
sensors

Article

Intrinsic Sensing and Evolving Internal Model
Control of Compact Elastic Module for a Lower
Extremity Exoskeleton

Likun Wang 1,2, Zhijiang Du 1, Wei Dong 1,∗, Yi Shen 2 and Guangyu Zhao 3

1 State Key laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150080, China;
likunwang@hit.edu.cn (L.W.); duzj01@hit.edu.cn (Z.D.)

2 School of Astronautics, Harbin Institute of Technology, Harbin 150080, China; shen@hit.edu.cn
3 Weapon Equipment Research Institute, China Ordnance Industries Group, Beijing 102202, China;

guangyuzhao1980@gmail.com
* Correspondence: dongwei@hit.edu.cn; Tel.: +86-0451-8641-8441-18

Received: 15 January 2018; Accepted: 6 March 2018; Published: 19 March 2018

Abstract: To achieve strength augmentation, endurance enhancement, and human assistance in
a functional autonomous exoskeleton, control precision, back drivability, low output impedance,
and mechanical compactness are desired. In our previous work, two elastic modules were designed
for human–robot interaction sensing and compliant control, respectively. According to the intrinsic
sensing properties of the elastic module, in this paper, only one compact elastic module is applied to
realize both purposes. Thus, the corresponding control strategy is required and evolving internal
model control is proposed to address this issue. Moreover, the input signal to the controller is derived
from the deflection of the compact elastic module. The human–robot interaction is considered as the
disturbance which is approximated by the output error between the exoskeleton control plant and
evolving forward learning model. Finally, to verify our proposed control scheme, several experiments
are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and
promising application feasibility.

Keywords: series elastic module; human–robot interaction; evolving internal model control; distributed
Gaussian process; force control; exoskeleton

1. Introduction

In the past two decades, several types of prostheses, orthoses, and exoskeletons have been
developed to meet the demand for human-limb assistance [1–3], interface of virtual reality [4,5],
and strength augmentation [6] owing to dramatic progress in computing, sensing, as well as control.
Thus, various studies have been devoted to developing novel compact mechanical structures and
corresponding control methodologies.

To follow the human intention efficiently (i.e., discrete or rhythmic movements), the sensing
system should provide full information for the exoskeleton controller. A feasible design of the Hybrid
Assistive Limb exoskeleton [7] focuses on the electromyographical (EMG) signals. Besides, the human
intention is collected by applying a pattern recognition technique. However, the main limitation is that
the EMG signals suffer heavily from unwanted noise and overlap of the spectrum with other signals.

An alternative is based on the physical interaction sensor system, which aims directly onto the
mapping between the human–robot interaction (HRI) and the system state variables. This interaction
mainly depends on the impedance delivered from the pilot to the exoskeleton and vice versa [8,9].
Therefore, an impedance interaction model and corresponding force control methodology are
desired [10,11]. Moreover, an open-loop impedance controller is designed in [12] for a specific task
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without feedback derived from the force sensors. An improvement was made in [13], which takes the
feedback term into consideration. Nevertheless, the control system could hardly tell apart the HRI and
the system disturbance. Thus, there are still substantial uncertainties with respect to model error.

For rehabilitation therapy dealing with the interaction force and a delicate haptic interface,
a more accurate impedance dynamic model is required [14]. Thus, several methods of the self-tuning
impedance variables are presented in [15] to fulfill the requirement. In addition, a series elastic module
has been designed to provide high-fidelity HRI. However, owing to the stochastic human–exoskeleton
coupling model, the uncertainties of interaction cannot be avoided.

Apart from the identification process of the interaction model, disturbance observer is
a typical technique trick for coping with the dynamic uncertainties, as detailed in [16].
Accordingly, the interaction uncertainty is compensated by the observation from the feedback loop
as well as disturbance observer [17]. Nevertheless, a critical limitation of such a controller is that the
control performance highly relies on the prior knowledge of the control plant. Besides, in order
to obtain an approximation of the interaction torque between the exoskeleton and the user,
an independent-joint-based disturbance observer in combination with gravity compensation and
friction cancellation is proposed in [18]. Nevertheless, the independent joint-based implementation
includes coupled multi-degrees of freedom (DoF) dynamics effects.

To enhance control performance and system stability in the presence of model uncertainties,
Kim and Bae propose a novel time-delay robust control algorithm in [19]. Thus, derived from the
time-delay design conception, the model uncertainty and the HRI disturbance are compensated
according to previous observations. Thus, the desired performance can be maintained since the
disturbance and the time-delay problem are solved. However, the parameters of the time-delay term
should also be identified, and the corresponding identification process was not well addressed.

An innovation made in [20] is that the approach takes the human model into consideration.
In existing passivity-based algorithms, the human model is simplified as a passive system. However,
the control performance cannot be guaranteed, owing to the simple human coupling model. In [20],
the human model is defined as a second-order dynamic system whose parameters are updated with
an adaptive approach. Although the control performance is well-defined, it only works when the
system can be given as a second-order environment. Another example of the force control of the series
elastic actuator (SEA) takes the effect of load motion compensation into account and includes the
excellent work in [21]. Moreover, a force control with acceleration feedback of series elastic actuators is
introduced in [22]. Although this method exhibits higher performance accuracy and robustness and is
easy to implement, the feasible application is only based on the assumption that the acceleration can
be computed analytically or numerically.

In order to provide relatively low output impedance across the entire frequency spectrum,
a novel cable-driven actuation for the lower extremity exoskeleton is designed in [23]. Although the
performance is sufficient, the output-impedance variations can still be achieved by several
closed-loop interaction control methodologies [24]. Moreover, also driven by the flexible Bowden
cable transmission, two kinds of series elastic actuators (i.e., linear compression spring and helical
torsion spring) are presented in [25,26] for small-scale exoskeleton application; indeed, the linear
springs make the mechanical system more bulky over the finger.

Therefore, considering the above limitations, a novel compact elastic module for lower extremity
exoskeleton and its corresponding control methodology—so-called evolving internal model control
(EIMC)—are designed and proposed in this paper. Based on our previous work [27], the elastic
module consists of two parts (i.e., the distal module for compliant control and the proximal module
for HRI detection). The crucial drawback of our previous work is that the pilot feels uncomfortable
with the proximal elastic module and the mechanical structure is bulky. In terms of the excellent
work in [28], a novel high-power series elastic actuator has been proposed. However, the work is
mainly designed for rehabilitation purposes. Moreover, the experiments are only tested on a hardware
platform. The assistance performance with a human subject is not presented.
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In this paper, we only apply the distal module to achieve both tasks, and the control concept is
given in Figure 1. For enhancing the robustness of the control system, a distributed online learning
forward model is introduced. Consequently, the HRI can be seen as the disturbance to the control
system, and should be compensated. A crucial feature of our control strategy is that the model
uncertainties are addressed by the online learning model and the HRI is approximated by the position
error between the output of the forward model and the exoskeleton. However, in most control
scenarios, the measured noise, the model uncertainties, and the HRI are all considered as the system
disturbance, and cannot be distinguished.

