel characteristics of both the single point-source model and
the array of LEDs. The results obtained show that the deviations are acceptable in terms of the channel
optical path loss, as well as bandwidth. There are differences in terms of RMS delay-spread results,
though they remain acceptable as long as the LED array is of moderate size.

3.2. Simulation Software: CandLES

In order to validate the proposed system in this work, a RSS dataset was generated using CandLES
software [28]. CandLES is a Communication and Lighting Emulation Software that uses MATLAB.
This tool has modulation, transmitters, optics, channel, noise, interference, receivers and decoding
components. It allows us to fix parameters such as room sizes, objects, orientation, shadowing,
and wall reflectivity. In order to calculate the channel impulse response, h(t), and the received
power, Pr, CandLES adopts a fast algorithm developed for IR free space optical communications [29].
This model takes into account: locations of transmitters, receivers, obstacles, reflectivity of each wall
and obstacle, field of view of receivers, receiver area and the number of reflections.

Thereupon, the most important features of our model are described, which are needed to
adequately interpret the results obtained from the simulations performed. We selected commonly
used values to characterize VLC transmitters and receivers, similar to those used in [30–32]. Optical
transmission power of devices is of 15 W. According to the optical channel model used, transmitters’
directivity is characterized by its half power angle, θ1/2, while receivers’ directivity is defined by its
FOV. According to [25], both parameters are assigned a value of 60◦. The transmission medium is
modeled as free space without obstacles. In order to calculate RSS values the direct component of
the received signal and the existence of reflections are considered. All optical receivers have been
configured using the value of 60◦ for FOV, a photo sensor area of 100 mm2, an optical concentrator
gain of 10, and a concentrator refractive index of 2.73. Finally, the reflectivity (%) of wall, ceiling and
floor were set to 0.58, 0.69 and 0.09, respectively.
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4. Localization System Based on Neural Networks

In this section, a discrete indoor localization system using three neural networks is described.
Neural networks have proved to be very effective and powerful tools in solving problems of
classification and prediction in maching learning, and hence can be trained to recognize any set
of input patterns by predicting an output. A neural network consists of an input layer of nodes, one or
more hidden layers and one output layer. The nodes in hidden layers are fully connected, and each
connection has a weight wji and bias bi. The basic structure of a node is shown in Figure 3, and the
basic structure of a neural network is shown in Figure 4.

The output of each node is given by Equation (3), where xj are the inputs to the node, and f (·) is
the transfer function such as sigmoid, tanh or lineal function.

ŷi = f (∑
j

wji · xj + bi) (3)

Figure 3. Node basic structure.

Figure 4. Neural network basic structure using two hidden layers.

The learning of a neural network consists of minimizing a cost function, Equation (4), which is a
function that depends on the weights, w, and bias, b, of the neural network, where ŷ is the estimated
output and y is the target output used to train the system.

J(ŷ, y) = f (w, b) (4)

There are different algorithms to train a neural network, but in this work a Matlab implementation
of the Scaled Conjugate Gradient algorithm was used [33]. During the training process, the weights
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are adapted in order to minimize the cost function. The training phase can end when the cost function
reaches a minimum or when the number of iterations reaches a given value.

Our work focuses on the use of a modular system of neural networks, the well known Multilayer
Perceptron (MLP) architecture. This neural network has been used in a variety of ways and applications.
As it is a three dimensional positioning system, the problem is broken down into three neural networks,
one per axis, X-axis, Y-axis and Z-axis, where the output node of each neural network determines
a position on the X-axis, Y-axis or Z-axis. In fact, Sharkey in [34] said that modular decomposition
can be undertaken for the purpose of improving performance. The “divide and conquer” principle,
whereby the task is divided into a number of sub-problems can be used to extend the capabilities of
a single net. Each subtask could then be solved with a different neural net architecture or algorithm,
making it possible to exploit specialist capabilities. Another reason for adopting this approach is that
of reducing model complexity and computational cost, making the overall system easier to understand
and extend.

In order to model the neural networks, an array of RSS samples for each receiver is used as input
to the system. This array, X, has nTx ×mx dimension, where nTx is the number of transmitters or LED
lamps, and mx is the number of RSS samples. However, the output of each neural network is different
from the rest, and it depends on the receivers’ distribution.

