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Abstract: Deep convolutional neural networks (CNNs) are successful in single-image
super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image
reconstruction due to the fixed convolutional kernel in their building modules. To restore various
scales of image details, we enhance the multi-scale inference capability of CNNs by introducing
competition among multi-scale convolutional filters, and build up a shallow network under limited
computational resources. The proposed network has the following two advantages: (1) the multi-scale
convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum
competitive strategy adaptively chooses the optimal scale of information for image reconstruction.
Our experimental results on image super-resolution show that the performance of the proposed
network outperforms the state-of-the-art methods.
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1. Introduction

As one of the classical yet challenging problems in image processing, the goal of single-image
super-resolution (SISR) is to restore a high-resolution (HR) image from a low-resolution (LR) image
input by inferring all the missing high-frequency details. Super-resolution is also a crucial step in many
real-world applications, e.g., security and surveillance imaging, television display, satellite imaging
and so on.

However, the image super-resolution problem is an inherently ill-posed problem because many
HR images can be down-sampled to the same LR image. Such a problem is typically mitigated by
constraining the solution space by strong prior information, which assumes that the neighborhood of a
pixel provides reasonable information to restore high-frequency details that lost by down-sampling.
For a detailed review of these methods see [1]. In general, the current approaches for super-resolution
can be categorized into three classes: interpolation-, reconstruction-, and learning-based methods [2–8].
Recently, learning-based methods [9–11] achieved state-of-the-art performance. The above methods
typically work at the level of small fixed-size image patches.

Recent years have witnessed significant advancement in speech and visual recognition with
deep convolutional neural networks (CNNs) [12–14]. CNN consists of multiple convolutional layer.
Benefiting from the large number and size of the convolutional kernels in each convolutional layer,
CNN has strong learning capacity and can automatically learn hierarchies feature from training
data [15]. In the task of image super-resolution, Dong et al. proposed a deep learning-based method
named super-resolution CNN (SRCNN) [16,17]. Compared with previous learning-based approaches,
SRCNN exploits more contextual information to restore lost image details and achieves leading
performance. In general the effective size of image context for reconstruction is correlates with
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the receptive field size of CNN [18]. Specifically, the receptive field size of SRCNN depends on
the convolutional kernel size in each layer and the depth of CNN. Kim et al. developed a very
deep CNN [19], which enlarges the receptive field size by stacking more convolutional layers.
Yamamoto et al. successfully introduced deep CNN-based super-resolution to agriculture [20].
However, both larger kernel size and deeper network bring more parameters and consume more
computing resources. Moreover, once the kernel scale and the depth are fixed, CNN only provides
single scale contextual information for image reconstruction, which is ignorant of the inherent
multi-scale nature of real-world image.

Each image feature has its own optimal scale at which the image feature is the most pronounced
and distinctive from its surroundings. Considering that HR image restoration may rely on both short-
and long-range contextual information, an ideal CNN should adaptively determine the convolutional
kernel with a large scale on smooth regions and a small scale on texture regions possessing abundant
details. On one hand, convolutional layer with large scale kernel has the capability to learn complex
features but has more parameters. On the other hand, small scale of convolutional kernel makes CNN
more compact thus easy to learn, but has less ability to represent the image features.

A practice solution is to adopt multi-scale inference [21–25] into CNN, yielding two questions:
How to introduce multi-scale convolution into CNN and how to choose an optimal scale of
the convolutional kernel? In this paper, we introduce a new module to tackle these questions.
The proposed module is composed of multi-scale convolutional filters joined by a competitive
activation unit.

The contributions of this paper include:

• We introduce multi-scale convolutional kernel to traditional convolutional layers, which provides
multi-range contextual information for image super-resolution;

• We adopt a competitive strategy to CNN, which not only adaptively choose the optimal scale for
convolutional filters but also reduces the dimensionality of the intermediate outputs.