Neural

System

Muscle

Human

Body

Control

System

Actuator

Exoskeleton

pHMI

Analogy

Analogy

Figure 1. Abstract analogy between the human and the exoskeleton. The control system can be seen as
a high-level neural system of the exoskeleton. According to the high-level control signal, the actuator
can drive the exoskeleton mechanical structure. Thus, to obtain an input to the controller, the human
intention is interpreted from the physical human–machine interaction (pHMI) between the pilot and
the exoskeleton.

To improve readability, the main contribution is presented as follows:

(1) Based on the intrinsic sensing properties, a novel compact elastic module is designed to provide
the input signal for the controller. Moreover, the compact elastic module is also utilized for the
compliant actuation.

(2) To improvement the control performance, a novel control scheme—so-called evolving internal
model control—is proposed in this paper. The control scheme aims to compensate the system
disturbance and model uncertainties by the difference between the exoskeleton control plant and
the forward learning model.

(3) In order to enhance the system robustness, distributed online model learning is introduced in this
paper. Additionally, the main issue of the computation expense is addressed with the distributed
learning framework, and the hyper-parameters for each Gaussian process are updated with the
Markov Chain Monte Carlo (MCMC) algorithm.

(4) Finally, to demonstrate our control scheme, the model learning procedure as well as the system
properties are tested on our exoskeleton robotic system with several experiments.

The remainder of the paper is organized as follows:
After the introduction, Section 2 is devoted to discussing the intrinsic sensing and the mechanical

design of the compact elastic module in light of the biomechanical inspiration. In Section 3, the main
routine of the EIMC scheme is outlined, along with the discussion of the distributed evolving model
learning. The implementation of the experiments and the comparison of the control methods are
presented in Section 4. Finally, Section 5 concludes with a summary.
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2. Compact Elastic Module

In few exoskeleton design scenarios, the mechanical structure is designed as a rigid body robotic
system and the biomechanical aspect may not been well considered. Consequently, the wearer may feel
uncomfortable since the natural movement is constrained. In this section, we first discuss the motion
range and actuation from the point view of the biomechanical inspiration. Then, the design of a compact
elastic module is introduced, and the corresponding sensing properties are carefully explained.

2.1. From the Biomechanical Inspiration

Human biomechanics should be taken into consideration when designing an exoskeleton robot,
“since human legs have inherent damping as well as stiffness properties” [29]. In almost all daily human
life, the leg joints can be simplified as damped spring and mass—especially for sitting, standing up
and walking. The viscous damping is of great importance in the functioning of movement primitives.
Such a property plays a significant role in shock absorbing as well as maintaining stability.

Towards the aim of forming a mechanical scheme of an exoskeleton, all the design
layouts almost fall into three classical types; i.e., anthropomorphic, non-anthropomorphic,
and pseudo-anthropomorphic. An anthropomorphic scheme seeks to match all the human body
physical properties precisely (i.e., limb length, joint range, and misalignment). Nevertheless,
in practice, scarcely a perfect anthropomorphic system can be designed regarding critical requirements
ranging from exact end-effector matching as well as joint misalignment. Besides, although
non-anthropomorphic design concepts are widely used in many scenarios, it is quite difficult to
fulfill all the possible maneuvers (deep squats and turning corners) for ankle joints.

Therefore, we consider the above limits and design our exoskeleton based on
pseudo-anthropomorphic architecture. This means that the developed mechanical scheme is
kinematically similar to the human biomechanics; i.e., three DoFs at both ankle and hip joints, one DoF
for the knee joint. Moreover, at the very least, the range of each joint should cover the range of human
locomotion and less than the maximum range of human motion for safety concerns. Thus, the whole
range of every joint is given in Table 1.

Table 1. Joints ranges of motion.

Joints DoF Scope

Flexion/extension −45◦–90◦

Hip Adduction/abduction −20◦–35◦

Medial/lateral rotation −35◦–35◦

Knee Flexion/extention 0◦–85◦

Plantarflexion/dorsiflextion −30◦–25◦

Ankle Pronation/external rotation −25◦–15◦

Inversion/eversion −15◦–10◦

To fulfill the requirement of normal human walking [30,31] assistance, the exoskeleton robotic
system should provide a large range of torques, and the selection of the proper electric motors should
be well considered since the maximum speed and torque are limited (presented in Figure 2). In our
situation, since the maximum continuous speed and torque of the selected motor (RE40, Maxon Motor
Company, Sachseln, Switzerland) [32] are 8200 rpm and 0.181 Nm, the corresponding parameters
should be designed in proper scope. Thus, a spur gearhead (26:1) and a pair of bevel gears (4:1)
(given in Figure 3) are applied to adjust the speed and torque to 78.8 rpm and 18.8 Nm, separately.
The maximum angular speed is near 60 rpm for the strength augmentation, and the exoskeleton should
be capable of tracking the human primitives in real-time. Therefore, the maximum driven torque
(268 Nm) is large enough for the exoskeleton actuation plus the stall torque (249 Nm).
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Figure 2. Provement of electric motor selection. For electric actuation, the power of the selected electric
motors should cover the range of the joint torque during normal human walking. For safety concerns
and efficiency, we chose the RE40 dc motor (150 W) from the Maxon Motor Company. (a) Motion range
of the knee joint; (b) motion range of the hip joint.

(a) (b)

Figure 3. Mechanism of joint power transmission. Considering the scope of the joint torque and
compactness of the mechanism, we chose the above scenario (i.e., electric motor with spur gearhead
and bevel gears). (a) Electric motor RE40 and spur gearhead (26:1); (b) bevel gears (4:1).

2.2. Designing and Sensing of a Compact Elastic Module

In our previous work [27], two elastic modules were applied for compliant control and human
intention recognition, separately. In this paper, we only use one elastic module and combine
the intrinsic sensing property of the elastic module and the compliant actuation to improve the
compactness of mechanical design, presented in Figure 4a. The deflection of the elastic module
is measured through the right encoder, while the incremental joint position is obtained by the left
encoder. Consequently, the input to the controller is interpreted as the deflection of the elastic module.
Moreover, the HRI force is compensated by our proposed EIMC and will be carefully explained in the
next section.
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Figure 4. (a) Configuration of the compact elastic module; 1: Shank segment, the torsional elastic
module, 2: Encoder, 3: Encoder support, 4: Thigh segment, 5: Bevel gear pair, 6: Torsional elastic
module, and 7: Encoder. (b) Front view of the torsional elastic module; properties of the designed
torsional elastic module are given in Table 2. (c) The calibration platform; 1: Bracket, 2: Encoder,
3: Force-bearing bar, 4: Torsional elastic module, 5: Position pin. (d) Calibration result of the elastic
module; experimental data is presented in the solid blue line, while the simulation data are given in
the red dashed line.

Since the estimation of human motion recognition highly depends on the accuracy and stability
of the physical HRI, the elastomer is of great significance in the sensor design. The common options of
topology structures are symmetrical and centrosymmetric. The main drawbacks of the symmetrical
structures are higher processing costs and less optimized parameters. Based on the analysis in [33],
the architecture of spiral and double helix are usually neglected. Additionally, the linearity and
the stiffness cannot be guaranteed, owing to the backlash. Therefore, we design a centrosymmetric
structure elastic module, as shown in Figure 4b. With the parallelogram-like deflection between the
inner circle and outer circle, the human motion is measured by the deflection of the elastic module
through the encoder. Moreover, the designed parameters are given in Table 2.

