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Abstract: In this paper, we consider the problem of tracking the direction of arrivals (DOA) and
the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output
(MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear
relationship between the covariance matrix difference and the angle difference of the adjacent moment
was obtained through three approximate relations. Then, the proposed algorithm obtained the
relationship between the elements in the covariance matrix difference. On this basis, the performance
of the algorithm was improved by averaging the covariance matrix element. Finally, the least square
method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation
of the angle and provided better performance when compared with the adaptive asymmetric joint
diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the
proposed algorithm. The algorithm provides the technical support for the practical application of
MIMO radar.

Keywords: bistatic multiple input multiple output radar; covariance matrix; angles tracking;
least square method; high precision

1. Introduction

In recent years, the multiple-input multiple-output (MIMO) radar has been proposed as a new
system radar [1]. Multiple array elements of the MIMO radar can transmit mutually orthogonal
waveforms, which have a high degree of freedom [2–4]. Compared with the phased array radar, the
MIMO radar has more accurate performance in target detection, identification, parameter estimation,
and tracking. According to the array element configuration, the MIMO radar is divided into the
statistical MIMO radar and coherent MIMO radar [5]. The array elements of the statistical MIMO radar
are far away from each other, therefore, the statistical MIMO radar obtains spatial diversity gain, which
can effectively improve the estimate performance of the scintillation target. The transmit and receive
elements of the coherent MIMO radar are closely spaced, which can effectively improve the estimation
accuracy of the target parameters, increase the number of the maximum identification targets, and
so on. In the coherent MIMO radar, the bistatic MIMO radar is an important structure. The bistatic
MIMO radar, which combines the advantages of MIMO radar and bistatic radar, effectively reduces
the requirement of the three synchronizations (time, space, frequency). Therefore, the bistatic MIMO
radar was used as the research object in this paper.

The existing parameter estimation algorithms in the bistatic MIMO radar are mostly aimed at
stationary targets [6–16], which contain the estimation of signal parameters via rotational invariance
technique (ESPRIT) algorithms [6–9], the Capon algorithm [10], the multiple signal classification
(MUSIC) algorithms [11–16], and so on.
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However, when the target is moving, the performance of the algorithm in [6–16] will decrease or
even fail, which cannot be applied for tracking moving targets. The algorithms described above are all
based on feature subspaces and require eigendecomposition. The computational complexity of the
eigendecomposition process for the N dimension square matrix is generally o

(
N3). The covariance

matrix obtained in bistatic MIMO radar has a large dimension, which is the product of the number of
transmitters and receivers. Therefore, the computational complexity required for eigendecomposition
is large and the project realization is more difficult. In addition, these eigendecomposition and
eigensubspace methods are a class of batch processing methods. Obviously, these algorithms cannot be
applied to time-varying signals, but in the actual battlefield environment, the goal often moves.
The target angle tracking is the key problem that restricts the practical application of bistatic
MIMO radar. Therefore, this paper studies the angle tracking problem in bistatic MIMO radar.

There are some published studies on MIMO radar tracking. The monostatic MIMO radar
tracking algorithm is given in [17], which has low complexity, but the cost is the reduction of
tracking performance. In [18], Kalman was introduced into the projective approximation subspace
tracking with deflation (PASTd) algorithm. The Kalman filter was used to realize data association, and
the algorithm converges quickly. In [19], a low-complexity angle tracking algorithm in monostatic
MIMO radar was proposed. The studies are all about target tracking for the monostatic MIMO radar.

Bistatic MIMO radar is different from monostatic MIMO radar and consists of a transmitting and
receiving base. The corresponding direction of arrivals (DOA) and direction of departure (DOD) are
not equal. Therefore, the joint steering vector is more complicated. The above algorithms in [17–19]
cannot solve the problem of target tracking in bistatic MIMO radar.

In [20], the PASTd algorithm in the array-signal-processing was introduced to the bistatic MIMO
radar, and the target tracking problem of the MIMO radar was successfully solved. However, it requires
an additional data correlation operation and cannot track the targets of the same DOD or DOA. In order
to solve the deficiency of [20], reference [21] proposed a low complexity tracking algorithm in bistatic
MIMO radar. The algorithm deduces the formula of the covariance matrix difference of an adjacent
moment, and then achieves the target angle tracking. However, the algorithm from [21] uses only
partial covariance matrix information, and the tracking performance is low. A target tracking algorithm
based on Adaptive Asymmetric Joint Diagonalization (AAJD) was proposed in [22]. The algorithm
does not need an additional correlation operation and can track the targets whose DOD or DOA is
the same. Nevertheless, the performance of the algorithm is reduced by reusing the estimation angle
of the last time.

In this paper, we consulted the monostatic MIMO radar angle tracking idea in [19] to propose a
DOD and DOA tracking algorithm suitable for bistatic MIMO radar. The covariance matrix, constructed
by the monostatic MIMO radar signal, satisfied the Toeplitz form in [19]. However, the DOD and
DOA were different and the covariance matrix did not satisfy the Toeplitz structure in the bistatic
MIMO radar. Therefore, we proposed an improved DOA and DOD tracking method based on three
approximations. Then, we found that the covariance matrix satisfied the approximate Toeplitz property,
whose partial elements in a straight line paralleled to the principal diagonal were equal. On this basis,
our algorithm used the approximate Toeplitz property to take the average operation, which was
equivalent to improve the signal-to-noise ratio (SNR). The proposed algorithm could realize automatic
matching and association of DOD and DOA. Error analysis was also derived in this paper. Finally, the
simulation results were presented to verify the effectiveness of the proposed algorithm.