The remainder of this paper is organized as follows. The related works are reviewed in Section 2.
In Section 3, the structure and training process of our multi-scale CNN are discussed in detail. Section 4
presents the experimental results on image super-resolution. Section 5 discuss the comparisons with
other state-of-the-art methods and potential improvement of our method. The conclusions and future
work are given in Section 6.

2. Related Work

Within the field of object recognition, some multi-scale CNNs have been proposed. A single
classifier is built and rescale the image multiple times to meet all possible object sizes [26].
Representation from multiple stages in the classifier were combined to provide different scales of
receptive fields [27]. Feature maps at intermediate network layers were exploited to cover a large
range of object sizes [28]. The discussed above CNNs perform multi-scale learning outside the neural
network, which means the above CNNs learn features from multi-scale input images or combine the
output of intermediate layers. Liao proposed competitive Multi-scale CNN for image classification [29].

For image super-resolution, image details are too precious to afford any losses caused by resizing, thus
the image details should be extracted by performing multi-scale convolutional filter inside the network.

SRCNN is one of the successful method for image super-resolution with a convolutional neural
network. The network builds an end-to-end mapping between a pair of a LR image Y and a HR image
X. Given any size image Y, SRCNN can directly output the HR image F(Y).

SCRNN consists of three convolutional layers, and each layer performs one specific task. The l-th
convolutional layer convolves the image with a set of filters that have the same size fl × fl .

Yl = Fl(Yl−1) = max(0, Wl ∗Yl−1 + Bl), l ∈ {1, 2, 3} (1)
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where Wl and bl denote the convolutional filters and biases of the l-th layer, respectively, and ’∗’
represents the convolutional. Yl−1 indicates the input data from the previous layer, and Yl is the output
of the convolution. Y0 is the original LR images. More detailed structures of CNN in superresolution
are summarized below.

• W1 corresponds to n1 filters of a size of c× f1 × f1, where c is the number of image channels and
f1 is the spatial size of the filter. The output of the first convolution layer is n1 feature maps to
extract and represent each patch as a high-dimensional feature vector.

• The second convolutional layer is responsible for non-linear mapping. Suppose that we obtain n1

dimensional vectors at the above step, the second layer applies n2 filters of size n1 × f2 × f2 on
each feature map. The output n2-dimensional vectors will be used for reconstruction.

• The last layer is expected to reconstruct the final HR image by recombining the above
high-dimensional patch-wise representations.

Motivated by different tasks, the above three operations all lead to the same form as a
convolutional layer. The layers following the first two convolutional layers are rectified linear layers
which use a rectified linear unit as an activation function to decide which neuron is fired. Specifically,
the 9-5-5 network refers to network f1 = 9× 9, f2 = 5× 5, and f3 = 5× 5 in each convolutional layer.
The sizes of the image contexts for reconstruction are decided by the receptive field of CNN. One pixel
of F(Y) is reconstructed by 17× 17 pixels within the neighborhood from Y.

We introduce a new module that is composed of multi-scale convolutional filters joined by a
competitive activation unit. Figure 1 shows the different network modules between SRCNN and the
proposed method.

(a) Single scale (b) Multi-scale

Figure 1. The single scale convolutional layer and the proposed multi-scale competitive module are
depicted in (a) and (b), where (a) only contains single scale convolutional filters within each module,
whereas (b) contains three scale of convolutional kernel.

3. Proposed Method

We first introduce the architecture of our network and then describe the implementation details.
An overview flowchart of the proposed network is presented in Figure 2.
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Figure 2. Architecture of the proposed network.

3.1. Multi-scale Competitive Module

Assume that the output of previous layer is Yl−1, which consists of nl−1 feature maps
(nl−1channels), the multi-scale filters are first applied to the input data to produce a set of feature
maps zlk .

zlk = Wlk ∗ (Yl−1) + Blk (2)

where Wlk corresponds to the k-th type filter that contains nl filters of size nl−1 × flk × flk .
Each convolution produces nl feature maps. Thus, the result of multi-scale convolution consists
of K× nl feature maps.