A calibration procedure is required for sensing in a robotic system, and a calibration platform
was designed as presented in Figure 4c. The body of the elastic module is grounded on the platform,
and the deflection is measured with the encoder mounted on the outer ring. Additionally, the external
torque is generated by the force-bearing bar. The measurement signal is obtained from a programmable
multi-axis controller (PMAC, Delta, Chatsworth, CA, USA). During the calibration experiment,
the loading cell straining on the elastic module ranges from 100 g to 2.5 kg with 50 g increments.
The results given in Figure 4d show that the stiffness is Ke = 60.2 Nm/rad. Compared with simulation,
the calculation error is 4.5%. Moreover, the resolution 0.1 Nm is guaranteed by the 12-bit resolution
magnetic encoder.
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Table 2. Properties of the elastic module.

Parameters Values

stiffness 60.2 Nm/rad
diameter of outer circle 60 mm
diameter of inner circle 8 mm
maximum torsion torque 4 Nm
thickness 5 mm
maximum deflection 0.087 rad
resolution 0.1 Nm

3. Evolving Internal Model Control

The internal model control [34,35] is one of the standard applied model-based techniques for
nonlinear control systems. However, for lower extremity exoskeleton systems, the dynamic model is
not easy to obtain. Although several black-box modeling methods [36,37] have been combined with
internal model control for dynamic model identification, the barriers are mainly associated with the
curse of dimensionality. In this section, we briefly introduce the essential properties of internal model
control and carefully address the modeling issue with our proposed online learning algorithm.

3.1. Internal Model Control with Gaussian Process

For realizing ideal motor control of an exoskeleton which interacts with a pilot, the joint friction,
HRI, and inertia should be compensated. Compared with the internal model control, the primary
limits of the classical control theory fail to explicitly model the dynamic system according to a classical
feedback loop. Thus, to enhance the control performance, internal model control is employed in this
paper. In [38], the forward model is learned with a full Gaussian process. The prediction of the Gaussian
process provides mean as well as variance. This variance can be seen as the level of confidence of the
prediction, which is a crucial advantage compared with neural network or fuzzy models. Note also
that the variance is explicitly applied when the data-stream subset should be updated (remove data
pair or add data pair). Moreover, owing to the Gaussian process theory, each time step prediction is
approximated as a Gaussian process, which is determined by the mean and the variance.

As shown in Figure 5, the reference input to the controller is related to the desired position.
The motor command generated by the controller is sent to the control plant and a forward model.
Thus, compared with the output from the control plant, disturbance from the environment may cause
differences between the predicted positions and the actual system states. The designed filter balances
the robustness to the model uncertainties and the desired closed-loop behavior of the control system.

Control

Plant
Filter Controller

Forward

Model

Input

Distrubance

Position

±+
+

−

Feedback loop

Figure 5. A general representation of the internal model control. The design concept of the
internal model control is to compensate for errors or make adjustments from the desired outputs.
Thus, two primary parts of the control algorithm are the forward model and feedback loop used to
enhance the control performance.
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Compared with the other state-of-the-art control algorithms, the crucial advantages consist of the
following properties.

Property 1 (Dual Stability Criterion). If the model is accurate, the stability of both plant and controller is
sufficient for overall system stability.

Property 2 (Perfect Controller). If the controller can be achieved as the inverse of the model, the perfect
controller can be obtained.

Since the exoskeleton is a typical robotic system with high coupling and inherent nonlinearity,
we apply adaptive computed torque control to address this issue. Thus, without loss of generality,
the driven torque is given as:

τ = Ĥ(θ)(θ̈d + Kd ė + Kpe) + Ĉ(θ, θ̇)θ̇+ Ĝ(θ), (1)

where Ĥ, Ĉ, and Ĝ denote the estimations of the inertial matrix, the centrifugal and Coriolis term,
and the gravitational matrix, respectively. Considering the real exoskeleton dynamic model, we have

H(θ)θ̈+ C(θ, θ̇)θ̇+ G(θ) = Ĥ(θ)(θ̈d + Kd ė + Kpe) + Ĉ(θ, θ̇)θ̇+ Ĝ(θ), (2)

where H, C, and G denote the inertial matrix, the centrifugal and Coriolis term, and the gravitational
matrix, respectively. In light of the linear connection of the inertial parameters, we have

Ĥ(θ)(ë + Kd ė + Kpe) = H̃(θ)θ̈+ C̃(θ, θ̇)θ̇+ G̃(θ) (3)

= Y(θ, θ̇, θ̈)p, (4)

with H̃ , H − Ĥ, C̃ , C− Ĉ, and G̃ , G− Ĝ. Note that only p includes all the inertial parameters.
To demonstrate the stability, we transform the equation into the following form:

ẋ =

[
0 I
−Kp −Kd

]
x +

[
0
−I

]
Φp , Ax + Bp, (5)

with x = [eT , ėT ]T and Φ = H̃−1Y . Therefore, the control system is stable, since both Kp and Kd are
defined as positive definite matrix. Moreover, p is evolved according to ṗ = Γ−1ΦT BT Rx, where Γ

is also denoted as a positive definite matrix. Besides, the following Lyapunov equation should be
satisfied and R is the only solution:

AT R + RA = −Q. (6)

Since the control system is stable, the first property is easily satisfied. Regarding the second
property, the perfect controller which can be designed as the inverse of the dynamic model is quite
difficult to obtain, owing to HRI disturbance and model uncertainties. However, if the accurate
model can be achieved, the disturbance can be compensated to the next time step control input.
Therefore, the precision of the robotic exoskeleton system can be enhanced.

3.2. Offline Distributed Learning of Forward Model

Although the Gaussian Process is widely applied in many robotics programs, the computation
expense is a strong barrier to the implementation of online model learning. The distributed forward
model learning proposed in this paper aims to lower the computational burden by explicitly applying
several subsets of the training data. In the past five years, the sparse Gaussian process has been
widely used in spatiotemporal modeling [39] as well as robotics reinforcement learning [40]. However,
it is inconceivable to use sparse approximations with a data set size of N ≈ O(107) [41]. To further
reduce computation expense, we employ distributed computations as an alternative method. In [41],
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the application of the distributed Gaussian process for deterministic test point has been validated.
In this paper, we extend for a more complicated task (i.e., the distributed Gaussian process for test
point with a distribution).

“A Gaussian process is a collection of random variables, any finite number of which have a
joint Gaussian distribution” [42]. Consider a regression problem y = f (x) + ε ∈ R, where x ∈ RD.
The likelihood p(y| f (x)) = N ( f (x), σ2

ε ) explains for the i.i.d. measurement noise ε ∈ N (0, σ2
ε ).

