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Abstract: For vehicle-to-vehicle (V2V) communication, such issues as continuity and reliability still
have to be solved. Specifically, it is necessary to consider a more scalable physical layer due to
the high-speed mobility of vehicles and the complex channel environment. Adaptive transmission
has been adapted in channel-dependent scheduling. However, it has been neglected with regards
to the physical topology changes in the vehicle network. In this paper, we propose a physical
topology-triggered adaptive transmission scheme which adjusts the data rate between vehicles
according to the number of connectable vehicles nearby. Also, we investigate the performance of
the proposed method using computer simulations and compare it with the conventional methods.
The numerical results show that the proposed method can provide more continuous and reliable data
transmission for V2V communications.

Keywords: vehicle communication; vehicle-to-vehicle communications; data transmission method;
adaptive modulation scheme

1. Introduction

Recently, vehicular communication has been attracted as a crucial use case for 5G communication.
The vehicles can communicate directly with other vehicles or adjacent infrastructures, such as access
points (APs), or fixed equipment beside the road referred to as roadside units (RSU) [1]. The vehicular
ad-hoc network (VANET), a variation of the mobile ad-hoc network (MANET), is a technology used for
an intelligent transport system (ITS) where the moving vehicles are wirelessly connected [2]. The initial
motivation and major goal for the VANET are to improve road safety, increase transit efficiency,
and scale down the impact of shipping on the environment [3]. In the meantime, other kinds of
applications rapidly grow due to the passengers’ desire for IP-based Internet services such as internet
surfing, email, file download, multimedia entertainment, parking, and tourist guide information.
These require the introduction of wireless local area network (WLAN) technology to the VANET [4],
such as IEEE 802.11p or short-range communication (DSRC) since 2010 [5]. The concept of drive-thru
systems was suggested in [6], where each RSU AP connects to the internet cloud server and the
vehicles moving in the AP’s coverage can connect to the AP. Then, through the RSU AP, the vehicles
can acquire IP-based internet connection and a variety of infotainment services. However, due to the
high mobility of vehicles, the sparse deployment of RSU APs, and the limited capacity of the AP, it is
hard to guarantee the quality and stability of communication between the vehicle and the AP. On the
other hand, vehicle-to-vehicle (V2V) communication can take Wi-Fi direct technology. The Wi-Fi direct
is a standard defined by the Wi-Fi Alliance to enable devices to directly communicate with others [7].
Therefore, in [8], an easily installed inter-vehicle communication system utilizing the Wi-Fi direct was
proposed and verified for the VANET scenario. Additionally, since the IEEE 802.11p has been the sole
standard technology realizing the V2V until now [9], the Wi-Fi direct can easily be incorporated with
the IEEE 802.11 standards [10].
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The V2V has potential to be an alternative method to enhance the on-road internet service
in real-life situations, such as platoons or traffic jams. Platooning refers to vehicles moving in
a convoy with a short distance, which can be a promising technology with advantages of higher
traffic throughput and higher energy efficiency [11]. For the V2V communication, the platoon or the
traffic has an identical channel characteristic, which has a specular component and low Doppler shift,
since the vehicles are closely spaced and relatively static. Since it is a relatively optimistic channel
situation, V2V communication can be considered as an assistant method to bridge the service to the
vehicles. More detailed cases are necessary to be investigated for the vehicular communication [12].
Here, are two challenges in platooning and traffic jam scenarios.

• The vehicles in the gap area between the APs’ coverage

Due to the sparse AP deployment, this may happen due to the limited coverage of the APs. In this
case, it is difficult for the users in vehicles to achieve reliable and stable internet service. In the Figure 1,
the vehicles are located in the gap area between the coverages of the AP1 and the AP2, where the
vehicles are hard to connect to the APs when, for example, the drivers want to download the tourist
information through the electric map. The feasible solution is to acquire the data from the adjacent
vehicle in the AP coverage. This backup solution can be approached as a V2V relay, where the AP
coverage can be extended and, thus, the area spectral efficiency be improved [13]. In [13], an approach
using channel state information was proposed to increase the reliability of the V2V relay. In [4,14],
two efficient opportunistic relay protocols were proposed.
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• Data traffic jam in traffic jams or platoons