Second, all the feature maps are divided into non-overlapping nl groups, thus the i-th group
consists of K feature maps zi

l1
, zi

l2
, ..., zi

lK
, and then the maxout function [30] performs maximum pool

across zi
l1

, zi
l2

, ..., zi
lK

. The output of the maxout of i-th group at position (x, y) is expressed as

Yi
l (x, y) = σ(zi

l1(x, y), zi
l2(x, y), ..., zi

lK (x, y)) (3)

where σ(·) represents the maxout activation function. For the i-th group, that zi
lj
(x, y) refers to data at

a particular position (x, y) in the j-th feature map.
As shown in Figure 3, the multi-scale convolutional layer includes K = 3 types of filter

fl1 = 5× 5, fl2 = 9× 9 and fl3 = 13× 13. Suppose that each filter bank contains nl1 = nl2 = nl3 = 4,
and the convolutional output is 12 feature maps divided into 4 groups, the maxout function performs
maximum element-wise pooling across these 4 groups of feature maps. In each iteration during the
training procedure, the convolutional layer feeds feature maps into the maxout activation function,
whereas the activation function ensures that the units that have the maximum values in the group are
activated. The final output is 4 feature maps. Specifically, we denote the multi-scale convolutional
layer as {5,9,13} when fl1 = 13, fl2 = 9 and fl3 = 5.

Our model is inspired by the structure of SRCNN but differs as follows:

• Multi-scale filters are applied on the input image, which produce a set of feature maps to provide
different range of image context for image super-resolution. On the contrary, SRCNN only
implements single scale receptive field and provides fixed range of contextual information.

• Competitive strategy is introduced to the activation function. The activation function of SRCNN is
ReLU, which is replaced by maxout in our network. The maxout unit reduces the dimensionality
of the joint filter outputs and promotes competition among the multi-scale filters.

• A shortcut connection with identity mapping is used to add the input image to the output of the
last layer. The shortcut connections can effectively facilitate gradient flow through multiple layers.
Thus accelerating deep network training [31].
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Compared with competitive multi-scale CNN for image classification in [29], we design the module for
image super-resolution. By removing the Batch Normalization (BN) layers, our method not only makes
the network suit for image reconstruction, but also saves more GPU memory to build up a deeper
model under limited computational resources. The experimental results show that the improvement
of performance without BN layer as detailed in Section 5.3.

Figure 3. The proposed module which produces the maxout results of multi-scale convolutional.

3.2. Training and Prediction

The training procession is to learn the end-to-end mapping function F from training samples.

3.2.1. The Loss Function

We now describe the object function of our model. Suppose that Y is the input low-resolution
image and X is the ground-truth high-resolution image; Θ are the network parameters and F(Y; Θ)

is the network prediction. We adopt residual learning [19,31] and reformulate the layers as learning
residual functions with reference to the layer inputs rather than learning unreferenced functions. Let X̂
denote the final output of network, the loss function of the residual estimation is defined as

1
2
‖X− X̂‖2 =

1
2
‖X− (Y + F(Y; Θ))‖2 =

1
2
‖R− F(Y; Θ)‖2 (4)

The loss refers to the Euclidean distance between the reconstructed image (the sum of Y and F(Y))
and ground truth. Given N pairs of LR {Yi} and HR {Xi}, the loss function is average across all pairs :

L(Θ) =
1
N

N

∑
i=1
‖Ri − Fi(Yi; Θ)‖2 (5)

where N is the number of training samples.

3.2.2. Training

The loss is minimized using stochastic gradient descent with standard back-propagation [32].
In particular, the Wl of the convolutional layers are updated as

∆i+1 = γ · ∆i − η · ∂L
∂W l

i
(6)

W l
i+1 = W l

i + ∆i+1 (7)
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where γ is momentum; l and i are the indices of layers and iterations, respectively; η is the learning
rate; and ∂L

∂W l
i

is the derivative.