There were some differences between the algorithm in [19] and the proposed algorithm.
(1) Reference [19] proposed a low-complexity angle tracking algorithm in monostatic MIMO radar.
However, we solved the DOD and DOA tracking problems of the bistatic MIMO radar.
(2) The monostatic MIMO radar only needed to estimate DOA, but the algorithm in this paper
needed to solve the DOD and DOA estimation, therefore the problem is more complicated. In this
paper, the algorithm extended the approximate idea in [19] and solved the target angle by three
approximation operations. (3) The monostatic MIMO radar angle tracking algorithm requires that the
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covariance matrix satisfy the Toeplitz form. Since the DOD and DOA are different, the covariance
matrix is more complicated and does not satisfy the Toeplitz form in bistatic MIMO radar. Therefore,
the algorithm in [19] cannot be used to solve the problem directly in this paper. So we used the
approximate Toeplitz properties to improve the tracking performance.

Thus, the algorithm cannot only be seen as an extension of the work in [19] but is also an
improved algorithm. The simulation results showed that the proposed algorithm had a better tracking
performance than the angle tracking algorithm in [19–22].

The rest of this paper is organized as follows. In Section 2, the signal model of bistatic MIMO
radar is presented. Section 3 establishes our angle tracking algorithm based on the elements of the
covariance matrix of the receive signal. Section 4 compares the performance of the algorithm in [19–22]
and our algorithm. The simulation results verify the effectiveness of the proposed algorithm. Finally,
Section 5 concludes the paper.

Notations: (•)T , (•)H , (•)+, and (•)−1 denote the transpose, Hermitian transpose, pseudoinverse
and inverse operations, respectively. IK is an K × K identity matrix; vec(•) is the vectorization of a
matrix; diag(υ) stands for diagonal matrix whose diagonal is a vector v; ⊗ and ⊕ are the Kronecker
product and Hadamard product, respectively.

2. Signal Model

In this paper, a bistatic MIMO radar was used to observe the moving targets in the air.
The distances between the targets and bases are far, so the target satisfies the point target model.
The bistatic MIMO radar is composed of M transmit antennas and N receive antennas. The space
between the transceiver antennas is the same and half of the wavelength. The configuration of the
bistatic MIMO radar is shown in Figure 1.
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Figure 1. Bistatic multiple-input multiple-output (MIMO) radar transceiver element configuration. 
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Figure 1. Bistatic multiple-input multiple-output (MIMO) radar transceiver element configuration.

It is assumed that there is a P far-field moving point target in the air, and the DOD and DOA
at time t is [(ϕt,1, θt,1), (ϕt,2, θt,2), · · · (ϕt,P, θt,P)], respectively. The velocity of the target i is vi, and the
angles between the moving direction and the DOD and DOA directions are ϕ′i and θ′i , respectively.

The transmit signal radiates to P targets, and the signal that arrives at the receive elements after
scattering is

x(t) =
P

∑
i = 1

ar(θt,i)εiaT
t (ϕt,i)s(t− τi) exp(jωit) + n(t) (1)

where ωi = 2π
vi(cos θ′i+cos ϕ′i)

λ ; fi =
vi(cos θ′i+cos ϕ′i)

λ is the doppler shift. The receive

steering vector is ar(θt,i) =
[
1, ejπ sin θt,i , · · · , ejπ(N−1) sin θt,i

]T
; and the transmit steering vector

is at(ϕt,i) =
[
1, ejπ sin ϕt,i · · · , ejπ(M−1) sin ϕt,i

]T
. ε1, · · · , εP is the scattering coefficient of the

observation target and satisfies the Swerling II model, which is invariable within the pulse time.
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s(t− τi) = [s1(t− τi) exp[j2π fc(t− τi)], · · · , sM(t− τi)exp[j2π fc(t− τi)]]
T, n(t) is Gaussian additive

white noise.
The signal x(t) is filtered through a set of matched filters, let each filter match only one

transmit signal. Let the delay of matched filter of ith target signal is τ′i , and τ′i = τi.
The output of the signal in Equation (2) after matched filtering is

x(t) =
P
∑

i = 1
ar(θt,i)εiaT

t (ϕt,i)s(t− τi) exp(jωit)s∗
(
t− τ′i

)
+ n(t)s∗

(
t− τ′i

)
=

P
∑

i = 1
ar(θt,i)εi exp(jωit)aT

t (ϕt,i) + n(t)
(2)

εi exp(jωit) and εi has the same statistical properties, ε = [ε1 exp(jω1t), · · · , εP exp(jωPt)]T still
satisfy the Swerling II model. The mean and variance of n(t) is 0 and σ2.

