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Abstract: Polymers are being used in a wide range of Additive Manufacturing (AM) applications and
have been shown to have tremendous potential for producing complex, individually customized parts.
In order to improve part quality, it is essential to identify and monitor the process malfunctions of
polymer-based AM. The present work endeavored to develop an alternative method for filament
breakage identification in the Fused Deposition Modeling (FDM) AM process. The Acoustic Emission
(AE) technique was applied due to the fact that it had the capability of detecting bursting and
weak signals, especially from complex background noises. The mechanism of filament breakage was
depicted thoroughly. The relationship between the process parameters and critical feed rate was
obtained. In addition, the framework of filament breakage detection based on the instantaneous
skewness and relative similarity of the AE raw waveform was illustrated. Afterwards, we conducted
several filament breakage tests to validate their feasibility and effectiveness. Results revealed that the
breakage could be successfully identified. Achievements of the present work could be further used to
develop a comprehensive in situ FDM monitoring system with moderate cost.

Keywords: additive manufacturing; fused deposition modeling; filament breakage; acoustic emission;
monitoring

1. Introduction

The past three decades have witnessed the rapid growth of Additive Manufacturing (AM)
technologies. Especially during the last five years, AM has gained widespread attention not only from
the academic community, but also the public. Companies across the globe are using AM to reduce
time-to-market, improve product quality and reduce the cost to manufacture products. In the industrial
sector, polymer-based AM techniques are being used in a wide range of part applications including
automotive, aerospace and medical devices [1]. The most widely-used and rapidly-growing AM
technologies are extrusion deposition processes such as Fused Deposition Modeling (FDM), Fused
Filament Fabrication (FFF) and Melt Extrusion Manufacturing (MEM) [2]. While the use of AM has
been growing, numerous challenges impede its more widespread adoption and commercialization [3].
One of the most urgent issues is the in situ monitoring of the AM process.

In order to manufacture high quality parts using AM technology, it is essential to be able to
monitor the critical process parameters and malfunctions as a part is being manufactured. Process
monitoring is essential to detect defects and provide feedback for process control, which is key
to further understanding AM processes, improving process efficiency and quality and producing
parts with desired qualities. A comprehensive review of the process monitoring of metal additive
manufacturing such as the Stereo Lithography Apparatus (SLA) and Selective Laser Melting (SLM)
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can be found in [4,5]. This work focused on the process monitoring of polymer-based AM, e.g., fused
deposition modeling, in particular.

The process monitoring of the FDM process is challenging. The FDM process is known to be
exceedingly sensitive to variations in processing conditions/settings. In situ measurement is needed to
monitor various process parameters such as temperature, feed rate and material properties. Defects and
malfunctions should also be identified in time to provide feedback for process control. Research efforts
on this scientific issue can be divided into three fields, i.e., (1) modeling and characterization of the
AM process, structure and thermal properties, (2) measurement for part quality and (3) monitoring
technology. The characterization of the structure and thermal properties endeavors to understand
the molecular structure, fiber orientation, thermal properties, stress and strain properties [3]. In order
to overcome the limited techniques in FDM machines, Yedige et al. built a physics-based dynamic
model for nozzle clog monitoring. Based on the model, it was found that the mounting of a liquefier
block in an FDM extruder can be used to place a vibration sensor to monitor nozzle clogging [6].
Zhang et al. investigated the influence of process conditions on the temperature variation in the
FDM process, which provides insights into understanding the FDM process from the perspective
of energy balance [7]. The monitoring of part quality is important for further deployment of FDM
AM technologies. The influence of design parameters on part surface roughness and dimensional
accuracy was thoroughly reviewed in [8]. Boschetto et al. proposed a prediction model using a neural
network to estimate the surface roughness of FDM parts based on process parameters [9]. Further
studies carried out by Vahabli and Rahmati can be found in [10]. Mohammad and Jain studied surface
roughness prediction based on the monitoring of the build edge profile of each deposited layer, such as
the perimeter, raster and the combination of both layer deposition patterns [11].

The monitoring of FDM using various sensors plays an important role in understanding the
technology and building control systems for the manufacturing process. Rao et al. used a heterogeneous
sensor array including a filament feed speed sensor, borescope camera, MEMS accelerometer,
thermocouple and IR temperature sensor to identify failure modes and detect the onset of process
anomalies in the FFF process [12]. The nonparametric Bayesian Dirichlet Process (DP) mixture
model and Evidence Theory (ET) were used to detect FFF process failures online, based on the
experimentally-acquired sensor array data. Fang et al. proposed a vision-based monitoring system of
ceramics’ fused deposition, in which the optical image of each layer was captured and compared with
the ideal layer morphology using machine vision techniques [13]. Kim et al. studied a methodology to
detect material deposition status and solve problems like nozzle clogging and substrate deformation
in FDM 3D printing, by sensing the inner pressure change of the liquefied material [14].