Similar to SRCNN, all the convolutional filters are randomly initialized by a standard normal
distribution with deviation 0.01 and biases are set to 0. The learning rate of the multi-scale competitive
module and the second convolutional layer is 10−2, and that of the last layer is 10−3. The batch size is
32 and the momentum γ is 0.9.

3.2.3. Prediction

In the prediction phase, LR image Y is fed into the network, and the prediction result of the
network is F(Y). Therefore, the HR image is the sum of the network input Y and output F(Y), namely,
F(Y) + Y.

3.3. Model Properties

3.3.1. Multi-Scale Receptive Fields

For 9-5-5 SRCNN, one pixel of F(Y) is reconstructed by 17× 17 pixels within the neighborhood
from Y. The proposed network can be unfolded to a group of subnetworks that are joined by a
maxout unit. For example, {5,9,13}-5-5 can be unfolded into 5-5-5, 9-5-5 and 13-5-5 subnetworks,
which implement three sizes of receptive fields: 13× 13, 17× 17 and 21× 21. Furthermore, there
is a shortcut connection which skips intermediate layers and adds Y to F(Y) directly. This shortcut
connection indicates a 1× 1 receptive field. Consequently, the proposed network implicitly encodes
short- and long-range context information in HR reconstruction. In contrast to a single-scale receptive
field of SRCNN, the proposed network provides multi-scale context and improves the flexibility of
the network.

3.3.2. Competitive Unit Prevents Filter Co-adaptation

Co-adaptation is a sign of overfitting. Neural units are expected to independently extract features
from their inputs rather than relying on other neurons to do so [33]. Imposing the maxout competitive
unit to different scale filters explicitly drops the border connections, which not only reduces the chances
that these filters will converge to similar regions of the feature space but also protects the 2D structure
of the convolutional filters [29].

3.3.3. Fewer Parameters

Suppose that the network consists of a sequence of convolutional layers without pooling and a
full connection layer, the number of parameters of convolutional kernels is then computed

paramsnum =
N

∑
l=1

( fl × fl × nl × nl−1); n0 = 1 (8)

Table 1 shows the number of parameters in four types of networks: 9-5-5, 13-7-5, {5,9,13}-5-5,
and {5,9,13}-7-5. In SRCNN, 9-5-5 and 13-7-5, n1 = 192, n2 = 64 and n3 = 1. In multi-scale CNN,
n11 = 64, n12 = 64, n13 = 64, n2 = 64 and n3 = 1. The 13-7-5 indicates the largest network because
all 192-dimensional feature maps are delivered to the second layer. Thanks to the maxout unit,
the proposed network reduces the dimensionality of the outputs of the multi-scale convolution,
and the parameters of {5,9,13}-5-5 and {5,9,13}-7-5 are much smaller than the others but not sacrifices the
super-resolution performance. Although with smaller parameters, our network achieves competitive
performance with SRCNN. We present the results of the comparison in the next section.
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Table 1. Number of parameters in different networks.

Network Parameter Number

9-5-5 324,352
13-7-5 636,160

{5,9,13}-5-5 123,600
{5,9,13}-7-5 219,904

4. Experimental Section

In this section, we first describe how to construct the training datasets. Next, we explore
the different structures of the network and then investigate the relation between performance and
parameters. Last, we compare our model with SRCNN and other state-of-the-art methods.

4.1. Datasets and Evaluation Criteria

The training set consists of 91 images from [6] with the addition of 200 images from the Berkeley
Segmentation Dataset [34]. The size of the training samples is 33 for upscale factor 3 and 32 for upscale
factor 2 and 4. We extract samples from the original images with a stride of 10, and then we randomly
choose 300,000 samples as training samples. Figure 4 shows some training samples. Samples treated
as the ground-truth images X. To synthesize the LR samples, these samples are first downsampled
by a given upscaling factor, and then these LR samples are upscaled by the same factor via Bicubic
interpolation to form the LR images. Following [10], super-resolution is only applied on the luminance
channel (Y channel in YCbCr color space). Note that all the convolutional layers are padded with zeros
before performing convolution to obtain the same size output.