The states of the system are joint position q and angular velocities q̇. Moreover, the control
signal u < 40 Nm is constrained for safety concerns and selected with a random value for training.
Thus, the forward model is implemented as a Gaussian regression, where the training inputs are defined
as tuples x(t)i = (qt , q̇t, ut) and differences y(t)

i = ∆qt = qt+1 − qt as training target, with i = 1, ..., T.
Throughout this paper, the squared exponential kernel k with automatic relevance determination is
given as

k(x(t)i , (x(t)j )) = α2 exp(−1
2
(x(t)i − x(t)j )TΛ−1(x(t)i − x(t)j )), (7)

where θ = {Λ, α2} (length-scales vector Λ, signal variance α2).
Under the distributed framework, we assume that the M Gaussian processes (GPs) are

independent. Thus, the marginal likelihood p(y|X, θ) for a full GP training set can be decomposed
into the product of M individual parts

p(y|X, θ) =
M

∏
k=1

pk(y
(k)|X(k), θ), (8)

where each term pk is characterized by the kth GP. In addition, we share a set of hyper-parameters θ for
all the k GPs. To optimize the hyper-parameter θ, a common method is maximized with the evidence
maximization. However, in this paper, we employ more efficient method (i.e., expectation maximization
with Monte Carlo sampling).

Additionally, the expectation step aims to compute the posterior distribution of the states
q(X) = p(X(k)|y(k), θ). Since the posterior distribution is not GP and is difficult to compute
analytically, we draw several samples from the posterior distribution according to Monte Carlo
sampling. Consequently, the true distribution which is not a GP is approximated by a GP distribution.
Thus, the marginal likelihood can be given by Monte Carlo integration. For the maximization step,
the hyper-parameters are obtained from maximizing the expected likelihood Eq[p(X(k)|y(k), θ)] with
stochastic conjugate gradient. The main routine is given in Algorithm 1. Therefore, the learning
procedure is implemented with 10 multiprogramming (GP C++ library [43]) under a distributed
framework. Note that the data is collected with proportional derivative (PD) control on the
above-described system, and each data volume contains 1000 data pairs.

As can be seen in Figure 6a, the learning procedure requires about 30–40 trials each GP. Since the
evolution function is initialized with a random condition, the first step penalty may be different.
Moreover, during the training, the graphic interpretation of Monte Carlo sampling is given in Figure 7.
Consequently, with 20 samples, the distribution can be approximated by a GP distribution. In order to
verify the distributed learning forward model, the 600 unused data pairs are tested with the model,
given in Figure 6. In addition, as can be seen in the Figure 6, the hip joint model propagates the
uncertain input (with system noise) to a next-step output joint position with nearly 0.01 rad in the
learning region of interest.
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Algorithm 1: Calculate Hyper-Parameters Value with Monte Carlo Expectation Maximization

input :Training data X(k), y(k), where k ∈ 1, ..., M;
output :Hyper-parameters θ;

// Initialization;
Π = 0, L = 20, I = 500;
for i← 1 to I do

for k← 1 to M do
for j← 1 to L do

// Expectation step;

X(k)
j ∼ p(X(k)|y(k), θ);

// The M GPs share the same hyper-parameters;

Π = Π + 1
L ∑L

j=1 p(y, X(k)
j |θ);

// Maximization step using stochastic conjugate gradient methods;
θ ∈ argmax log Π;
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Figure 6. Learning procedure and cross-validation of the distributed forward model. (a) Learning
procedure hyper-parameters of 10 GPs; (b) cross-validation of learned forward model. The efficient
training process has been explained in the above figure. In addition, since the trust region of the trained
model is about 0.57 deg, the precision for the practical experiment can be accepted.
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Figure 7. Graph interpretation of the Monte Carlo sampling. Note that the true distribution is not
a GP as given with a dashed blue line, and it is evaluated as a GP shown in the solid blue line with
20 samples.



Sensors 2018, 18, 909 11 of 23

To combine the M GPs to obtain a whole prediction, we compare four fusion algorithms;
i.e., product-of-GP-experts (PoE) [44], generalized PoE (gPoE) [45], the Bayesian committee machine
(BCM) [46], and the robust Bayesian committee machine (rBCM) [41]. To choose a fusion method,
we tested one dimension problem [47] with the four algorithms.

As shown in Figure 8 and Table 3, compared to the full GP prediction (negative log-likelihood
(NLL):−3.12), both PoE (NLL:−3.22) and BCM (NLL:−3.25) overestimate the variance in the region of
interest and result in overconfident precision. Although a more robust solution is desired, the predictive
result of the rBCM (NLL: −2.54) is too conservative. On the contrary, the gPoE (NLL: −2.81) provide a
more reasonable prediction mean and variance.
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Figure 8. Comparison of four data fusion methods (product-of-GP-experts (PoE), generalized PoE
(gPoE), Bayesian committee machine (BCM), robust Bayesian committee machine (rBCM)) for the
distributed forward model. In each subfigure, the confidence interval of the comparison algorithm
is filled between two black lines. Additionally, the full GP to be approximated is shown in the gray
shaded area, representing 95% of the confidence interval, and the ground truth is given in blue dashed
line. We apply NLL (negative log-likelihood) to evaluate the fusion performance presented in Table 3.
(a) PoE; (b) gPoE; (c) BCM; (d) rBCM.

Table 3. NLL comparison of four fusion methods with full Gaussian process (GP).

Methods Full GP PoE gPoE BCM rBCM
NLL −3.12 −3.22 −2.81 −3.25 −2.54

Therefore, considering the above analysis, the gPoE is applied in a distributed inference
framework as shown in Algorithm 2. Moreover, propagating through a nonlinear system, the output
is not a GP model. Thus, the output distribution can be seen as a Gaussian mixture and evaluated by
Monte Carlo approach.
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Algorithm 2: Inference with Markov Chain Monte Carlo

input :Training data D = X(k), y(k), where k ∈ 1, ..., M, Hyper-parameters θ;
output :The inference Mean µ∗ and Variance σ∗;

// Initialization;
s = 10;
for k← 1 to M do

// Draw samples from GP distribution;

p(y(k)
∗ |µ(k)

∗ , Σ
(k)
∗ ,D) ≈ 1

S ∑S
i=1N (µ(x(i))∗ , σ(x(i)∗ )) ;

// Fusion with GeneralizedPoE ;

µ∗ = σ−2∗ ∑k βkσ(x(k)∗ )−2µ(x(k)∗ );

σ−2∗ = ∑k βkσ(x(k)∗ )

3.3. Online Distributed Evolving of Forward Model

In this subsection, we seek to present an online model learning algorithm. Such an algorithm is
desired since the training data collected under the implementation of another control scheme is not
entirely precise or when the dynamics model is time-varying. In addition, although the reinforcement
learning is applied to several robotic cases [48,49], leaning an exoskeleton dynamic model with human
interaction is not recommended due to safety concerns.

For online learning implementation, the critical barrier is computation expense. Based on our
distributed prediction scheme in Section 3.2 and inspired by the interesting work in [50], we propose a
distributed online evolving model learning methodology, and its main routine is given in Algorithm 3.