Further simplify Equation (3),

x(t) = Ar(θ)diag(ε)AT
t (ϕ) + n(t) (3)

Consider the vectorization of x(t) in (4),

y(t) = At(ϕ)�Ar(θ)vec(diag(ε)) + n(t) = Wt(ϕ, θ)ε + n(t) (4)

where Wt(ϕ, θ) = [ar(θt,1)⊗ at(ϕt,1), ar(θt,2)⊗ at(ϕt,2), · · · , ar(θt,P)⊗ at(ϕt,P)] denotes MN × P
joint steering vector.

Consider
Rt = E

[
y(t)yH(t)

]
= WtRεWH

t + Rn(t) (5)

where Rε = E
[
ε(t)εH(t)

]
= diag

(
|ε1|2 |ε2|2 · · · |εP|2

)
, Rn(t) = E

[
n(t)n(t)H

]
.

Assuming that DOD and DOA change slowly, and consider that the DOD and DOA of the target
are the same in the time interval [(k− 1)Ts, kTs], εi and ε j are uncorrelated for the different targets and
all targets are in the same range bin. During the interval [(k− 1)Ts, kTs], ϕt,P, θt,P remains constant and
L snapshots of sensor data are available for the signal processing.

3. Angle Tracking Algorithm Description

The angle tracking algorithm in [19] requires that the steering vector satisfies the
Vandermonde form. The joint steering vector in Equation (4) does not satisfy the Vandermonde
form, so the angle tracking algorithm in [19] cannot be applied directly to bistatic MIMO radar.
We improved the algorithm in [19] and proposed an angle tracking algorithm suitable for bistatic
MIMO radar.

3.1. Estimation of the Covariance Matrix Difference and the Angle Difference

At the time t, the DOD and DOA of the P targets are recorded as
γt = [ϕt,1, ϕt,2, · · · , ϕt,P, θt,1, θt,2, · · · , θt,P]. Similarly, the DOD and DOA at time t + 1 is
recorded as γt+1 = [ϕt+1,1, ϕt+1,2, · · · , ϕt+1,P, θt+1,1, θt+1,2, · · · , θt+1,P].

We define
∆γt = γt+1 − γt (6)

where ∆γt = [∆ϕt,1, ∆ϕt,2, · · ·∆ϕt,P, ∆θt,1, ∆θt,2, · · ·∆θt,P] is the angle difference between t and t + 1,
∆ϕt,i = ϕt+1,i − ϕt,i and ∆θt,i = θt+1,i − θt,i.

We define Rt+1 as the covariance matrices of the signal at time t + 1. The covariance matrices are

Rt+1 = E
[
y(t + 1)yH(t + 1)

]
= Wt+1RεWH

t+1 + Rn(t + 1) (7)
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then we can obtain

∆Rt = Rt+1 −Rt =
(

Wt+1RεWH
t+1 −WtRεWH

t

)
+ (Rn(t + 1)−Rn(t)). (8)

Supposing that the noise covariance matrix at time t + 1 is approximately equal to that at time t,
then we have

∆Rt 'Wt+1RεWH
t+1 −WtRεWH

t . (9)

It can be seen that the covariance matrix difference of adjacent moment is caused by the angle
difference of adjacent moment, so there is a relationship between the two. Therefore, by deriving the
relationship between the two, the angle difference of adjacent moment can be obtained.

3.2. Estimation of DOD and DOA

In Section 3.1, we obtained the covariance matrix difference ∆Rt and the angle difference ∆γt.
This section will deduce the linear relationship between the covariance matrix difference and the
angle difference.

We first analyzed the properties of the elements of the covariance matrix. The literature [19]
proved that ∆Rt in Equation (9) can be expressed as

∆Rt =



0 b1,0 · · · bM−1,0 b0,1 · · · bM−1,1 · · · bM−1,N−1

b∗1,0 0 · · · • • • • • •
... • 0 • • • • • •

b∗M−1,0 • • 0 • • • • •
b∗0,1 • • • 0 • • • •

... • • • • 0 • • •
b∗M−1,1 • • • • • 0 • •

... • • • • • • 0 •
b∗M−1,N−1 • • • • • • • 0



(10)

where bm,n = R(1, m + n ∗M + 1), b∗m,n = R(m + n ∗ N + 1, 1).

bm,n =
P

∑
i = 1

ρi

(
e−jπn sin (θt,i+∆θt,i)e−jπm sin (ϕt,i+∆ϕt,i) − e−jπn sin θt,i e−jπm sin ϕt,i

)
(11)

where ρi is the (i, i) element of the matrix Rε and ρi = |εi|2, m = 0, 1, · · ·M− 1; n = 0, 1, · · ·N − 1.
bm,n in Equation (11) can be expanded as

bm,n =
P

∑
i = 1

ρi

(
e−jπn[sin θt,i cos ∆θt,i+cos θt,i sin ∆θt,i ]e−jπm[sin ϕt,i cos ∆ϕt,i+cos ϕt,i sin ∆ϕt,i ] − e−jπn sin θt,i e−jπm sin ϕt,i

)
. (12)