In a platoon or a traffic jam, the quality of wireless service is difficult to be guaranteed if the
service is only delivered through the V2I. We can expect that lots of passengers in platooning vehicles
want to enjoy the internet services such as multimedia streaming with high data traffic demand [15].
Particularly, when the location of the vehicles in the traffic jam is not well covered by the service
area, the users will suffer from the low service quality. In Figure 2, where many cars under the traffic
jam belong to only one AP, huge service demand is requested by the vehicles which may exceed the
maximum capability for the single AP. Therefore, some vehicles may not acquire the service from the
AP. The solution can be that the vehicles which can acquire the data from the AP by connecting to the
cloud server will store it and disseminate it to other vehicles. In [16], a similar case was examined,
where the V2V was exploited to assist the V2I to deliver advertisements from the network to the
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vehicles. The results indicated that the exploitation of the V2V enhanced the information dissemination
in the vehicular network when RSU deployment was sparse or dense [16].
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From the examples, it is obvious that the enhancement of the unreliable service delivery in the
V2V networks is required for the future. Furthermore, the V2V still faces some challenges such as
a harsh communication environment due to the severe scattering without line-of-sight and the frequent
topology changes of the VANET due to the high mobility of vehicles [17].

Therefore, in this paper, we propose an adaptive data rate selection scheme according to the
changes of physical network topology in order to improve the reliability and continuity of data
transmission in V2V communications. Focusing on the physical layer aspects, a new algorithm is
suggested, and its performance is investigated in terms of error probability and throughput. The paper
is organized as follows: In Section 2, we review the related literature. Our proposed method is
presented in Section 3. In Section 4, the simulation results are analyzed. Finally, our findings and
further work are described in Section 5 of the conclusion.

2. Related Works

According to the performance analysis in [18], the stability and reliability of IEEE 802.11p based
vehicle communication are difficult to be guaranteed. The primary reason is that IEEE 802.11p uses
the same physical layer as the IEEE 802.11a standard, which was originally designed for a relatively
stable environment like an indoor environment [18]. In the 802.11p standard, with the combination
of four types modulation (BPSK, QPSK, 16QAM, and 64QAM) and three kinds of coding rate (1/2,
2/3, and 3/4), the data rate varies from 3 Mbps to 27 Mbps. Although various data rate choices
are available, a conventional rate adaption (RA) algorithm is used, in which only one type of data
rate will be selected by transmitter vehicle according to the channel condition estimation before
transmission starts [19]. Some early research regarding rate selection also fixed the data rate to the
highest option [20] or the lowest [21]. In order to overcome the challenges resulting from the mobility
of vehicles and the variation in transmission situation, the scalability of the physical layer (PHY) must
be improved, as discussed in [22]. Adaptive modulation and coding (AMC) is a technology to be
introduced into a long term evolution (LTE) system to maximize the throughput of the system by
changing the modulation and coding method adaptively, according to the current channel situation [23].
Following the same idea, some researchers have already made efforts in improving the transmission
scheme of the PHY. In [24], a novel approach called automatic doppler shift adaptation (ADSA) is
proposed to compensate for the doppler effect by extensive simulation. Also, a loss differentiation
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rate adaption scheme, which can choose the optimal data rate by taking interference losses and fading
losses to enhance the reliability of V2V communication, is designed in [19].

Conventional RA schemes, such as AMC and the literatures mentioned above, all focus most
of their attention on the channel condition but do not take variations of network topology into
consideration when designing scalable transmission schemes. In order to acquire high throughput and
high-reliability V2V transmission, the time-varying topological structure of the vehicular network is
also a serious issue needing to be addressed even if the channel situation is good enough. Specifically,
consider a situation in which vehicles are moving as a platoon on the road. In this platoon, one vehicle
may decide to depart the platoon for some reason, then the connection will be broken if some
other vehicle is communicating with it. Although the transmitter vehicle can choose to temporally
store the data received from APs into a buffer and transmit it later when receiver vehicles appear,
the transmission speed may not be high enough to compensate for the drop of throughput caused by
the interruption, especially when the transmission speed is fixed to a low data rate. On the other hand,
always fixing the data rate to quite a high level is arbitrary because, in V2V scenario channels, quality
is not always optimal.