Algorithm 3: Distributed Online Model Evolving

input :Observation (z∗, y(z∗)), predictive distribution N (µ(z∗), σ2(z∗));
output :Updated hyper-parameters θnew;

for i← 1 to M do
// Add new observation data for M GPs;
if σ2(z∗) > thresholdσ2 then
Ii ← {Ii, z∗};

if Length(Ii) > maxLength then
for j← 1 to M do
I j

i ← {ζ1, ..., ζ j−1, ζ j+1, ..., ζN};
// Calculate the informative gain of each N − 1 data set;

iGains[j]← - ln p(I j
i , θ);

ind← -1;
min← ∞;
for k← 1 to Length(iGains) do

if iGains[k] < min then
ind← k ;
min← iGains[k];

Inew
i ← {ζ1, ..., ζind−1, ζind+1, ..., ζN};

θnew ← calcHyperVal(Inew
i , θ);

The general concept of the distributed evolving model can be explained in the following steps:
first, for M initial data sets with trained hyper-parameters, the new observations z∗, such as sensor
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data derived from encoder, inertial measurement unit (IMU), drivers, and deflection of compact
module are added to difference M sets Ii for next step evaluation; second, calculate each j informative
gain using iGains[j] data sets I j

i with data j, where j = 1, ..., N; according to the informative gains,
find the observation with the worst information gains and remove it to form a new data set Inew

i ;
finally, the new hyper-parameter Inew

i should be recalculated in terms of Ii as well as θ, and the
updated covariance K is obtained. The procedure is repeated for every incoming loop until a terminate
command is received or there is no more available data.

Not akin to the algorithm in [50], the judge condition of adding a new observation only depends
on the prediction variance. To be more specific, if the prediction variance is higher than the threshold
value, it can be seen that the model is not confident, even though the difference between the predictive
mean and its threshold is small enough. Moreover, the hyper-parameters are calculated by the sum of
the marginal likelihood of the M GPs according to Algorithm 1.

Therefore, the whole control scheme as shown in Figure 9 can be introduced as follows.

(1) First, the desired position θdesired
m can be obtained from the deflection EI of the elastic module.

If the pilot keeps a steady pose, there is no incremental difference between the motor position
and the human joint angle. Therefore, the desired position θdesired

m is zero.
(2) Second, the input to the adaptive controller consists of the desired position θdesired

m as well as the
error position compensation ∆θcom from the feedback loop.

(3) Then, the same torque command is sent to the distributed online model and the exoskeleton
system with the signal amplification by the driver. Moreover, the M new observation pairs are
evaluated with Algorithm 3 and the additional data will be added to the new M subsets if the
condition is satisfied.

(4) Finally, based on the internal model control framework, the error position ∆θcom is compensated
through the feedback loop. Besides, the low-pass filter is applied to enhance the robustness of the
control system.

Exoskeleton

Filter

Adaptive

Controller

Forward

Model
Forward

Model
Forward

Model
Forward

Model
Forward

Model

K−1
τdesired τactual

K

θH

Disturbance
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∆θcom

+
−

+
+

Distributed Evolving
Model

Compact Elastic
Module

±+
+

−

EI E

θdesiredm

1)
2)

3)

4)

Figure 9. General representation of the evolving internal model control.

Online Computation Expense: The main issue of the Gaussian process online learning algorithm
is the computation cost. As summarized in Table 4, if N is defined as the data size, the training and
prediction of the full Gaussian process scale in O(N3) and O(N2). This inherent weakness limits the
practical application. In terms of the sparse Gaussian process, the computation burden is lowered by
implicitly or explicitly using a subset of the data (Q ≈ N/10). Nevertheless, it is impossible to apply
Gaussian process to a training set size of (N ≥ O(N7)). Hence, to further improve the computation
efficiency, “the distributed Gaussian process can handle arbitrary large data sets” with sufficient
hierarchical product-of-expert model [41], which is used in our offline model learning. Since we cannot
capture all the possible scenarios, the distributed online model evolving is employed in this paper.
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Thus, under the distributed framework, computing the inverse covariance of the incoming data stream
for M subsets scales in O(MP3) or O(MP2) for covariance updating or only subset changing in light
of [50]. Concerning the inference, our proposed online algorithm scales in O(MP2).

Table 4. Comparison of computation cost.

Methods GP [42] Sparse GP [51] Distributed GP [41] Proposed Method

Training O(N3) O(NQ3) O(MP3) O(MP3) or O(MP2)
prediction O(N2) O(NQ2) O(MP2) O(MP2)

4. Experiment

Although the control system for the compact elastic module is designed and explained in the
previous part, it is crucial to verify the performance of several experiments. The capabilities of the
control system (e.g., the control precision, disturbance rejection, and minimal impedance and back
drivability with the human subject) will be demonstrated in the following.

4.1. Hardware Configuration

The following experiments are verified on our single-leg exoskeleton robotic platform, as shown
in Figure 10. The platform is designed as an ergonomic system for strength augmentation as well as
endurance enhancement. The motion range for each joint has been carefully explained in Section 2,
along with the mechanical structure of actuation with the compact elastic module.

Figure 10. Exoskeleton robotics system. The whole control system consists of the embedded PC,
programmable multi-axis controller (PMAC), Copley actuators, power supplement, and required
auxiliary facilities integrated into the control enclosure.

For our situation, three kinds of voltage (i.e., 5 V, 12 V, and 24 V) are desired. The overall control
scheme is written in embedded PC, and the driven commands are sent to the electric motors through
Copley driver. Moreover, the PMAC (programmable multi-axis controller, Delta, Chatsworth, CA,
USA) is utilized for motion planning and signal collection.

4.2. Target Tasks

This experiment specifically targets three robot-aided tasks.
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4.2.1. System Properties

Since the additive part of the input to the controller is derived from the feedback control loop,
a low-pass filter is desired to enhance the system robustness. Therefore, the frequency scope of the
designed filter should at least cover the range of bandwidth of the human motion. Moreover, the filter
should not be sensitive to the system noise in the high-frequency domain. Consequently, the candidates

of our filter have the following form: F(s) = ∑M
k=0(τs)k

(τs+1)N [52,53]. In our case, the N and M are set to be 3
and 1. Moreover, the uncertainties ∆ are the difference of the exoskeleton plant between stance and
swing phase [17].

The system bandwidth is a crucial parameter to evaluate the control performance of the system,
since the frequency components of the human motion are up to 4–8 Hz, as detailed in [54]. To respond
to the control signal quickly, the bandwidth should at least cover the frequency components of the
human motion. In this task, the experimental preparation is the same as detailed previously. Both PD
algorithm and our proposed method were tested on our exoskeleton system without a human subject.

To evaluate the control precision, we conducted a simple experiment with specified position
signals on the same exoskeleton system. The first-period signal was the zero pose command; the knee
joint of the exoskeleton was asked to keep a steady position to evaluate the control performance
with existing static friction force and bias force. The second period was to control the exoskeleton
with sinuous-like position command to test the control performance against the model uncertainties.
The compared algorithm was also a classic PD control scheme.

4.2.2. Algorithm Comparison with Human Subject

To verify the output impedance and back drivability of the control system with the compact elastic
module, the sway experiment with a human subject (subject A) is presented in this task. The human
subject was asked to sway his leg naturally in the experiment, as shown in Figure 11. Note that the
HRI was made possible with the compliant cuff.