Figure 4. Samples of training images.

To evaluate our approach, we adopt the peak signal-to-noise ratio (PSNR) and the structural
similarity (SSIM) index as evaluation criteria. The benchmark database includes Set5 and Set14 from [9].
The two datasets consist of different types of images; some images include repetitive patterns, such as
the face of “Baby” and the tablecloth of “Barbara”, whereas some contain rich structural information,
such as “Bird” and “Butterfly”.

We reported the computation time of training and prediction in Table 2, showing that our
method increased the training time by a factor of 1.42 and the prediction time by a factor of 1.87.
Table 3 summarizes the memory cost. The proposed method requires 266% of the memory consumed
by SRCNN, no matter at the phases of training or prediction. Both the time cost and the memory cost
of the proposed method are acceptable for image super-resolution.
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Table 2. The computation time of training phase and prediction phase.

Time SRCNN (9-5-5) Ours ({5,9,13}-7-5)

Training with GPU (one epoch) 12 min 15 min
Prediction with CPU (256× 256) 0.30 s 0.56 s

Note: Both methods have 3 layers. Our model is implemented using the MatConvNet package [35] on a
work-station with Intel 3.4 GHz CPU, GTX960 GPU and 16GB memory. The training data consists of 300,000
samples and batch size is 32. Due to limited memory of GTX960, the prediction runs under CPU mode.

Table 3. Memory cost for different networks.

Network SRCNN (9-5-5) Ours ({5,9,13}-7-5)

Amount of parameters 224 KB 465 KB
Memory cost (training) 24 MB 64 MB

Memory cost (prediction) 49 MB 129 MB

Note: In training phase, the batch size is 32 and the sample size is 32× 32. The prediction runs under CPU
mode, the input image size is 256× 256. Both parameters and image are stored in float32. The parameter
numbers and memory costs are calculated by vl_simplenn_display function of MatConvNet package.

4.2. Parameters and Performance

For fair comparisons, we applied residual learning to the original SRCNN. In the following,
all the SRCNN means the residual learning SRCNN. The same training sets, learning rates and initial
parameters are used in SRCNN and our proposed model, and all networks are evaluated on Set5 with
an upscaling factor of 4.

4.2.1. Filter Size and Performance

Based on the basic 5-5-5 network, we progressively modify the filter size to investigate the relations
between performance and filter sizes. Figure 5 shows the average PSNR (Set5) of the networks trained
after 80 epochs. The filter numbers of SRCNN are n1 = 192, n2 = 64, and n3 = 1. {5,9,13}-5-5,
which includes three scales and performs better than the single-scale networks: 5-5-5, 9-5-5 and 13-5-5;
{5,9,13}-7-5 performs better than 5-7-5, 9-7-5 and 13-7-5.

A reasonable larger filter size can improve reconstruction performance. As shown in Table 4,
when the filter size is increased from {3,5,9} to {5,9,13} or even larger size, the PSNR has been increased
from 30.10 dB to 30.44 dB. Too large size, e.g., {7,13,15}, will degrade the performance and introduce
more computation. Therefore, moderate filter size such as {5,9,13} is suggested.

Table 4. PSNR performance under different filter size on Set5 with upscaling factor 4.

Proposed Method PSNR

{3,5,9}-7-5 30.10
{5,9,13}-7-5 30.44
{7,9,13}-7-5 30.44

{5,11,13}-7-5 30.43
{7,9,15}-7-5 30.33

{7,13,15}-7-5 30.27



Sensors 2018, 18, 789 9 of 17

Figure 5. Different filter size and performance on Set5 with upscaling factor 4. The proposed method
achieve trade-offs between performance and parameter sizes.

4.2.2. Epoch and Performance

As illustrated in Figure 6, the proposed networks quickly reach state-of-the-art performance
within a few epochs. Our model {5,9,13}-7-5 progressively improve over time. We will show that better
results can be obtained by providing a longer training time in the following experiments.