For the purpose of addressing the issues described above, in this work, we propose a physical
topology adapting transmission scheme in which a vehicle can adjust the transmission data rate
by changing the modulation type according to the number of the nearby connectable vehicles.
The innovation of this scheme is using a scalable physical layer to handle the degradation of system
performance caused by unpredictable changes in physical topology. As far as we know, there is
no other research or physical device which is similar to the proposed physical topology triggered
adaptive data transmission scheme in the field of transport or other areas of application. Through the
simulation results, this adaptive scheme is verified to be able to improve the performance of the V2V
communication transmission.

3. Adaptive Transmission Scheme for V2V Based on Physical Topology

In this section, the proposed adaptive transmission scheme is described. When the number
of available connected vehicles is high, the V2V communication may be resumed with another
neighboring vehicle, even if the current connection is broken. Therefore, the data transmission can be
kept more continuous and reliable since the data stored in the buffer can be transmitted even with a low
data rate. On the other hand, if the number of connectable vehicles is low, it is hard for the vehicle to
resume the transmission since there are few chances to link to another vehicle. Therefore, it is necessary
to transmit the information stored in the buffer in a more aggressive manner, with a higher data rate.
Here, we utilize the beacon signal between the vehicles as an auxiliary means to achieve the dynamic
adjustment of the data rate according to the random topology changes. In the vehicular communication
systems, the beacon signal plays a special role in providing rich information such as location, heading
and other status information [25]. We assume the vehicles are equipped with the periodic broadcast
beacons to announce its presence to the surrounding vehicles. For simplicity and clear demonstration
of the proposed algorithm, the following assumptions are made: the channel and position information
are integrated in the beacon signal, its exchange between vehicles is frequent enough, the vehicle can
detect the number of adjacent connectable vehicles when receiving the beacons, and the algorithm is
operated for the vehicle (called a data donor) which transmits the data to other vehicles.

Figure 3 shows the flow chart of the proposed algorithm. Once the vehicle starts, it keeps sensing
the beacon signal broadcasted by adjacent vehicles and determines the number of connectable vehicles
denoted as N. When N equals to zero, the vehicle stores the data in the buffer without transmission,
since there are no adjacent vehicles. When N is equal to a number larger than zero, the communication
can be established. However, if the connection is broken due to a vehicle leaving the platoon, it seems
difficult to connect to another vehicle again. In order to minimize the possible data loss when no
adjacent vehicle exists, a more aggressive data rate selection can be considered.
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We try to reason why the possible rates are chosen and describe the details as follows. To guarantee
the reliability of the data transmission, i.e., to keep the bit error rate (BER) lower than the threshold,
the received power at the vehicle PR must be larger or equal to the receiver sensitivity SR [26]. The SR
is usually defined for a different threshold value for different modulation and coding types, as seen in
Table 1 [27]. As the table shows, a higher level modulation requires a higher SR and, thus, asks for
a higher received power. PR can be calculated as

PR = PT + GT + GR − L − I − F (1)

where PT is the transmitter power of the transmitter, GT is the transmitter antenna gain, GR is the
receiver antenna gain, L is the path loss, I is the interference, and F is the channel fading. We assume
that the PT, GT, and GR values are fixed. When there are fewer vehicles around, the interference and
the channel fading is reduced, since less scattering causes better channel conditions due to less adjacent
vehicles [28]. Therefore, a sufficient PR can allow for the achievement of values higher or equal to SR
(such as 64QAM). Meanwhile, when the number of vehicles is large, the interference and the channel
fading become higher. Therefore, a lower PR cannot allow for a value higher or equal to SR to be
chosen. Therefore, a lower order modulation is chosen. Therefore, a higher order modulation such
as 64QAM is selected because the number of connectable vehicles is low. Meanwhile, as N increases,
there are more and more connectable vehicles which can be backup options. Therefore, the data rate
can be adjusted to be lower (16QAM) so as to ensure the reliable communication in the harsh channel
condition. With the proposed algorithm, more reliable and continuous data transmission for the V2V
communication can be expected with the adaptive modulation, shown in Table 2.

Table 1. Receiver sensitivities for different modulation and coding types [27].

Modulation and Coding Types Receiver Sensitivity SR (dBm)

BPSK 1/2 −99
QPSK 1/2 −96
QPSK 3/4 −94

16QAM 1/2 −90
16QAM 3/4 −87
64QAM 2/3 −82
64QAM 3/4 −80
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Table 2. Modulation types.