From Equation(12), it can be see that bm,n is related to the angle difference and the angle of the
previous moment. ∆θt,i and ∆ϕt,i are the parameters to be estimated. Considering that ∆θt,i and ∆ϕt,i
is very small,

sin(θt,i + ∆θt,i) = sin θt,i cos ∆θt,i + cos θt,i sin ∆θt,i ' sin θt,i + ∆θt,i cos θt,i (13)

sin(ϕt,i + ∆ϕt,i) = sin ϕt,i cos ∆ϕt,i + cos ϕt,i sin ∆ϕt,i ' sin ϕt,i + ∆ϕt,i cos ϕt,i (14)

substituting Equations (13) and (14) into Equation(12), then bm,n in Equation (12) can be denoted as
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bm,n '
P
∑

i = 1
ρi

(
e−jπn[sin θt,i+∆θ cos θt,i ]e−jπm[sin ϕt,i+∆ϕt,i cos ϕt,i ] − e−jπn sin θt,i e−jπm sin ϕt,i

)
=

P
∑

i = 1
ρi
(
e−jπn sin θt,i e−jπm sin ϕt,i

[
e−jπn∆θt,i cos θt,i e−jπm∆ϕt,i cos ϕt,i − 1

])
.

(15)

Considering that x is very small, ex − 1 ' x. Then, bm,n can be rewritten as

bm,n ≈
P

∑
i = 1

ρie−jπn sin θt,i e−jπm sin ϕt,i [−jπn∆θt,i cos θt,i − jπm∆ϕt,i cos ϕt,i]. (16)

By Equation(16), we can construct the following equation

Vt∆γt = b (17)

where

b =

[
b1,0 b2,0 · · · bM−1,0 b0,1 · · · bM−1,1 · · · bM−1,N−1 b∗1,0 b∗2,0 · · · b∗M−1,0 b∗0,1 · · · b∗M−1 · · · b∗M−1,N−1

]T (18)

∆γt =
[

∆ϕt,1 ∆ϕt,2 · · · ∆ϕt,P ∆θt,1 ∆θt,2 · · · ∆θt,P

]T
(19)

To give the Vt, we define ξϕi = e−jπ sin ϕi , ξθi = e−jπ sin θi , βϕi = −jπ cos ϕi, βθi = −jπ cos θi.

Vt =



ρ1 ξϕ1 βϕ1 · · · ρP ξϕP βϕP 0 · · · 0

ρ1 ξ2
ϕ1

2βϕ1 · · · ρP ξ2
ϕP

2βϕP 0 · · · 0

...
...

...
...

...
...

ρ1 ξM−1
ϕ1

(M− 1)βϕ1 · · · ρP ξM−1
ϕP

(M− 1)βϕP 0 · · · 0

0 · · · 0 ρ1 ξθ1 βθ1 · · · ρP ξθP βθP

...
...

...
...

...
...

ρ1 ξM−1
ϕ1

ξθ1 (M− 1)βϕ1 · · · ρP ξM−1
ϕP

ξθP (M− 1)βϕP ρ1 ξM−1
ϕ1

ξθ1 βθ1 · · · ρP ξM−1
ϕP

ξθP βθP

...
...

...
...

...
...

0 · · · 0 ρ1 ξN−1
θ1

(N − 1)βθ1 · · · ρP ξN−1
θP

(N − 1)βθP

...
...

...
...

...
...

ρ1 ξM−1
ϕ1

ξN−1
θ1

(M− 1)βϕ1 · · · ρP ξM−1
ϕP

ξN−1
θP

(M− 1)βϕP ρ1 ξM−1
ϕ1

ξN−1
θ1

(N − 1)βθ1 · · · ρP ξM−1
ϕP

ξN−1
θP

(N − 1)βθP

ρ1 ξ−1
ϕ1

(
−βϕ1

)
· · · ρP ξ−1

ϕP

(
−βϕP

)
0 · · · 0

ρ1 ξ−2
ϕ1

(−2)βϕ1 · · · ρP ξ−2
ϕP

(−2)βϕP 0 · · · 0

...
...

...
...

...
...

ρ1 ξ
−(M−1)
ϕ1 (−(M− 1))βϕ1 · · · ρP ξ

−(M−1)
ϕP (−(M− 1))βϕP 0 · · · 0

0 · · · 0 ρ1 ξθ1 βθ1 · · · ρP ξθP βθP

...
...

...
...

...
...

ρ1 ξ
−(M−1)
ϕ1 ξ−1

θ1
(−(M− 1))βϕ1 · · · ρP ξ

−(M−1)
ϕP ξ−1

θP
(−(M− 1))βϕP ρ1 ξ

−(M−1)
ϕ1 ξ−1

θ1
βθ1 · · · ρP ξ

−(M−1)
ϕP ξ−1

θP
βθP

...
...

...
...

...
...

0 · · · 0 ρ1 ξ
−(N−1)
θ1

(−(N − 1))βθ1 · · · ρP ξ
−(N−1)
θP

(−(N − 1))βθP

...
...

...
...

...
...