The present work focused on filament breakage detection in the FDM AM process.
Filament breakage usually occurs when the filament is affected by humidity, or inhomogeneous
filament materials sustain nonuniform pulling force. The breakage of the filament is one of the
most significant process errors in FDM and may cause several malfunctions such as nozzle clogging,
geometrical misalignments or manufacturing failure. However, most of the desktop FDM machines
are not integrated with a breakage detection module. Mittelman and Roman used AE technique to
characterize the failure mechanisms of composite materials [15,16]. The AE peak amplitude distribution
skewness was used to monitor composite failure. It was noticed that the filament failure was related to
the AE skewness. For industrial applications, the detection of filament breakage is realized by utilizing
an optoelectronic contact switch or a mechanical contact switch, which identifies the breakage through
the detection of the filament in the hole. The problem with the contact switch is that it is easy to detect
whether there is a filament in the hole. However, using one single contact switch, it is difficult to
determine whether the filament is static or moving. This is very important since in most circumstances,
the rest of the broken filament still stays in the contact switch hole after it breaks, which means that it is
incapable of detecting the breakage effectively. MakerBot Industries (New York, NY, USA) announced
an extruder integrated with an encoder wheel in 2016. The wheel measures the increments of the
filament’s movement to prevent under-extrusion and false filament detection, which could be used for
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breakage detection. However, an encoder wheel is a highly integrated component, which is impractical
for most of the commercial AM machines.

To address this issue, the present work investigated the fundamental mechanism of
filament breakage. An acoustic emission sensor was used for breakage identification, due to the
fact that it was capable of detecting weak and bursting signals. In addition, it can be used not only in
filament breakage identification, but also for other malfunctions such as clogging, material defects and
part quality.

2. Methodology

2.1. Analysis of Filament Breakage in FDM

Typical extrusion manufacturing machines consist of feed pinch rollers, a liquefier, a build
platform and a filament feedstock component. The feedstock is generally shaped into filaments,
which are made of amorphous thermoplastic polymers such as Acrylonitrile Butadiene Styrene (ABS),
Polylactic Acid (PLA) and Polypropylene (PP), with a diameter of 1.75 or 3 mm. The feedstock is
usually coiled inside a cartridge and pushes through the machine using a pair of pinch rollers (Figure 1).
The surface of the roller is fabricated with grooved teeth, in order to create sufficient friction to grab
the filament and feed it into the liquefier without slippage [17]. One of the rollers is driven by a stepper
motor to move the filament through the system.

Figure 1. Schematic diagram of extrusion system of FDM.

The ratio of feed to flow rates is a key factor that influences part build quality. The feed rate
is controlled so as to maintain a constant volumetric flow rate of material through the print nozzle,
which can be approximated as [17,18]:

v =
Q

WH
(1)

where v is the feed rate, W is the road width, H is the slice thickness, and Q is the volumetric flow rate
of material from the nozzle. The volumetric flow rate Q is a function of the geometric parameters of
the nozzle, material viscosity η and the pressure of the nozzle P [19]:

Q =
π(D2

2 )4P
8ηl

(2)
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where D2 is the diameter of the nozzle and l is the length of the nozzle’s conical shape (Figure 2).

Figure 2. Key dimensions of the printing nozzle.

The feed rate v is limited by the compression force on the liquefier side of the feed
roller [8].When this feed rate reaches a critical limit, the feedstock filament can buckle. This is the most
common failure mode in extrusion AM processes. Buckling can lead to the stacking of the filament
between pinch rollers and the liquefier, which brings the failure of feed flow and, finally, the breakage
of the filament. The critical feed rate is affected by pressure P placed on the filament, which can be
obtained from Euler buckling analysis,

P =
π2Ed2

16L2 (3)

where E is the elastic modulus of the filament, d is the diameter of the filament and L is the filament
length from the pinch rollers to the entrance of the liquefier [20]. According to Equations (1)–(3),
one can deduce the critical feed rate vcr:

vcr =
βEd2D4

2
ηlL2WH

(4)

where β is the critical factor. In contrast, a lower value for the feed to flow ratio indicates extrusion of
material at a faster rate than the movement of the filament. This results in thicker layers and a gradual
buildup of extrudate around the nozzle, typically leading to clogs. If this condition is not changed,
filament breakage will occur, and a portion of the filament will remain lodged inside the extruder [12].
The handling of clogs and filament breakage comprise troublesome processes and require disassembly
of the extruder. Therefore, it is necessary to predict such catastrophic failure in advance.

2.2. Foundations of the Acoustic Emission Technique

Acoustic emission is defined as high-frequency stress waves generated by the rapid release
of energy that occurs within a material [21]. It is the phenomenon of transient elastic wave
radiation in solids that occurs when a material undergoes irreversible changes in its internal
structure. Typical acoustic emission frequencies are in the range of 10 kHz–1 MHz. Crack growth,
plastic deformation, phase transformation and friction can release remarkable elastic waves and can
be captured through piezoelectric transducers. Ever since its discovery in the early 1950s, there has
been a tremendous growth in the use of acoustic emissions in machine failure diagnosis [22,23],
electric power system [24], civil engineering [25], etc. It has also been proven to be a promising
technique in the emerging research field of AM process monitoring [26,27]. However, the potential of
acoustic emission is underestimated in AM process monitoring. Known as a Nondestructive Testing
(NDT) technique, acoustic emission sensors are capable of monitoring a great quantity of process
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malfunctions in AM processes. Part quality, material defects, phase transformation and clogging can be
identified through only one or two acoustic emission sensors. Therefore, considering their widespread
applicability, AE is a promising process monitoring technique in FDM.