(a) (b) (c) (d) (e) (f)

Figure 11. Experiment with the human subject (subject A) during the swing phase of normal locomotion.
(a) Heel rise; (b) initial swing ; (c) middle swing; (d) terminal swing; (e) heel strike; (f) full ground
contact. With the compliant interaction between the user and exoskeleton, the human subject was
asked to sway his left leg naturally. The human intention is recognized by the deflection of the elastic
modules mounted on both hip and knee joints.

The compared state-of-the-art algorithms are derived from [17,33]. The reason for choosing these
two algorithms for comparison is because the experimental hardware is also a single-leg exoskeleton
system with series elastic actuators and the algorithms are also based on the compensation of the
human interaction, which is considered as the disturbance of the control system. However, the core
idea of such algorithms is disturbance observer. Since the control performance for the exoskeleton
robot is difficult to verify, we follow the same evaluation tool (i.e., root-mean-square error (RMSE))
used in [17,33] to test the effectiveness of our proposed method.
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4.2.3. Experiment with Different Individuals

Although we aim to provide a control scheme for any human subject since the forward model is
first learned offline and designed to be evolved online, the control performance should be verified with
different human subjects. Thus, the human subjects’ information is briefly given in Table 5. Similar to
the comparison task, the human subjects were asked to naturally to sway their leg, and the system
hardware was also the same as detailed above.

Table 5. Human subjects.

Subject Gender Age (Years) Mass (kg) Height (m) Status

A M 25 80 1.83 Healthy
B M 28 90 1.75 Healthy
C M 25 70 1.80 Healthy
D M 26 90 1.80 Healthy

4.3. Experimental Results and Discussion

4.3.1. System Properties Results

In terms of the enhancement of the closed-loop robustness, the filter was designed to eliminate
high-frequency disturbance. The main issue for such a filter is the balance between the robustness
against the disturbance and the disturbance rejection. If the frequency range of the filter is too
extensive, the system noise poses a threat to the stability. If the frequency range of the filter is too
narrow, the disturbance cannot be well compensated. The three candidate filters with the time constants
0.15, 0.075, and 0.030 are given in Figure 12. Since the magnitude response of the filter should remain
below and closed to the uncertainty 1/∆. Hence, the filter with the time constant 0.15 (in solid black
line) was chosen.

-100

0

100

200

300

10 -1 100 101 102
-270

-180

-90

0

Figure 12. The design of the feedback-loop filter. Since the filter is employed to enhance the closed-loop
robustness, the frequency scope of the designed filter should cover the range of bandwidth of the
human motion. Moreover, the filter is supposed to remain below and closed to the uncertainties 1/∆.

The experimental results as presented in Figure 13a show that the system can generate the
desired input up to nearly 11 Hz, which for actuation with the compact elastic module is sufficient.
However, the bandwidth of the PD controller is only 4 Hz, and the control performance may be



Sensors 2018, 18, 909 17 of 23

“conservative”. The rest information of our algorithm given in the Nichols Chart in Figure 13b is
the phase margin (89.99 deg), gain margin (100 dB), and peak magnification (1.2 dB). Therefore,
the open-loop control system is stable.

In order to test the control precision, the experiment implemented in Figure 14 compares the PD
control method with our proposed algorithm. Since the static friction effect and bias force exist all the
time, they pose a threat to the control precision. As shown in Figure 14a, the PD controller is strongly
influenced by the friction effect or the measurement noise—even if the input to the controller is zero
position. However, the same situation is better with our proposed algorithm, owing to disturbance
compensation and system error adjustment. Moreover, a tracking error occurs almost at time 3.5 s
with 4◦ in Figure 14a, while at the same high jerk the error is less than 2◦ in Figure 14b. Consequently,
the RSME of the PD control is 5.78%, while the RMSE of the proposed control scheme is 2.07%.
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Figure 13. The Bode diagram and the Nichols chart of the control system. (a) Frequency response for
different control scheme; (b) nichols chart for different control schemes. For verifying the open-loop
stability, the Bode diagram and Nichols chart are presented with the PD control algorithm and our
proposed algorithm. Although both algorithms are stable in the open-loop, the bandwidth of our
proposed algorithm is more extensive and hence responds more quickly. In addition, the control system
with the PD controller may lose information of the normal high-frequency motion.
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(a) PD Algorithm.
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(b) Our proposed algorithm.

Figure 14. Comparison of the PD control method and our proposed algorithm with the same planning
trajectory without human factor.

4.3.2. Results of the Algorithm Comparison with Human Subject

Since human locomotion is not always the same, the trajectory given in Figure 15 may be slightly
different. Additionally, since our task is to follow the human motion in real-time, the exoskeleton tries
to track the joint motion according to the deflection of the elastic module measured by the encoder.
Therefore, in both hip and knee trajectories, the error occurs mostly in the high jerk, as shown in



Sensors 2018, 18, 909 18 of 23

Figure 15a,b. To quantitatively verify the control precision, the RMSE was computed for hip joint 3.26%
and knee joint 2.89%, respectively.

Moreover, in order to actuate the exoskeleton effectively and interpret the human intention
precisely, the resistive torque should be minimized. Consequently, the human subject will feel more
comfortable and natural during the experiment. Thus, the desired torque and actual torque of both
joints are given in Figure 15c,d. Additionally, the RMSE for hip joint and knee joint were 4.36% and
4.73%, respectively. Additionally, compared with the other algorithms, the RMSEs of the torque error
of the knee joint were 5.5% [17] and 9% [33], as given in Table 6. Thus, our control scheme can provide
more precise driven torque and may be more suitable for an exoskeleton application.
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Figure 15. Experiment with a human subject. (a) Knee joint tracking and corresponding tracking error;
(b) hip joint tracking and corresponding tracking error; (c) desired torque and actual torque of knee
joint; (d) desired torque and actual torque of hip joint.

Table 6. RSME comparison of three algorithms.

RSME Control with
Disturbance Observer [17]

Force Control for Compact Rotary
Series Elastic Actuator [33] Proposed Control

Hip Not mentioned Not mentioned 4.36%
Knee 9% 5.5% 4.73%

4.3.3. Experimental Results with Different Individuals

The experimental results of different individuals are reported in Figures 16 and 17. Since the
forward model is learned for the exoskeleton dynamic model and evolved online, the control scheme
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should be efficient for any human subject. Thus, we added three volunteers’ (subjects B, C, and D)
experimental results in Figure 16. Comparing the eight figures of the different joint motion of different
individuals (i.e., Figure 16a,c,e,g,i,k and Figure 15a,b), although the exoskeleton tracks various human
trajectories derived from several human subjects, the control precision can be guaranteed.