For X-axis and Y-axis, the output arrays, Yx and Yy, have a dimension equal to number of receivers
per row or column. For Z-axis, the Yz array has a dimension equal to number of planes.

Therefore, the set pair of (X, Y) is obtained for each of the neural networks, where X ∈ RnTx×mx ,
Yx ∈ (0, 1)receiversByRow×mx , Yy ∈ (0, 1)receiversByColumn×mx and Yz ∈ (0, 1)planesNumber×mx

5. Results and Discussion

In this section, the RSS dataset from a VLC network and the results obtained from experiments
carried out to evaluate the best configuration and efectiveness of the proposed system are described
and discussed. Experiments were focused onto comparing accuracy and error distance varying the
number of nodes in each hidden layer, and the robustness and computation time with different training
sizes. The error is the expected distance from the misclassified instance (estimated receiver) and the
real location (real receiver). This error is obtained by calculating the Euclidean distance between these
points, and the arithmetic mean was computed from the results of the experiments.

The dataset was randomly divided into training, validation and test sets, with a size of 70%,
15%, and 15% of RSS samples from whole dataset, respectively. The training set is used to train the
network. Training continues as long as the network keeps improving on the validation set. The test set
provides a completely independent measure of network accuracy. In order to validate the experimental
results, and to ensure statistical independence, all experiments have been repeated 100 times. The
system was implemented using Neural Network Toolbox of Matlab. All experiments were carried out
on an Intel Core i7 3.4 GHz/32 GB RAM non-dedicated Windows machine.

5.1. Dataset

As was aforementioned, RSS samples are used to model the neural networks proposed in this
work. For that, CandLES software was used to build a RSS dataset where both direct component
and reflections of the optical transmissions were taken into account in a 4 by 4 by 3 m room.
Figure 5 illustrates the simulation scenario. This environment consists of 16 LED lamps or transmitters
(red triangles), configured as a 4× 4 grid placed 1 m apart from each other on the ceiling. On the lower
part, we set up 361 receivers (blue circles) in a 19 × 19 grid configuration, with a 20 cm separation
from each other. In order to evaluate the effects of having different distances between receivers and
transmitters, the receivers plane is set up at three different heights: 75, 100 and 125 cm from the floor.
The following simulations were carried out to generate the dataset:
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• Direct component. 11 simulations taking into account only the direct component were carried out.
All receivers pointed out to the ceiling with at a 90 degree angle in the first simulation, Figure 6a.
The rest of the simulations were done with the receivers pointing towards the ceiling with different
random angles, between [−105◦,+105◦], Figure 6b. Thus, each receiver has a different orientation
in each simulation.

• One reflection. 11 simulations taking into account the first reflection were carried out, as done in
the previous case.

• Two reflections. 11 simulations taking into account two reflections were carried out, as done in the
previous case.

• Three reflections. 11 simulations taking into account three reflections were carried out, as done in
the previous case.

Figure 5. Grid of receivers at 0.75 m from the floor.

(a) (b)

Figure 6. Receivers orientation: (a) each receiver points towards the ceiling with 90◦; (b) each receiver
points towards the ceiling with a randomly angle.

Therefore, forty four simulations were performed on each one of the three aforementioned
receivers planes, 75 cm, 100 cm, and 125 cm. One RSS measurement from each LED lamp was
estimated at each receiver in every simulation. This leads to 17,328 (16 LED lamps × 361 receivers
× 3 layers) RSS measurements in each simulation. Hence, the whole dataset is composed by 762,432
(17,328 × 44 simulations) RSS measurements. The simulation parameters were specified in Section 3.2.
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Figure 7 shows the received optical power (lux) at 1 m from the floor when only one transmitter
is powered on. The first image (a) is an example showing when the transmitter number 1 is powered
on and there are no reflections, thus only the direct component of transmission is detected by the
receivers. All the receivers are pointing out to the ceiling with 90 degrees. Figure 7b shows the power
distribution when only the transmitter number 10 is powered on and the receivers point out to the
ceiling with different angles. Finally, Figure 7c shows a representation when LED 6 is powered on, the
receivers are configurated with random pointing angles taking into account up to three reflections.