ρ1 ξ
−(M−1)
ϕ1 ξ

−(N−1)
θ1

(−(M− 1))βϕ1 · · · ρP ξ
−(M−1)
ϕP ξ

−(N−1)
θP

(−(M− 1))βϕP ρ1 ξ
−(M−1)
ϕ1 ξ

−(N−1)
θ1

(−(N − 1))βθ1 · · · ρP ξ
−(M−1)
ϕP ξ

−(N−1)
θP

(−(N − 1))βθP



(20)



Sensors 2018, 18, 805 7 of 15

Using the least square method to estimate ∆γt in Equation (17), we get

∆γt =
(

VH
t Vt

)−1
VH

t b. (21)

The final estimate of the angle is

γt+1 = γt + ∆γt (22)

3.3. Covariance Element Average Operation

The algorithm in [19] makes full use of the Toeplitz matrix property to improve performance.
Since the joint steering vector of bistatic MIMO radar does not satisfy the Vandermonde form, the
covariance matrix difference does not satisfy the Toeplitz property. Therefore, we first analyzed the
structure of the steering vector.

Wt(ϕ, θ) = [ 1, ejπ sin ϕt,i · · · , ejπ(M−1) sin ϕt,i , ejπ sin θt,i , ejπ sin θt,i ejπ sin ϕt,i , · · · , ejπ sin θt,i ejπ(M−1) sin ϕt,i , · · · ,

ejπ(N−1) sin θt,i , ejπ(N−1) sin θt,i ejπ sin ϕt,i , · · · , ejπ(N−1) sin θt,i ejπ(M−1) sin ϕt,i ]
T . (23)

It can be found that some elements in the steering vector satisfied the Vandermonde structure in
Equation (23). This structure is called the approximate Vandermonde structure in this paper.

We further analyzed the structure of the covariance matrix, taking Rt as an example.

Rt =



r1,1 r1,2 · · · r1,M r1,M+1 r1,M+2 · · · r1,2M · · · r1,(N−1)M+1 r1,(N−1)M+2 · · · r1,NM

r∗1,2 r1,1 · · · r1,M−1

...
...

. . .
...

r∗1,M r∗1,M−1 · · · r1,1

r∗1,M+1 r1,1 r1,2 · · · r1,M

r∗1,M+2 r∗1,2 r1,1 · · · r1,M−1

...
...

...
. . .

...
r∗1,2M r∗1,M r∗1,M−1 · · · r1,1

...
. . .

r∗1,(N−1)M+1 r1,1 r1,2 · · · r1,M

r∗1,(N−1)M+2 r∗1,2 r1,1 · · · r1,M−1

...
...

... r1,1

...
r∗1,NM r∗1,M r∗1,M−1 · · · r1,1



(24)

Since the steering vector satisfied the approximate Vandermonde structure, the sub-matrices in a
straight line parallel to the principal diagonal of Rt are the same. Rt+1 has a similar structure.

From the above analysis, we can see that ∆Rt is an approximate Toeplitz matrix whose
sub-matrices in a straight line parallel to the principal diagonal are the same. We used the average
operation to estimate bm,n and b∗m,n to eliminate the noise. The following steps can be used to update
the bm,n and b∗m,n.

b̂m,n = 1
(M−m)(N−n)

M−m
∑

k = 1

N
∑

kk = n+1
∆Rt(k + (kk− n− 1)M, k + m + (kk− 1)M)

b̂∗m,n = 1
(M−m)(N−n)

M−m
∑

k = 1

N
∑

kk = n+1
∆Rt(k + m + (kk− 1)M, k + (kk− n− 1)M)

(25)
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where ∆Rt(i, j) is the (i, j) element of the matrix ∆Rt. Substituting Equation (25) into Equation (18),
then b can be rewritten as

b =

[
b̂1,0 b̂2,0 · · · b̂M−1,0 b̂0,1 · · · b̂M−1,1 · · · b̂M−1,N−1 b̂∗1,0 b̂∗2,0 · · · b̂∗M−1,0 b̂∗0,1 · · · b̂∗M−1 · · · b̂∗M−1,N−1

]T (26)

The proposed algorithm fully uses the approximate Toeplitz matrix property and more receiving
information to eliminate the noise, and improve angle tracking performance. Now, we discuss the
performance comparison between our algorithm and the algorithms in the literature [19–22].

The AAJD and PASTd algorithm sestimate the target angle through optimizing the function.
Because it is difficult to find the optimal solution of the optimization function, the performance of the
algorithm is low. The algorithm in [19,21] and our algorithm obtain angle via the difference between
the previous and current covariance matrix of the receiving signal. So the performance of the algorithm
in [19,21] and our algorithm is better than the AAJD and PASTd algorithms.

The algorithm in [19] can be improved to solve the angle tracking problem of
bistatic MIMO radar, but it only uses the

(
M2 + M

)
(N − 1) + M2 − M elements of the

covariance matrix (M is the number of transmit antennas, and N is the number of
receive antennas). The algorithm in [21] and our algorithm uses the 2(MN − 1) and
(M2+M)(N2−N)

2 +
(

M2 −M
)

N elements of the covariance matrix to track the target, respectively.

Owning to (M2+M)(N2−N)
2 +

(
M2 −M

)
N >

(
M2 + M

)
(N − 1) + M2 −M > 2(MN − 1),

the proposed algorithm used more covariance matrix information than the algorithm in [19,21]. So,
the performance of our algorithm was better than that of [19,21].