Figure 6. Convergence curve of different networks on Set5 with upscaling factor 4. The proposed
networks achieve better performance than SRCNN after a few epochs.
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4.3. Results

We compare the proposed method with state-of-the-art methods both qualitatively and
quantitatively. The compared methods include the baseline method Bicubic, adjusted anchored
neighborhood regression method (A+) [10], and three CNN-based methods: SRCNN [17], CSCN [36]
and FSRCNN [37]. For fair comparisons with SRCNN which training data include 5 million sub-images
from imageNet, we augment the training set to 1 million sub-images by rotating and flipping the
300,000 images in the original training set. Table 5 illustrates the average quantitative performance
of the compared methods. The proposed method outperforms the other methods for most of images.
Furthermore, the PSNR has been increased about 0.1 to 0.4 dB when we build up a deeper network by
stacking two modules.

Table 5. The results of PSNR (dB) and SSIM on two test datasets. Red indicates the best and blue
indicates the second best performance.

Dataset Set5 Set14 Set5 Set14 Set5 Set14
Upscaling Factor 2 2 3 3 4 4

Bicubic 33.66/0.9299 30.33/0.8694 30.39/0.8681 27.61/0.7752 28.42/0.8104 26.06/0.7042
A+ 35.95/0.9508 31.84/0.9017 32.07/0.8984 28.71/0.8121 29.83/0.8465 27.02/0.7421

SRCNN 36.66/0.9542 32.55/0.9073 32.75/0.9090 29.39/0.8225 30.49/0.8628 27.60/0.7529
CSCN 36.93/0.9552 32.56/0.9074 33.10/0.9144 29.41/0.8238 30.86/0.8732 27.64/0.7578

FSRCNN 37.00/0.9558 32.63/0.9088 33.16/0.9140 29.43/0.8242 30.71/0.8657 27.59/0.7535
Ours (shallow) 37.03/0.9566 32.69/0.9103 33.04/0.9140 29.43/0.8258 30.72/0.8706 27.68/0.7581

Ours (deep) 37.23/0.9575 32.73/0.9222 33.44/0.9185 29.58/0.8290 31.10/0.8785 27.79/0.7627

Note: We build two networks for image super-resolution, the shallow one is {5,9,13}-7-5 and the deep one
refers to {5,7,9}-{5,7,9}-5-5 with two multi-scale competitive modules and two single scale convolutional layers.

As shown in Table 6, our method surpasses SRCNN largely on “Butterfly”, “Woman”, “Bird” and
“Monarch”, which have rich image details and diverse image features. For images with a large smooth
region or repetitive texture pattern, such as “Baby”, “PPT3” and “Barbara”, the PSNR of our method is
lower than that of the other methods. By stacking more multi-scale competitive module, the network
provides more various size context for image reconstruction. Table 6 illustrates the better performance
of our deep network than our shallow one. Figures 7–10 present some sampled results generated
by the compared methods. The HR images restored by the proposed method are perceptually more
plausible with relatively sharp edges and few artifacts.

Table 6. The detail results of PSNR (dB) and SSIM on two test datasets for upscale 4x. Red indicates
the best and blue indicates the second best performance.

Bicubic A+ SRCNN Ours (Shallow) Ours (Deep)
Image PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

baby 31.78/0.8567 33.07/0.8811 33.13/0.8824 32.75/0.8807 33.06/0.8824
bird 30.18/0.8729 32.03/0.9048 32.52/0.9112 32.76/0.9163 33.22/0.9232

butterfly 22.10/0.7369 23.70/0.8023 25.46/0.8566 26.11/0.8801 26.89/0.8987
head 31.59/0.7536 32.30/0.7771 32.44/0.7801 32.49/0.7836 32.67/0.7884