Figure 7. Examples of power distribution: (a) LED 1 is powered on and all receivers are pointed out
to the ceiling; (b) LED 10 is powered on and all receivers pointed out with different angles; (c) LED 6
is powered on and all receivers pointed out with random angles and three reflections are taken into
account at receivers.
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5.2. Neural Network Configuration

Due to there are 16 LED lamps, the input layer of each neural network has 16 nodes. In addition,
from dataset, each receiver Rxi of the simulation environment has a fixed position (x, y, z)i where
1 < i < 361. There are 19 possible locations in the X-axis, 19 locations in the Y-axis and 3 locations
in the Z-axis. This clearly defines the output layer of the neural networks of these axes. Therefore,
the neural networks that define the X-axis and the Y-axis will have 19 nodes in their output layer.
For the Z-axis, three different heights were considered, the receivers were placed on planes of 75 cm,
100 cm and 125 cm from the floor. Therefore, to estimate the position in the Z-axis, a third neural
network was combined with 3 nodes in the output layer, so each node defines a height or plane.
Thus, the input and output layers configuration of the proposed three dimensional system in this
paper is shown in Figure 8.

Figure 8. Proposed system based on three neural networks where each of them estimates the position
in the axes X, Y, and Z.

On the other hand, a first experiment using a basic structure with only hidden layer was carried
out in order to determine the best configuration of the neural networks. However, preliminary results
yielded an accuracy of about 80%. Taking into account the propagation characteristics of the optical
signal, it is expected to achieve at least a 90% accuracy. Therefore, a second hidden layer was added to
each neural network to reach that accuracy.

Using this structure, and in order to find the network architecture with best accuracy, different
experiments were carried out by varying the number of nodes in both hidden layers. Concretely,
the amount of nodes for the first hidden layer was varied from 10 to 100 in steps of 10. The number of
nodes for the second hidden layer was varied from 10 to 50 in steps of 10. Table 1 shows the results in
percentages of accuracy for the training dataset. As can be seen, the poorer accuracy is obtained when
10 nodes are used in both layers, although it remains above 90%. The best accuracy, 99.8%, is achieved
when 80 and 30 nodes are used in the first and second layers, respectively. Also it is noticeable that
when the number of hidden nodes in the second layer is low, more nodes in the first hidden layer
are needed to get a high accuracy. Furthermore, as the number of nodes in the second hidden layer
increases we need fewer nodes in the first hidden layer to obtain a similar accuracy. Finally, when using
50 nodes in the first layer, an accuracy above 99% is achieved, regardless of the number of nodes in the
second layer.

On the other hand, the average error distance was also calculated for all experiments. Table 2
shows the neural network architectures with the lowest average error yielding the best average error
distance with 0.39 mm. These architectures match with the highest accuracy rate in Table 1. As can
be seen, the neural network architecture with the lowest average error distance is the 80-node neural
network for the first layer and 30 nodes for the second layer. This neural network will be taken as
reference to assess the model presented in this work.
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Next, the architecture of each neural network is analysed. Figure 9 shows the accuracy rate (%)
for each neural network or by axis. These graphs show that the network of the X-axis requires a greater
number of nodes in the first hidden layer. From 50 nodes in this first layer, the accuracy is practically
the same regardless of the nodes of the second layer. The neural network of the Y-axis presents a more
stable behavior when the number of nodes of the first layer is lower compared to the neural network
of the X-axis. The neural network of the Z-axis has a much more stable accuracy rate. This is mainly
because it is a simpler architecture and it only has to estimate 3 classes.

Figure 9. Accuracy rates (%) for each neural network.
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Table 1. Accuracy results (%) depending on the number of nodes in hidden layers.

Nodes Layer 1
Nodes Layer 2

10 20 30 40 50

10 90.4704 90.8356 94.2940 95.2635 96.4303
20 97.8154 97.7314 98.1218 98.5708 97.7251
30 98.3988 98.2393 97.6517 98.1658 99.2634
40 98.4176 97.8751 99.5299 99.3116 99.3400
50 99.7607 99.4417 99.5131 99.5760 99.4438
60 99.6432 98.7534 99.4459 99.4375 99.3347
70 99.5802 99.5551 99.0997 98.5268 99.6054
80 99.4942 98.3547 99.8006 99.6999 99.4669
90 99.6642 99.3767 99.1312 99.1312 99.4942

100 99.7628 99.7250 98.8898 99.5446 99.4291

Table 2. Error distance in cm.