In summary, the performance of our algorithm was the best.
Until now, we show the major steps of the angle tracking algorithm in bistatic MIMO radar

as follows.
Step 1. Calculate the covariance matrix Rt and Rt+1 via Equations (5) and (7).
Step 2. Calculate the covariance matrix difference ∆Rt via Equation (10).
Step 3. The vector b is obtained via Equation (26), and the vector Vt is obtained via Equation (20).

Step 4. We estimate ∆γt via Equation (21), and the angle at time t+1 is γt+1 = γt +∆γt = γ1+
t

∑
i = 1

∆γi.

Step 5. Repeat steps 1 to 4 to estimate the angle of the next moment.

Note 1. This paper assumes that the number of targets in the bistatic MIMO radar is known. If we do
not know the number in advance, we can use the existing target-number estimation algorithm
in [23] to estimate the number of targets.

Note 2. The algorithm in this paper only obtains the angle difference of adjacent time, and therefore
we need to get the initial DOD and DOA of the target. The initial DOD and DOA can be
obtained using the MUSIC algorithm or another angle estimation algorithm.

Note 3. The algorithm in this paper was valid effectively when the target velocity was low and
the DOD and DOA changed slowly. When the target moves faster, the performance of the
algorithm in this paper will be reduced or even invalidated. When the target was far from
the transceiver base, the angle difference was generally small, so this algorithm is suitable for
tracking the long-distance target.

Note 4. The noise covariance matrices of adjacent time can be approximately assumed to be equal.
No matter what kind of noise, the noise component in Equation (8) can be eliminated.
The algorithm is still effective under the colored noise conditions.

3.4. Computational Complexity Analysis and Advantages of the Proposed Algorithm

For the proposed algorithm, the calculation of the covariance matrix needs O
(
(MN)2L

)
,

and the computation of
(
VH

t Vt
)−1VH

t b requires O
(
2P2(MN − 1) + P3 + 2P(MN − 1) + P2).
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The main computational complexity of the proposed algorithm is
O
(
(MN)2L + 2P2(MN − 1) + P3 + 2P(MN − 1) + P2

)
.

The advantages of this algorithm are listed as follows:

(1) The proposed algorithm does not need eigenvalue decomposition of the covariance matrix, so
the complexity is lower.

(2) The proposed algorithm not only introduces the tracking algorithm in [19], but also expands it.
(3) The proposed algorithm makes full use of the elements in the covariance matrix to improve the

tracking performance. The performance of this algorithm is better than the AAJD algorithm.
(4) The algorithm in this paper can automatically match and associate the angles of adjacent moment

and reduce the computational complexity.

4. Error Analysis

In this section, we deduce the variance of DOD and DOA tracking. We assume that the observed
noise variances are nearly the same at the adjacent time. When estimating DOD and DOA, we used
approximate calculations such as ex − 1 ≈ x and sin x ≈ x when x was smaller. This leads to a slight
difference from the real value. Consider

sin x = x− x3

3!
+ Λ (27)

cos x = 1− x2

2!
+ Λ′ (28)

ex − 1 = x + Λ′′ (29)

where Λ, Λ′, and Λ′′ are the high-order expansion terms.
According to Equations (13), (14), (27) and (28), we have

bm,n =
P
∑

i = 1
ρi (e−jπn[sin θt,i cos ∆θt,i+cos θt,i sin ∆θt,i ] e−jπm[sin ϕt,i cos ∆ϕt,i+cos ϕt,i sin ∆ϕt,i ] − e−jπn sin θt,i e−jπm sin ϕt,i )

=
P
∑

i = 1
ρi (e

−jπn[sin θt,i (1−(∆θ2
t,i /2!)+Λ′ )+cos θt,i (∆θt,i−(∆θ3

t,i /3!)+Λ)] e−jπm[sin ϕt,i (1−(∆ϕ2
t,i /2!)+Λ′ )+cos ϕt,i (∆ϕt,i−(∆ϕ3

t,i /3!)+Λ)] − e−jπn sin θt,i e−jπm sin ϕt,i )

=
P
∑

i = 1
ρi (e−jπn[sin θt,i+cos θt,i ∆θt,i ] e−jπn[sin θt,i (−(∆θ2

t,i /2!)+Λ′ )+cos ϕt,i (−(∆θ3
t,i /3!)+Λ)] e−jπm[sin ϕt,i+cos ϕt,i ∆ϕt,i ] e−jπm[sin ϕt,i (−(∆ϕ2

t,i /2!)+Λ′ )+cos ϕt,i (−(∆ϕ3
t,i /3!)+Λ)] − e−jπn sin θt,i e−jπm sin ϕt,i )

=
P
∑

i = 1
ρi e−jπ(n sin θt,i+m sin ϕt,i )(e−jπ(n cos θt,i ∆θt,i+m cos ϕt,i ∆ϕt,i ) e−jπn[sin θt,i (−(∆θ2

t,i /2!)+Λ′ )+cos θt,i (−(∆θ3
t,i /3!)+Λ)] e−jπm[sin ϕt,i (−(∆ϕ2

t,i /2!)+Λ′ )+cos ϕt,i (−(∆ϕ3
t,i /3!)+Λ)] −1)