woman 26.46/0.8318 28.05/0.8670 28.89/0.8837 28.97/0.8893 29.67/0.8996
baboon 22.41/0.4521 22.71/0.5002 22.73/0.5029 22.76/0.5112 22.80/0.5128
barbara 25.17/0.6873 25.68/0.7245 25.76/0.7293 25.74/0.7346 25.94/0.7413
bridge 24.44/0.5652 24.01/0.6233 25.11/0.6220 25.17/0.6288 25.28/0.6332

coastguard 25.38/0.5238 25.80/0.5539 26.04/0.5563 26.09/0.5623 26.16/0.5667
comic 21.72/0.5852 22.41/0.6454 22.70/0.6658 22.76/0.6773 22.88/0.6864
face 31.60/0.753 32.27/0.7757 32.38/0.7779 32.42/0.7808 32.61/0.7862
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Table 6. Cont.

Bicubic A+ SRCNN Ours (Shallow) Ours (Deep)
Image PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

flowers 25.59/0.7233 26.62/0.7648 27.14/0.7791 27.21/0.7856 27.20/0.7901
foreman 28.79/0.8625 31.22/0.8927 32.14/0.9080 32.14/0.9109 32.30/0.9146

lenna 29.87/0.8149 31.18/0.8416 31.41/0.8436 31.51/0.8481 31.79/0.8522
man 25.72/0.6760 26.52/0.7182 26.89/0.7300 27.00/0.7370 27.14/0.7428

monarch 27.51/0.8817 28.88/0.9037 30.22/0.9181 30.76/0.9251 31.35/0.9312
pepper 30.42/0.8359 32.28/0.8583 32.98/0.8648 32.95/0.8674 33.48/0.8720

ppt3 22.04/0.8151 23.06/0.8473 24.80/0.8928 24.27/0.8871 23.66/0.8867
zebra 24.13/0.6831 25.61/0.7391 26.09/0.7505 26.21/0.7605 26.49/0.7615

(a) Ground-truth/PSNR (b) Bicubic/22.10 (c) A+/23.70

(d) SRCNN/25.46 (e) Ours shallow/26.11 (f) Ours deep/26.89

Figure 7. The “Butterfly” images with an upscaling factor 4.

(a) Ground-truth/PSNR (b) Bicubic/24.13 (c) A+/25.61

Figure 8. Cont.
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(d) SRCNN/26.09 (e) Ours shallow/26.21 (f) Ours deep/26.49

Figure 8. The “Zebra” images with an upscaling factor 4.

(a) Ground-truth/PSNR (b) Bicubic/22.04 (c) A+/23.06

(d) SRCNN/24.80 (e) Ours shallow/24.27 (f) Ours deep/23.66

Figure 9. The “PPT3” images with an upscaling factor 4.
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(a) Ground-truth/PSNR (b) Bicubic/26.46 (c) A+/28.05

(d) SRCNN/28.89 (e) Ours shallow/28.97 (f) Ours deep/29.67

Figure 10. The “Woman” image with an upscaling factor 4.

5. Discussions

In this section, we compared our method to other state-of-art methods on large datasets.
Furthermore, we also show the potential improvement of performance by Iterative Back-Projection
(IBP) filter [4].

5.1. Comparison with Other State-of-Art Methods

We choose to compare against the best SRCNN (9-5-5), SRGAN [38], ESPCN [39] and VDSR [19]
on larger datasets: BSD300 and BSD500 [34]. The results are shown in Table 7.

We divide these compared methods into two types, shallow network that contains only 3-4 layers
and much deeper network that have more than 16 layers. The former type includes SRCNN, ESPCN
and the proposed methods while the latter one includes SRGAN and VDSR. Our method achieves
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the best evaluation criteria among all the shallow networks and also obtains better performance than
a deeper network, SRGAN, which has 16 layers. A much deeper network, VDSR, obtains the best
performance among all compared methods but its network has 20 layers. Overall, our method is a
better choice under limited computational resources.

Table 7. The mean PSNR (dB) obtained with different methods.