Nodes Layer 1-Nodes Layer 2

100-10 100-20 80-30 80-40 70-50

Average error 0.048 0.055 0.039 0.060 0.086

5.3. Neural Networks Robustness

In order to validate the robustness of neural networks application for indoor localization,
the efficiency of this approach was tested by varying the training dataset size from 15% to 70%.
All experiments were performed using the combination of number of nodes in layers with the best
accuracy and lower mean error, that is, 80 and 30 nodes in the first and second layers, respectively.

Table 3 shows the experimental results obtained by varying the training size. As can be seen,
the system accuracy increases when the training size does yielding excellent results with a low number
of training samples. Thus, when the number of training samples is 15% this approach decreases
in effectiveness, but even in these circumstances the system gets an accuracy above 97%. For other
training sizes, the accuracy of system is above 99%. Furthermore, precision, recall and F-Measure
measurements also follow a similar behavior related with accuracy. Thus, the measurements increase
with the training size, keeping values close to 0.97 when using only a 15% of training size and close
to 0.99 when using a 30% or more of training size. Furthermore, a lower training dataset size offers
savings in computational cost and time needed to compute the neural networks. In fact, as shown,
using the smallest dataset size, the training time is about 12 times less than the time spent using a 70%
dataset size.

Table 3. Performance results depending on training size.

Training Size Accuracy Precision Recall F-Measure Training Time (s)

15 97.50 0.9751 0.9751 0.9874 63.46
30 99.09 0.9869 0.9869 0.9934 292.31
50 99.40 0.9941 0.9940 0.9970 580.17
70 99.47 0.9947 0.9947 0.9974 880.84

Finally, Figure 10 shows the cumulative distribution function (CDF) for the best structures of
hidden layers. As can be seen, most of the test instances are correctly classified, and most of the
misclassified instances are about 20 cm, that is, these instances are the nearest neighbours (receivers)
of exact locations in the same height.
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Figure 10. CDF for 100-10, 100-20 and 80-30 nodes.

5.4. Evaluating the Model with Other Dataset

To demonstrate the usefulness of the proposed method, we implement a new dataset of RSS
values using CandLES. A new mesh of receivers placed every 10 cm was made. No receiver was placed
on the edge of the room. Therefore, the mesh has 39 × 39 receivers, that is 1521 receivers. Figure 11
shows the receivers located every 20 cm in red colour, and the new receivers provided by this dataset
are coloured in blue. This experiment was made in order to have new positions different from those
used in training and analysing the estimation of coordinates made by the three neural networks.

Figure 11. Distribution of receivers in the room in the xy plane.
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In order to verify the performance of the neural networks for this new dataset, the following
considerations were made:

• If the receiver is located at a point in the training dataset, the result of the neural network must
estimate the position of training dataset, for example, node 41 of Figure 12a, matches node A of
training. In this case the estimated position will be exactly determined, otherwise it will result
in error.

• The receiver is located at the same distance from two or more points. For example, in Figure 12b,
the node 81, is at the same distance from points A, B, T, U, (points of training mesh). The same
thing occurs with the node number 3 from points A, B. In this case, a vector of candidate positions
is calculated by measuring the Euclidean distance, Equation (5).

di =
√
((pz − (nz)i)2 + (py − (ny)i)2 + (px − (nx)i)2 (5)

For receiver number 81, the candidate vector is calculated, see Equation (6). The three neural
networks will have made a correct guess if the estimated position is contained within the vector
of candidate positions. The estimate will be considered correct.

v81 = dA, dB, dT , dU (6)

(a) (b)

Figure 12. Estimation of positions. (a) A receiver is at the same distance from four candidate points of
the training mesh; (b) Possible estimation errors.

In order to evaluate the performance of the proposed model, the previous considerations were
taken into account. The accuracy rate are shown in Table 4. The accuracy rate is about 97% for this
dataset. One of the best results is for neural network with 80-40 nodes yielding a 97.38% accuracy and
the best distance error, only 9.15 cm, Table 5.

Table 4. Accuracy rate for a new RSS dataset, testing all the trained neural networks.