Number of Connectable Vehicles, N 0 1 2 3 4

Conventional Method 1 Store data QPSK QPSK QPSK QPSK
Conventional Method 2 Store data 16QAM 16QAM 16QAM 16QAM
Conventional Method 3 Store data 64QAM 64QAM 64QAM 64QAM

Proposed Method Store data 64QAM 64QAM 16QAM 16QAM

To investigate the performance of the proposed algorithm, we performed the computer
simulations and compared these with the conventional static data transmission. We assume for
a fixed time interval for how long the vehicle keeps trying to transmit the data to other vehicles. Also,
the success rate for the connection is assumed to be 100% if there is a connectable vehicle. When
there is no connectable vehicle, the data is assumed to be queued in the buffer. For the physical
topology of the vehicle network, we assume that the maximum number of adjacent vehicles is 4 and
the number of connectable vehicles is randomly generated from 0 to 4. Depending on the different
N values, the different modulation order is determined. When N equals zero, the data is stored in
the buffer without transmission in both conventional and proposed schemes. When N is not equal
to zero, the conventional schemes assume the fixed modulation, such as QPSK, 16QAM, or 64QAM.
In the proposed method, the different modulation type is chosen. More specifically, 64QAM is
selected when N equals to 1 or 2. 16QAM is selected for N = 3 or N = 4. When N is larger than 4
in a realistic environment, the modulation order can be kept as 16QAM, as N = 4. This is because
there are many possibilities that vehicles can be connected when N is larger than 4. Note that in the
conventional method, 64QAM is continuously utilized during the entire time period for the ideal
situation. This is because, in an 802.11p standard, 64-QAM can be reached when the channel is optimal
with a line-of-sight (LOS) component and a low doppler shift [24].

Rician fading channel is assumed in the simulation. The Rician K-factor is defined as the ratio of
the signal power in the dominant component over the scattered power. The K-factor is normally set
to a constant value in the simulations [28]. However, reference [28] investigated the variation of the
K-factors in variable vehicular channels and found that the K-factor became lower when more vehicles
existed. Furthermore, reference [29] estimated the K-factor for the V2V communication and concluded
that the K-factor ranged from −10 dB to 10 dB in rural, suburban, and urban environments. Therefore,
we consider two scenarios, where one is scenario I with the fixed K-factor of 10 dB and another is
scenario II with the different K-factors from 10, 5, −5, and −10 dB depending on the number of
connectable vehicles. The turbo code with 1/2 code rate is chosen as the channel coding scheme for all
conventional methods and the proposed method. Detailed simulation parameters for two simulations
are summarized in Table 3.

Table 3. Simulation parameters for scenarios I and II.

Rician Fading K-Factor

Number of Connectable Vehicles, N 0 1 2 3 4

Scenario I 10 dB 10 dB 10 dB 10 dB 10 dB

Scenario II 10 dB 10 dB 5 dB −5 dB −10 dB

Channel Coding Scheme Turbo code with 1/2 coding rate

Frame Size 1024 bits/frame

Data Generation Speed Scenario I 240 frames/s
Scenario II 120 frames/s

Data Transmission Speed
QPSK 120 frames/s

16QAM 240 frames/s
64QAM 360 frames/s

Simulation Time
Scenario I 1000 s

Scenario II 2000 s

K is Rician Fading K-factor (dB).
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4. Numerical Results

The performances are evaluated in terms of BER, frame error rate (FER), and throughput.
The number of transmitted bits or frames is used for the BER and the FER, respectively. However,
note that the number of total generated frames is considered for the throughput, since the generated
but un-transmitted frames need to be considered. In this paper, the measure of reliability can be
interpreted in terms of throughput defined in Equation (4). This is because the throughput here reflects
not only the successfully transmitted bits but also the total generated bits including un-transmitted bits.
Thus, the higher throughput shows the un-transmitted bits for N = 0 are compensated with the higher
order modulation. Therefore, we can say the reliability gets improved in terms of the throughput.
For example, a user in the vehicle can enjoy a reliable and stable stream video service, even if the
vehicle cannot be connected to the other vehicles in a certain time period. The simulation results
presented in Figures 4–7, where the X axis is the energy per bit to noise power spectral density ratio
(Eb/N0).