Dataset
Upscaling Shallow Network Much Deeper Network

Factor Proposed Method SRCNN ESPCN SRGAN VDSR

BSD300
2 31.62 31.31 N/A N/A 31.90
3 28.60 28.37 28.54 N/A 28.82
4 27.07 26.87 27.06 25.16 27.29

BSD500
2 31.95 31.58 N/A N/A 32.27
3 28.72 28.45 28.64 N/A 28.95
4 27.10 26.90 27.07 N/A 27.31

Set5
2 37.23 36.66 N/A N/A 37.53
3 33.44 32.75 33.13 N/A 33.66
4 31.10 30.49 30.90 29.40 31.35

Set14
2 32.73 32.55 N/A N/A 33.03
3 29.58 29.39 29.49 N/A 29.77
4 27.79 27.60 27.73 26.02 28.01

Note: For SRCNN and VDSR, we use its trained model and source codes [40,41] to do the super-resolution on
our hardware. The criteria of SRGAN and ESPCN are cited from [38,39] respectively. Best criteria in each
category are shown in bold. N/A indicates the results not provided by author.

5.2. Improvement with Iterative Back Projection

The iterative back projection (IBP) refinement generally improves the PSNR as it makes the HR
reconstruction consistent with the LR input and the employed degradation operators. We perform
IBP as post-process of our method, and Table 8 shows the improvements obtained with iterative back
projection refinement.

Table 8. Performance improvement with iterative back projection (IBP).

Upscaling
Dateset

Proposed Method
Factor Without IBP With IBP

2 Set5 37.23/0.9575 37.28/0.9579
Set14 32.73/0.9222 32.89/0.9110

3 Set5 33.44/0.9185 33.53/0.9195
Set14 29.58/0.8290 29.70/0.8296

4 Set5 31.10/0.8785 31.19/0.8800
Set14 27.79/0.7627 27.86/0.7632

Note: The number of iterations in IBP is 5. Better criteria are marked in bold.

5.3. The Effect of Batch Normalization on Super-Resolution

Reference [29] proposed competitive network with Batch Normalization for image classification.
Reference [29] solved the problem of image classification while our work is designed for image
super-resolution. Therefore, we analyzed the effect of BN in image super-resolution.

We removed the Batch Normalization (BN) layers from our module and attained better
performance in terms of higher PSNR and SSIM criteria, as shown in Table 9. Experiments proved
that even with deeper network, BN still reduces the super-resolution performance [42]. In addition,
the BN layers consume more GPU memory to restore the results of BN layers. Thus, our method is
more convenient to build up a deeper model under limited computational resources.
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Table 9. The effect of BN of our method.

Upscaling
Dateset

Proposed Method
Factor Without BN With BN

2
Set5 37.03/0.9566 36.90/0.9556

Set14 32.69/0.9103 32.62/0.9087

3 Set5 33.04/0.9140 32.88/0.9117
Set14 29.43/0.8258 29.35/0.8236

4
Set5 30.72/0.8706 30.56/0.8663

Set14 27.68/0.7581 27.59/0.7542

Note: Our module is {5,9,13}-7-5 and the network with BN is {5-BN, 9-BN, 13-BN}-7-5. Better criteria are marked in bold.

6. Conclusions

We propose a super-resolution reconstruction model for single images based on multi-scale
convolutional neural network. Moreover, large filters and small filters are jointly trained within the
same model. The maxout unit not only reduces the dimensionality of the filter outputs, but also
promotes competition among the multi-scale filters. The success of the proposed network is due to its
ability to provide a multi-range of context and adaptively select the optimal local receptive field for
image reconstruction. Experiments on super-resolution illustrate the high performance of our network.
Under limited computational resources, our method achieves the best evaluation criteria among all
the shallow networks and also obtains better performance than a deeper network. The experiments
demonstrate that our method can fully take advantage of the cost/accuracy trade-off. The further
improvement is expected when stacking more multi-scale competitive modules.
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