Moreover, to verify the online efficiency of the proposed algorithm, the experimental results
of the torque tracking performance are given in Figure 16b,d,f,h,j,k and Figure 15c,d. Since the
human subjects’ trajectories are different, the driven torque for hip and knee joints is not the same.
Consequently, to demonstrate the control performance of rejecting the human disturbance for four
human subjects, the RMSE comparison of torque error is presented in Figure 17. The maximum of the
RMSE percentage was less than 5.32 for the knee joint, while the maximum of the RMSE percentage
was 4.69.
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Figure 16. Experiment with the other three human subjects during the swing phase of normal
locomotion. The results of three human subjects (B, C, D) are presented in order from the first row to
the third row. (a) Hip joint tracking and corresponding tracking error of human subject B; (b) desired
torque and actual torque of hip joint of human subject B; (c) knee joint tracking and corresponding
tracking error of human subject B; (d) desired torque and actual torque of knee joint of human subject B;
(e) hip joint tracking and corresponding tracking error of human subject C; (f) desired torque and
actual torque of hip joint of human subject C; (g) knee joint tracking and corresponding tracking error
of human subject C; (h) desired torque and actual torque of knee joint of human subject C; (i) hip joint
tracking and corresponding tracking error of human subject D; (j) desired torque and actual torque
of hip joint of human subject D; (k) knee joint tracking and corresponding tracking error of human
subject D; (l) desired torque and actual torque of knee joint of human subject D.



Sensors 2018, 18, 909 20 of 23

Subject A Subject B Subject C Subject D
0

1

2

3

4

5

6

7

R
M

S
E

 p
er

ce
nt

 (
%

)

Figure 17. RMSE comparison of torque error for four human subjects.

5. Conclusions

In applications related to exoskeletons driven with physical HRI, the precision of the physical
sensing is still a substantial barrier to enhancing the control performance. In this paper, an elastic
module is proposed to improve the compactness of the mechanical structure. Moreover, with its
intrinsic sensing property, a corresponding control scheme—so-called evolving internal model
control—is introduced. This scheme aims to improve the control precision with compensation from
the difference between the exoskeleton and distributed forward model. Additionally, in order to
adjust the forward model in real-time, a distributed online evolving model is presented to address
this issue and lower the computation expense. From the experimental results, our proposed control
scheme can provide more extensive bandwidth and less tracking errors compared with the PD control
algorithm. Moreover, the RMSE value of torque errors also indicates a lower output impedance. Thus,
the proposed compact mechanical structure and its control algorithm may provide a feasible solution
for human–machine interaction applications. Future work will focus on more complicated specific
tasks, such as running, left weighting, and whole body assistance.

Acknowledgments: Part of this work received funding from the National Science Foundation of China under
Grant No. 51521003. We gratefully acknowledge the constructive comments and suggestions of the reviewers.

Author Contributions: Likun Wang and Yi Shen conceived and designed the experiments; Likun Wang, Wei Dong
and Zhijiang Du performed the experiments; Likun Wang analyzed the data; Guangyu Zhao contributed
experiment platform and devices; Likun Wang and Wei Dong wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schabowsky, C.N.; Godfrey, S.B.; Holley, R.J.; Lum, P.S. Development and pilot testing of HEXORR:
Hand EXOskeleton rehabilitation robot. J. Neuroeng. Rehabil. 2010, 7, 36, doi:10.1186/1743-0003-7-36.

2. Esquenazi, A.; Talaty, M.; Packel, A.; Saulino, M. The ReWalk powered exoskeleton to restore ambulatory
function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil.
2012, 91, 911–921.

3. Kolakowsky-Hayner, S.A.; Crew, J.; Moran, S.; Shah, A. Safety and feasibility of using the EksoTM bionic
exoskeleton to aid ambulation after spinal cord injury. J. Spine 2013, 4, 003, doi:10.4172/2165-7939.S4-003.

4. Bouzit, M.; Burdea, G.; Popescu, G.; Boian, R. The Rutgers Master II-new design force-feedback glove.
IEEE/ASME Trans. Mechatron. 2002, 7, 256–263.

5. Nikolakis, G.; Tzovaras, D.; Moustakidis, S.; Strintzis, M.G. Cybergrasp and phantom integration:
Enhanced haptic access for visually impaired users. In Proceedings of the 9th Conference Speech and
Computer, St. Petersburg, Russia, 20–22 September 2004.



Sensors 2018, 18, 909 21 of 23

6. Kazerooni, H. Exoskeletons for human power augmentation. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, AB, Canada, 2–6 August 2005;
pp. 3459–3464.

7. Cruciger, O.; Schildhauer, T.A.; Meindl, R.C.; Tegenthoff, M.; Schwenkreis, P.; Citak, M.; Aach, M. Impact of
locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic
pain and health related quality of life (HRQoL) in chronic SCI: A case study. Disabil. Rehabil. Assist. Technol.
2016, 11, 529–534.

8. Kiguchi, K.; Hayashi, Y. An EMG-based control for an upper-limb power-assist exoskeleton robot.
IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 1064–1071.

9. Wang, S.; Wang, L.; Meijneke, C.; Van Asseldonk, E.; Hoellinger, T.; Cheron, G.; Ivanenko, Y.; La Scaleia, V.;
Sylos-Labini, F.; Molinari, M.; et al. Design and Control of the MINDWALKER Exoskeleton. IEEE Trans.
Neural Syst. Rehabil. Eng. 2015, 23, 277–286.

10. Jimenez-Fabian, R.; Verlinden, O. Review of control algorithms for robotic ankle systems in lower-limb
orthoses, prostheses, and exoskeletons. Med. Eng. Phys. 2012, 34, 397–408.

11. Bouteraa, Y.; Abdallah, I.B. Exoskeleton robots for upper-limb rehabilitation. In Proceedings of the 13th
International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016;
pp. 1–6.

12. Tsukahara, A.; Hasegawa, Y.; Sankai, Y. Gait support for complete spinal cord injury patient by
synchronized leg-swing with HAL. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1737–1742.

13. Carignan, C.R.; Cleary, K.R. Closed-loop force control for haptic simulation of virtual environments.
Electron. J. Haptics Res. 2000, 1, 2.

14. Bae, J.; Kong, K.; Tomizuka, M. Gait phase-based control for a rotary series elastic actuator assisting the
knee joint. J. Med. Devices 2011, 5, 31010, doi:10.1115/1.4004793.

15. Bae, J.; Tomizuka, M. A gait rehabilitation strategy inspired by an iterative learning algorithm. Mechatronics
2012, 22, 213–221.

16. Vallery, H.; Ekkelenkamp, R.; Van Der Kooij, H.; Buss, M. Passive and accurate torque control of series
elastic actuators. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2007), San Diego, CA, USA, 29 October–2 November 2007; pp. 3534–3538.

17. Kong, K.; Bae, J.; Tomizuka, M. Control of rotary series elastic actuator for ideal force-mode actuation in
human–robot interaction applications. IEEE/ASME Trans. Mechatron. 2009, 14, 105–118.

18. Ugurlu, B.; Nishimura, M.; Hyodo, K.; Kawanishi, M.; Narikiyo, T. Proof of concept for robot-aided upper
limb rehabilitation using disturbance observers. IEEE Trans. Hum. Mach. Syst. 2015, 45, 110–118.

19. Kim, S.; Bae, J. Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using
model-inverse time delay control (MiTDC). IEEE/ASME Trans. Mechatron. 2017, 22, 1392–1400.