BER =
Number of unsuccessfully transmitted bits

Number of transmitted bits
, (2)

FER =
Number of unsuccessfully transmitted frames

Number of transmitted frames
, (3)

Throughput =
Number of successfully transmitted frames

Number of total generated frames
, (4)
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Figure 4 shows the BER and FER results for scenario I. In Figure 4a, the BER of the proposed
method is higher than that of conventional methods 1 and 2 but slightly lower than that of conventional
method 3. Similar results were seen for the FER performance in Figure 4b. This is because the lower
the modulation level is, the more robust against noise and interference it becomes. Therefore, in the
conventional methods, the relatively lower level modulation shows a lower error rate. Since the
proposed method randomly combines two different modulations, the error performance is also
combined and located between the conventional methods 2 and 3. Note that the main objective is
not the error performance but the overall performance in terms of the throughput. That is, it is more
important that how much data is successfully delivered to other vehicles in terms of the throughput.
In Figure 5, the throughput performances are presented. When the Eb/N0 is larger than 6.5 dB,
the proposed method shows better performance than the conventional methods 1 and 2 but shows
worse performance than the conventional method 3. Below 6.5 dB, the proposed scheme provides
a lower throughput than the conventional method 2 but a higher throughput than the conventional
method 3. Regarding conventional method 1, the maximum throughput performance is below 50%,
since they transmit the data very slowly and fail to compensate for the throughput degradation when
N = 0 (i.e., no connectable vehicle around). Therefore, the throughput reaches a relatively lower
cap, which means the service cannot be provided adequately for this case. Even though 16QAM
in conventional method 2 can bring the maximum throughput up to 76%, the throughput loss of
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24% still makes the users suffer from discontinuity. On the other hand, the maximum throughput of
conventional method 3 reaches near 97%. This is because 64QAM fully takes advantage of the good
channel when the K-factor is fixed to 10, which is actually an ideal condition in the V2V communication.
In scenario I with the ideal situation, it is shown that the proposed method cannot show its advantage
over conventional method 3 but achieves 90% throughput performance, since the employment of
16QAM causes the loss of more data transmission.

Scenario II with various K-factors is more practical in comparison to scenario I with a constant
K-factor. In scenario II, we set different Rician K-factor values depending on the number of connectable
vehicles, in order to make the simulation closer to the realistic V2V environment. In Figure 6, the BER
and FER performances are shown for conventional methods 1, 2, and 3, as well as the proposed method.
In Figure 6a, the BER of the proposed method is lower than that of conventional method 2 and 3 and
only higher than that of conventional method 1, which guarantees the low error rate at the expense of
a lower data transmission rate. In Figure 6b, the proposed method presents a higher FER performance
than conventional method 1 and 2 but a lower one than that of conventional method 3. Regarding
the throughput performance in the Figure 7, the proposed method shows lower throughput than
conventional methods 1 and 2 when EbN0 is smaller than 6 dB, but it exceeds that of conventional
method 1 when EbN0 reaches 6 dB and exceeds that of conventional method 2 when EbN0 reaches 8 dB.
The reason for this is that the error rate drops as the EbN0 is sufficiently large and, thus, higher order
modulations such as 16QAM and 64QAM start to show their advantages in terms of the throughput.
Also, the throughput of the proposed method is always higher than that of conventional method 3,
because the relatively lower order modulation of 16QAM is used against the harsh channel situation
when the K-factor is a negative value. Meanwhile, the modulation is fixed to 64QAM in conventional
method 3. When EbN0 is larger than 8 dB, the proposed method shows the highest throughput,
which means that the proposed scheme with the adaptive transmission may give the benefits for
frequently changing topology in the VANET and, thus, improve the continuity and the reliability of
the V2V communication.

5. Conclusions

In this paper, we proposed a dynamic transmission scheme with a variable data rate according to
the number of connected vehicles and the random topology in VANET. The numerical results verified
that the proposed scheme was able to provide more continuous and reliable V2V communication and
to show better performance in terms of throughput compared to the conventional scheme in 802.11p.
Note that the only objective is not the error performance but the throughput performance. When the
Eb/N0 is larger, the proposed method generally shows much benefit compared to the conventional
methods. Therefore, the proposed scheme with the adaptive transmission is proven to be generally
better for the frequently changing topology and the channel environments in the VANET and, thus,
may improve the continuity and the reliability of the V2V communication, even though the complexity
may be rather increased. For future research, the effect of a power boost on system performance will
be analyzed to further improve power efficiency. Also, the different probabilities for N = 0, 1, 2, 3,
and 4 can be considered.
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