Nodes Layer 1
Nodes Layer 2

10 20 30 40 50

10 91.5157 91.4759 93.6241 94.3323 94.4608
20 95.5880 95.7962 95.9989 96.1817 95.8988
30 95.7010 96.0557 96.0617 95.5979 96.7764
40 95.9192 96.2539 96.9468 96.8780 96.1164
50 96.3142 97.2022 96.9348 97.1554 96.8073
60 96.9497 96.7301 97.2033 96.8675 96.8989
70 97.0628 97.3965 96.6863 96.9129 96.9622
80 96.5000 96.5463 97.2411 97.3816 96.7794
90 97.3352 97.2849 96.6783 97.1340 97.1440

100 97.0205 97.2222 97.2760 97.1514 97.0827



Sensors 2018, 18, 1040 15 of 17

If the training or the parameters of the neural network are not adequate, a few cases can be found
where the error distance can be relatively higher than foreseen. It is expected that by the distribution
of powers received by the device, the neural network estimates the position of the mesh that fits most
position nearby points. If the calculated point moves away from the neighborhood, error in distance
may be greater than expected, see Figure 12b.

This is because the training axes are discretized by the training mesh. If only one of the coordinates
estimated by one of the three neural networks is wrong, jumping to points outside of the neighborhood
causes the increase of this error.

Table 5. Error distance in cm.

Nodes Layer 1-Nodes Layer 2

90-10 70-20 80-30 80-40 90-50

Average error 9.1740 9.1544 9.1620 9.1525 9.1875

Finally, a comparative study has been done with other state-of-the-art 3D indoor localization
techniques using VLC networks. As can be appreciated in Table 6, the results obtained in this work
outperform other research works, being able to achieve a low error distance. In [17] the achieved error
distance is below than our work but it has a more computational cost because is based on TDOA.

Table 6. Comparitive study in terms of accuracy.

References
3D - System

Positioning Algorithm Error Distance

[16] Geometrical relationship 0.25–50 cm
[17] FDM and TDOA 0.020 mm
[18] Lateration 3 cm
[19] Genetic algorithm 2–5 cm

This work Three neural networks 0.4 mm

6. Conclusions

As was discussed in this manuscript, indoor localization has become an attractive research topic
due to growing interest in location-aware services, and several systems have been proposed in the
literature. In this paper, a discrete three-dimensional indoor localization system based on neural
networks and using the RSS values from LED lamps of a VLC network is proposed. In order to validate
the system, the CandLES tool was used to build a RSS dataset taking into account the direct component
and multipath reflections of the optical signal. Furthermore, random orientation angles for receivers
were also considered. In order to find the best architecture of neural networks several experiments
were carried out by varying the number of nodes in the hidden layers. As far as authors know,
they are not evidences of other researches that have considered a system with three neural networks
for indoor localization. Even so, the experimental results have demonstrated that the proposed system
yields a high accuracy, with achieved results for accuracy above of 99% and average error distance
about 0.4 mm.

On the other hand, the proposed system achieves an accuracy about of 97% and an average error
distance of about 9 cm when tested with a dataset with receivers located every 10 cm. Therefore,
and due to being a discrete system, it is expected that most of the errors are the nearest neighbors
(receivers) of real locations, that is, just the grid separation. In spite of the discretization and the fact
that the error is fixed by the grid separation, due to the high accuracy and the low computational
complexity, the proposed system is adequate to be implemented in devices with restricted energy
consumption and limited computing power. Finally, the proposed system was analysed using scenarios
with reduced training datasets, validating the robustness of the proposed solution. Effectiveness of
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the system is reduced when the training dataset size decreases, but even so, with only a 15% of the
samples for training, this approach yields an accuracy above 97%.

In our ongoing work, we are planning to design and develop a VLC network to validate the
proposed system in a real environment. Thus, once three neural networks are trained, the weights
and bias can be loaded on low cost devices and therefore the performance and energy consumption of
system can be evaluated in real conditions. On the other hand, the proposed approach is a discrete
system, where neural networks estimate the position within the grid for which they have been trained.
Therefore, we are also planning to apply regression techniques to calculate the exact position of mobile
devices using neural networks.

Acknowledgments: The authors would like to give thanks to Michael Brandom Rahaim for the CandLES software.