=
P
∑

i = 1
ρi e−jπ(n sin θt,i+m sin ϕt,i )(e−jπ(n cos θt,i ∆θt,i+m cos ϕt,i ∆ϕt,i )−jπn[sin θt,i (−(∆θ2

t,i /2!)+Λ′ )+cos θt,i (−(∆θ3
t,i /3!)+Λ)]−jπm[sin ϕt,i (−(∆ϕ2

t,i /2!)+Λ′ )+cos ϕt,i (−(∆ϕ3
t,i /3!)+Λ)] −1)

(30)

By Equations (15), (16), and (29), then

bm,n =
P
∑

i = 1
ρi e
−jπ(n sin θt,i+m sin ϕt,i ) (−jπ

(
n cos θt,i ∆θt,i + m cos ϕt,i ∆ϕt,i

)
− jπn

[
sin θt,i

(
−
(

∆θ2
t,i /2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i /3!

)
+ Λ

)]
−jπm

[
sin ϕt,i

(
−
(

∆ϕ2
t,i /2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i /3!

)
+ Λ

)]
+ jΛ′′ )

= −
P
∑

i = 1
ρi e
−jπ(n sin θt,i+m sin ϕt,i ) jπ

(
n cos θt,i ∆θt,i + m cos ϕt,i ∆ϕt,i

)
+

P
∑

i = 1
ρi e
−jπ(n sin θt,i+m sin ϕt,i ) (−jπn

[
sin θt,i

(
−
(

∆θ2
t,i /2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i /3!

)
+ Λ

)]
−jπm

[
sin ϕt,i

(
−
(

∆ϕ2
t,i /2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i /3!

)
+ Λ

)]
+ jΛ′′ )

(31)

∂bm,n is the estimation error of bm,n, and ∂bm,n can be shown as follows:

∂bm,n =
P
∑

i = 1
ρie−jπ(n sin θt,i+m sin ϕt,i)

(
−jπn

[
sin θt,i

(
−
(

∆θ2
t,i/2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i/3!

)
+ Λ

)]
−jπm

[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ jΛ′′

) (32)

According to Equations (21) and (32), the variance of ∆bm,n is denoted by

E
[
|∂bm,n|2

]
= 1

(M−m)(N−n)

P
∑

i = 1
ρ2

i

(
πn
[
sin θt,i

(
−
(

∆θ2
t,i/2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i/3!

)
+ Λ

)]
+πm

[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2
(33)
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Then, we have
E
[
∂bm,n∂b∗r,s

]
= 0, ∀m 6= r, n 6= s (34)

E
[
∂b2

m,n

]
= 0 (35)

We define that ∂b is the estimation error of b.

∂b =
[
∂b̂1,0 ∂b̂2,0 · · · ∂b̂M−1,0 ∂b̂0,1 · · · ∂b̂M−1,1 · · · ∂b̂M−1,N−1 ∂b̂∗1,0 ∂b̂∗2,0 · · · ∂b̂∗M−1,N−1

]T
(36)

Then the variance of ∂b is

E
[
|∂b|2

]
=



E
[
|∂b1,0 |2

]
...

E
[
|∂bM−1,0 |2

]
E
[
|∂b0,1 |2

]
...

E
[
|∂bM−1,1 |2

]
...

E
[
|∂bM−1,N−1 |2

]
E
[
|∂b1,0 |2

]
...

E
[
|∂bM−1,N−1 |2

]



=



1
(M−1)N

P
∑

i = 1
ρ2

i

(
π
[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2

...
1
N

P
∑

i = 1
ρ2

i

(
π(M− 1)

[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2

1
M(N−1)

P
∑

i = 1
ρ2

i

(
π
[
sin θt,i

(
−
(

∆θ2
t,i/2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2

...
1

(N−1)

P
∑

i = 1
ρ2

i

(
π
[
sin θt,i

(
−
(

∆θ2
t,i/2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i/3!

)
+ Λ

)]
+

π(M− 1)
[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2

...
P
∑

i = 1
ρ2

i

(
π(N − 1)

[
sin θt,i

(
−
(

∆θ2
t,i/2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i/3!

)
+ Λ

)]
+

π(M− 1)
[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2

1
(M−1)N

P
∑

i = 1
ρ2

i

(
π
[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2

...
P
∑

i = 1
ρ2

i

(
π(N − 1)

[
sin θt,i

(
−
(

∆θ2
t,i/2!

)
+ Λ′

)
+ cos θt,i

(
−
(

∆θ3
t,i/3!

)
+ Λ

)]
+

π(M− 1)
[
sin ϕt,i

(
−
(

∆ϕ2
t,i/2!

)
+ Λ′

)
+ cos ϕt,i

(
−
(

∆ϕ3
t,i/3!

)
+ Λ

)]
+ Λ′′

)2



(37)

According to [24], we get the variance of ∆γt,i

var[∆γt,i] =

E[V+
t,i∂b] + Re

(
E
[
V+

t,i∂b
]2
)

2
(38)

where V+
t,i denotes the ith row of V+

t and V+
t is the pseudoinverse of Vt. According to Equations

(33)–(35) and (37), we get

var[∆γt,i] =
V+

t,idiag
(

E
[
|∂b|2

]
V+H

t,i + Re
(

V+
t,iE
[
∂b∂bT

]
V+T

t,i

))
2

=
V+

t,idiag
(

E
[
|∂b|2

])
V+H

t,i

2
(39)

where E
[
|∂b|2

]
is shown in Equation (37).