20. Calanca, A.; Fiorini, P. Human-adaptive control of series elastic actuators. Robotica 2014, 32, 1301–1316.
21. Calanca, A.; Muradore, R.; Fiorini, P. Impedance control of series elastic actuators: Passivity and

acceleration-based control. Mechatronics 2017, 47, 37–48.
22. Calanca, A.; Fiorini, P. A Rationale for Acceleration Feedback in Force Control of Series Elastic Actuators.

IEEE Trans. Robot. 2018, 34, 48–61.
23. Veneman, J.; Ekkelenkamp, R.; Kruidhof, R.; Van Der Helm, F.; van der Kooij, H. Design of a series

elastic-and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training.
In Proceedings of the 9th International Conference on Rehabilitation Robotics (ICORR 2005), Chicago,
IL, USA, 28 June–1 July 2005; pp. 496–499.

24. Zinn, M.; Roth, B.; Khatib, O.; Salisbury, J.K. A new actuation approach for human friendly robot design.
Int. J. Robot. Res. 2004, 23, 379–398.

25. Agarwal, P.; Fox, J.; Yun, Y.; O’Malley, M.K.; Deshpande, A.D. An index finger exoskeleton with series
elastic actuation for rehabilitation: Design, control and performance characterization. Int. J. Robot. Res.
2015, 34, 1747–1772.

26. Agarwal, P.; Deshpande, A.D. Series Elastic Actuators for Small-Scale Robotic Applications. J. Mech. Robot.
2017, 9, 31016, doi: 10.1115/1.4035987.

27. Long, Y.; Du, Z.J.; Chen, C.F.; Wang, W.D.; Dong, W. Development of a lower extremity wearable
exoskeleton with double compact elastic module: preliminary experiments. Mech. Sci. 2017, 8, 249–258.



Sensors 2018, 18, 909 22 of 23

28. Accoto, D.; Carpino, G.; Sergi, F.; Tagliamonte, N.L.; Zollo, L.; Guglielmelli, E. Design and characterization
of a novel high-power series elastic actuator for a lower limb robotic orthosis. Int. J. Adv. Robot. Syst. 2013,
10, 359, doi:10.5772/56927.

29. Zhang, L.; Xu, D.; Makhsous, M.; Lin, F. Stiffness and viscous damping of the human leg. In Proceedings
of the 24th Annual Meeting of the American Society of Biomechanics, Chicago, IL, USA, 19–22 July 2000.

30. Kirtley, C. CGA Normative Gait Database. 2006. Available online: http://guardian.curtin.edu.au/cga/
data/ (accessed on 7 March 2018).

31. Winter, A. Biomechanical Data Resources, Gait Data. International Society of Biomechanics. 2006.
Available online: http://www.isbweb.org/data/ (accessed on 7 March 2018)

32. Motor Maxon. Maxon Motor Company. 2015. Available online: https://www.maxonmotor.com
(accessed on 7 March 2018).

33. Kong, K.; Bae, J.; Tomizuka, M. A compact rotary series elastic actuator for human assistive systems.
IEEE/ASME Trans. Mechatron. 2012, 17, 288–297.

34. Garcia, C.E.; Morari, M. Internal model control. A unifying review and some new results. Ind. Eng. Chem.
Process Des. Dev. 1982, 21, 308–323.

35. Rivera, D.E.; Morari, M.; Skogestad, S. Internal model control: PID controller design. Ind. Eng. Chem.
Process Des. Dev. 1986, 25, 252–265.

36. Rivals, I.; Personnaz, L. Nonlinear internal model control using neural networks: Application to processes
with delay and design issues. IEEE Trans. Neural Netw. 2000, 11, 80–90.

37. Li, S.; Gu, H. Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System.
IEEE Trans. Ind. Inform. 2012, 8, 767–779.

38. Gregorcic, G.; Lightbody, G. Internal model control based on a Gaussian process prior model.
In Proceedings of the American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 6,
pp. 4981–4986.

39. Luttinen, J.; Ilin, A. Efficient Gaussian process inference for short-scale spatio-temporal modeling.
In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics,
La Palma, Spain, 21–23 April 2012; pp. 741–750.

40. Long, Y.; Du, Z.j.; Dong, W.; Wang, W.d. Human Gait Trajectory Learning Using Online Gaussian
Process for Assistive Lower Limb Exoskeleton. In Wearable Sensors and Robots; Springer: Singapore, 2017;
pp. 165–179.

41. Deisenroth, M.P.; Ng, J.W. Distributed gaussian processes. In Proceedings of the 32nd International
Conference on Machine Learning, Lille, France, 6–11 July 2015.

42. Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA,
2006; Volume 1.

43. Blum, M. Gaussian Process Library for Machine Learning. 11th November 2012 version 0.1.4. Available
online: https://github.com/mblum/libgp (accessed on 7 March 2018).

44. Ng, J.W.; Deisenroth, M.P. Hierarchical mixture-of-experts model for large-scale Gaussian process
regression. arXiv 2014, arXiv:1412.3078.

45. Cao, Y.; Fleet, D.J. Generalized product of experts for automatic and principled fusion of Gaussian process
predictions. arXiv 2014, arXiv:1410.7827.

46. Tresp, V. A Bayesian committee machine. Neural Comput. 2000, 12, 2719–2741.
47. Kitagawa, G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput.

Graph. Stat. 1996, 5, 1–25.
48. Cui, Y.; Matsubara, T.; Sugimoto, K. Pneumatic artificial muscle-driven robot control using local update

reinforcement learning. Adv. Robot. 2017, 31, 397–412.
49. Muelling, K.; Boularias, A.; Mohler, B.; Peters, J. Learning strategies in table tennis using inverse

reinforcement learning. Biol. Cybern. 2014, 108, 603–619.
50. Petelin, D.; Kocijan, J. Control system with evolving Gaussian process models. In Proceedings of the

IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS), Paris, France, 11–15 April 2011;
pp. 178–184.

51. Snelson, E.; Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. In Proceedings of the 18th
International Conference on Neural Information Processing Systems,Vancouver, BC, Canada, 5–8 December
2005; pp. 1257–1264.

http://guardian. curtin. edu.au/cga/data/
http://guardian. curtin. edu.au/cga/data/
http://www. isbweb.org/data/
https://www.maxonmotor.com
https://github.com/mblum/libgp


Sensors 2018, 18, 909 23 of 23

52. Chen, W.H. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 2004,
9, 706–710.

53. Chen, W.H.; Ballance, D.J.; Gawthrop, P.J.; O’Reilly, J. A nonlinear disturbance observer for robotic
manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938.

54. Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken,
NJ, USA, 2009.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Compact Elastic Module
	From the Biomechanical Inspiration
	Designing and Sensing of a Compact Elastic Module

	Evolving Internal Model Control
	Internal Model Control with Gaussian Process
	Offline Distributed Learning of Forward Model
	Online Distributed Evolving of Forward Model

	Experiment
	Hardware Configuration
	 Target Tasks
	System Properties
	 Algorithm Comparison with Human Subject
	 Experiment with Different Individuals

	 Experimental Results and Discussion
	System Properties Results
	 Results of the Algorithm Comparison with Human Subject
	Experimental Results with Different Individuals


	Conclusions