Author Contributions: Itziar Alonso-González developed the proposed system, organized the experiments,
performed the data analysis and wrote the manuscript. David Sánchez-Rodríguez organized the experiments,
performed the data analysis and was involved in writing the manuscript. Carlos Ley-Bosh and Miguel A.
Quintana-Suárez have supervised the work and wrote part of the manuscript. All authors have read, revised and
approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems.
IEEE Trans. Syst. Man Cybern. 2007, 37, 1067–1080.

2. Want, R.; Schilit, B. Expanding the horizons of location-aware computing. IEEE Comput. 2001, 34, 31–34.
3. Duque Domingo, J.; Cerrada, C.; Valero, E.; Cerrada, J.A. An Improved Indoor Positioning System Using

RGB-D Cameras and Wireless Networks for Use in Complex Environments. Sensors 2017, 17, 2391.
4. Zhuang, Y.; Syed, Z.; Li, Y.; El-Sheimy, N. Evaluation of Two WiFi Positioning Systems Based on Autonomous

Crowdsourcing of Handheld Devices for Indoor Navigation. IEEE Trans. Mob. Comput. 2016, 15, 1982–1995.
5. Zhuang, Y.; Yang, J.; Li, Y.; Qi, L.; El-Sheimy, N. Smartphone-Based Indoor Localization with Bluetooth Low

Energy Beacons. Sensors 2016, 16, 596.
6. Hwang, R.C.; Hsu, P.T.; Cheng, J.; Chen, C.Y.; Chang, C.Y.; Huang, H.C. The indoor positioning technique

based on neural networks. In Proceedings of the IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), Xi’an, China, 14–16 September 2011; pp. 1–4.

7. Seco, F.; Jiménez, A.R. Smartphone-Based Cooperative Indoor Localization with RFID Technology. Sensors
2018, 18, 266.

8. Kaemarungsi, K.; Krishnamurthy, P. Analysis of WLAN’s received signal strength indication for indoor
location fingerprinting. Pervasive Mob. Comput. 2012, 8, 292–316.

9. Jovicic, A.; Li, J.; Richardson, T. Visible light communication: Opportunities, challenges and the path to
market. IEEE Commun. Mag. 2013, 51, 26–32.

10. Zhou, J.; Yan, W. Experimental investigation on the performance characteristics of white LEDs used in
illumination application. In Proceedings of the IEEE Power Electronics Specialists Conference, Orlando, FL,
USA, 17–21 June 2007; pp. 1436–1440.

11. Zhuang, Y.; Hua, L.; Qi, L.; Yang, J.; Cao, P.; Cao, Y.; Wu, Y.; Thompson, J.; Haas, H. A Survey of Positioning
Systems Using Visible LED Lights. IEEE Commun. Surv. Tutor. 2018, doi:10.1109/COMST.2018.2806558.

12. Do, T.-H.; Yoo, M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors
2016, 16, 678.

13. Honkavirta, V.; Perala, T.; Ali-Loytty, S.; Piche, R. A comparative survey of WLAN location fingerprinting
methods. In Proceedings of the 6th Workshop on Positioning Navigation and Communication, Hannover,
Germany, 19 March 2009; pp. 243–251.

14. Dai, H.; Liu, H.B.; Xing, X.S.; Jin, Y. Indoor Positioning Algorithm Based on Parallel Multilayer Neural
Network. In Proceedings of the International Conference on Information System and Artificial Intelligence
(ISAI), Hong Kong, China, 24–26 June 2016; pp. 356–360.



Sensors 2018, 18, 1040 17 of 17

15. Chen, G.; Zhang, Y.; Xiao, L.; Li, J.; Zhou, L.; Zhou, S. Measurement-based RSS-multipath neural network
indoor positioning technique. In Proceedings of the IEEE 27th Canadian Conference on Electrical and
Computer Engineering (CCECE), Toronto, ON, Canada, 4–7 May 2014; pp. 1–7.

16. Xu, J.; Shen, H.; Xu, W.; Zhang, H.; You, X. LED-Assisted Three-Dimensional Indoor Positioning for
Multiphotodiode Device Interfered by Multipath Reflections. In Proceedings of the 2017 IEEE 85th Vehicular
Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–6.