From Equations (37) and (39), we can obtain an effective conclusion where the theoretical
variance of the proposed algorithm is gradually decreased with the number of transmit/receive
antennas increases. Multiple transmit/receive antennas improve the angle tracking performance.

5. Simulation Results

Assuming that both the transmit and receive arrays of the bistatic MIMO radar are linearly
configured, the spacing of the array elements is half wavelength. The carrier frequency of the array
element is 1 GHz, the pulse width is 10 µs, and the pulse repetition rate is 10 kHz. The emission
waveform uses the Hadamard Code Pulse (HCP) signal, and the number of the transmit and receive



Sensors 2018, 18, 805 11 of 15

array elements is M = N = 5 (except experiments 6,7). We defined the root-mean square error

(RMSE) as RMSE(θ) =

√
1
F

F
∑

m = 1

1
P

P
∑

k = 1

1
T

T
∑

t = 1

[(
θ̂k,m,t − θk,m,t

)2
+ (ϕ̂k,m,t − ϕk,m,t)

2
]
, where θ̂k,m,t and

ϕ̂k,m,t is the estimate of angle θk,m,t and ϕk,m,t; F are the times of the Monte Carlo trial. The targets are
tracked over an interval of 6 s, during each 0.1 s interval, L snapshots of sensor data are generated and
used to estimate angles.

Figure 2 shows the result of the tracking angle of the targets of uniform speed for P = 2, L = 100,
and SNR = 15 dB. The simulation results showed that the estimated trajectory coincided with the
real trajectory, which proved the effectiveness of the algorithm.Sensors 2018, 18, x FOR PEER REVIEW  11 of 15 
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Figure 2. Angle tracking results of uniform moving target at SNR = 15 dB: (a) The direction of
departure (DOD); (b) The direction of arrival (DOA); (c) DOD and DOA trajectory.

Figure 3 depicts the tracking result of the proposed algorithm for non-uniform moving targets
and showed that our algorithm could successfully track the moving target at a non-uniform speed.
The DOD and DOA could be automatically associated. The estimated angle trajectory coincided with
the true trajectory, indicating the effectiveness and robustness of the proposed algorithm.

Figure 4 depicts the tracking result comparison between the proposed algorithm and the angle
tracking algorithm in [19] with SNR = 10 dB. From Figure 4, it can be seen that the tracking result
of our algorithm had a high degree of coincidence with the real trajectory of the target, and the
performance was better than the tracking algorithm in [19].
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Figure 3. Angle tracking results of non-uniform moving targets with SNR = 15 dB: (a) The direction
of departure; (b) The direction of arrival; (c) DOD and DOA trajectory.
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Figure 4. Angle tracking result comparison with SNR = 10 dB: (a) The direction of departure;
(b) The direction of arrival; (c) DOD and DOA trajectory comparison.
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To better verify the performance of the proposed algorithm, Figure 5 shows the tracking
performance comparison with P = 2, L = 100, F = 200, and SNR = −5–10 dB, where we
compared the proposed algorithm against the angle tracking algorithm in [19,21], the PASTd algorithm
in [20], and AAJD algorithm in [22]. At the same time, we gave the theoretical error caused by the
approximate operation. It can be seen from Figure 5 that the RMSE of our algorithm was lower than
that of the angle tracking algorithm in [19,21], PASTd algorithm, and AAJD algorithm, which showed
that the tracking performance of our algorithm was the best and the correctness of the theoretical
analysis was verified. This was because the proposed algorithm made full use of the elements of
covariance matrix to eliminate the noise and improved the estimation performance. The theoretical
variance was lower than the actual variance, because the noise was ignored when the theoretical
variance is derived.
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Figure 5. RMSE changes with signal-to-noise ratio (SNR).

Figures 6 and 7 display the performance of angle tracking via our algorithm in the condition
of P = 2, L = 100, F = 200, SNR = 10 dB, and variable numbers of M/N. It was clearly
shown that the angle tracking performance of the proposed algorithm gradually improved with the
increased number of transmit/receive antennas. Multiple transmit/receive antennas improved the
angle tracking performance because of diversity gain. The correctness of the conclusions drawn from
the theoretical error was validated.
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6. Conclusions

In this paper, we proposed a moving multi-target angle tracking algorithm for bistatic MIMO radar.
The proposed algorithm obtained the linear relationship between the covariance matrix difference and
the angle difference through the three approximate processes. The proposed algorithm reduced the
computational complexity and realized the automatic association of DOA and DOD. The proposed
algorithm made full use of the elements of the covariance matrix by taking the average method,
eliminating the noise, and improving the tracking performance. The research in this paper provides
technical support for the practical application of the MIMO radar. In future work, we will analyze
wideband signal processing to improve performance [25,26] and study signal processing in complex
backgrounds to increase the robustness of the algorithm.
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