17. Nadeem, U.; Hassan, N.U.; Pasha, M.A.; Yuen, C. Highly accurate 3D wireless indoor positioning system
using white LED lights. Electron. Lett. 2014, 50, 828–830.

18. Yang, S.H.; Jeong, E.M.; Kim, D.R.; Kim, H.S.; Son, Y.H.; Han, S.K. Indoor three-dimensional location
estimation based on LED visible light communication. Electron. Lett. 2013, 49, 54–56.

19. Chen, H.; Guan, W.; Li, S.; Wu, Y. Indoor high precision three-dimensional positioning system based on
visible light communication using modified genetic algorithm. Opt. Commun. 2018, 413, 103–120.

20. Kahn, J.M.; Barry, J.R. Wireless Infrared Communications. Proc. IEEE 1997, 85, 265–298.
21. Kahn, J.M.; Krause, W.J.; Carruthers, J.B. Experimental characterization of nondirected indoor infrared

channels. IEEE Trans. Commun. 1995, 43, 1613–1623.
22. Lopez-Hernandez, F.J.; Betancor, M.J.; DUSTIN. A novel algorithm for the calculation of the impulse response

on IR wireless indoor channels. IEEE Electron. Lett. 1997, 33, 1804–1806.
23. González, O.; Rodríguez, S.; Pérez-Jiménez, R.; Mendoza, B.R.; Ayala, A. Error Analysis of the Simulated

Impulse Response on Indoor Wireless Optical Channels Using a Monte Carlo-Based Ray-Tracing Algorithm.
IEEE Trans. Commun. 2005, 53, 124–130.

24. Lee, K.; Park, H.; Barry, J.R. Indoor Channel Characteristics for Visible Light Communications. IEEE Commun. Lett.
2011, 15, 217–219.

25. Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights.
IEEE Trans. Consum. Electron. 2004, 50, 100–107.

26. Chvojka, P.; Zvanovec, S.; Haigh, P.A.; Ghassemlooy, Z. Channel Characteristics of Visible Light
Communications within Dynamic Indoor Environment. J. Lightw. Technol. 2015, 33, 1719–1725.

27. Ding, J.; Xu, Z.; Hanzo, L. Accuracy of the Point-Source Model of a Multi-LED Array in High-Speed Visible
Light Communication Channel Characterization. IEEE Photonics J. 2015, 7, doi:10.1109/JPHOT.2015.2450534.

28. Rahaim, M.B.; Borogovac, T.; Carruthers, J.B. CandlES: Communication and Lighting Emulation Software.
In Proceedings of the Fifth ACM International Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization, WiNTECH ’10, Chicago, IL, USA, 20 September 2010; ACM: New York,
NY, USA, 2010; pp. 9–14, doi:10.1145/1860079.1860082.

29. Carruthers, J.B.; Carroll, S.M.; Kannan, P. Propagation modelling for indoor optical wireless communications
using fast multi-receiver channel estimation. IEE Proc. Optoelectron. 2003, 150, 473–481.

30. Deqiang, D.; Xizheng, K.; Linpeng, X. An Optimal Lights Layout Scheme for Visible-Light Communication
System. In Proceedings of the 8th International Conference on Electronic Measurement and Instruments,
Xi’an, China, 16 August–18 July 2007; doi:10.1109/ICEMI.2007.4350650.

31. Komine, T.; Haruyama, S.; Nakagawa, M. Bi-directional visible-light communication using corner cube
modulator. In Proceedings of the Wireless and Optical Communication, Banff, AB, Canada, 14–16 July 2003.

32. Tronghop, D.; Hwang, J.; Jung, S.; Shin, Y.; Yoo, M. Modeling and analysis of the wireless channel formed by
LED angle in visible light communication. In Proceedings of the International Conference on Information
Networking, Bali, Indonesia, 1–3 February 2012; pp. 354–357.

33. Meiller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Netw. 1993,
6, 525–533.

34. Sharkey, A.J.C. Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems; Springer: London,
UK, 1999.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Simulation Model
	Channel Model in VLC
	Simulation Software: CandLES

	Localization System Based on Neural Networks
	Results and Discussion
	Dataset
	Neural Network Configuration
	Neural Networks Robustness
	Evaluating the Model with Other Dataset

	Conclusions
	References