2.3. Filament Breakage Identification Based on AE Instantaneous Skewness and Relative Similarity

In most cases, filament breakage occurred at a place close to the pinch rollers or the extruder.
The current apparatus was incapable of identifying the failure efficiently. This is because the rest of
the filament still remained inside the pipeline since there was no force to drag it out of the cartridge
after breakage, as mentioned in Section 1. Therefore, an alternative method is required.

In the case of operations under steady state conditions, filaments were continuously grabbed by
the grooved teeth on the pinch rollers and fed into the liquefier/extruder. As a result, filaments started
to rub the liquefier, and the molten material was extruded from the nozzle thereafter. The extrusion
of molten material could generate weak, but steady friction, along with the whole extrusion process.
However, when a filament breakage occurred, there was no more filament feeding into the extruder.
The compression pressure generated by the feeding of filament disappears. No more material was
extruded from the nozzle. The acoustic emission should be different from the extrusion process.
Such differences could be further utilized for identification.

Currently, conventional AE feature extraction approaches involve extracting information from
either parametric AE signals or raw waveforms, utilizing various signal processing technology
including the time domain, frequency domain or both. In most circumstances, feature extraction
methods of the AE signals were mostly based on the experiences accumulated in other signal processing
technologies, not the features of the AE signal itself. Parametric processing methods such as AE hits
were customized for acoustic emission. However, they are highly experience-dependent, and most of
the information is lost inevitably.

In the present work, an AE representation method based on the shape of the probability
distribution was proposed. It is independent of the threshold or prior experiences. Features were
extracted based on the representation of the raw AE’s probability distribution. For this purpose, the
skewness and relative similarity of the raw AE signal were proposed to represent the differences
between the two conditions.

2.3.1. Instantaneous Skewness

Skewness γ is defined as the third standardized moment to measure the asymmetry of the
probability distribution of a real-valued random variable about its mean. It is a measure of the
asymmetry of the probability distribution of the data points about its mean. Zero skew means that
the tails on both sides of the mean of the data points balance out overall. For a negative skew,
the tail on the left side of the probability density function is longer or fatter than the right side.
On the contrary, a positive skew indicates that the tail on the right side is longer or fatter than the
left side (Figure 3). Generally speaking, the probability density distribution of AE is an abnormal
distribution, i.e., the skewness is not zero. In addition, it is reasonable to deduce that the probability
density distributions of the AE signal under different machining conditions should be different from
each other. Therefore, the skewness was utilized as an indicator of the filament breakage.

In order to identify the breakage in real time, a framework named instantaneous skewness was
proposed and formulated as follows.

1. Data acquisition: Collect raw acoustic emission waveforms via the Data Acquisition (DAQ) system.
2. Pre-processing: The raw waveform should be split into equilong time sections for further processing.

The length of the section depends on the monitoring object. The section length should be
cautiously determined because it is closely related to the temporal resolution.
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3. Instantaneous skewness calculation: Calculate the instantaneous skewness γinstant based
on Equation (5),

γinstant =
1

σ3
i N

N

∑
i=1

(x − µi)
3 (5)

where σi is the i-th section’s standard deviation. N is the length of each section. x is the signal
amplitude in the i-th section. µi is the mean of the i-th section.

(a) (b) (c)

Figure 3. Probability distribution shape and skew: (a) positive skew; (b) zero skew; (c) negative skew.

2.3.2. Relative Similarity

Instantaneous skewness is a measure of the asymmetry of the probability distribution of the
AE signal. It could be used to roughly evaluate the skew variation along with time. However,
it cannot represent the precise differences or similarity between two time sections. Being awareness of
this, we proposed a new AE feature extraction method, namely relative similarity, to represent the
differences between two AE probability distributions more precisely.

The Bhattacharyya Coefficient (BC) was introduced for this purpose. BC is a measure of the
amount of overlap between two statistical samples. It can be used to determine the relative closeness
of the two samples being considered. Calculating the BC involves a rudimentary form of integration
of the overlap of the two samples. For discrete probability distributions, the Bhattacharyya coefficient
is defined as,

bc(p, q) =
n

∑
i=1

√
(pi · qi), (6)

where, considering the samples p and q, n is the number of bins, and pi, qi are the frequency of samples
p and q in the i-th bin,

pi =
fi
fn

, (7)

where fi is the number of members of sample p in the i-th bin. fn is the total number of members of
sample p.

The meaning of BC is concise and explicit. It is larger and closer to one with each bin that has
members from both samples or both samples have larger overlap members, while it is smaller and
closer to zero when each bin has less overlap members. In the present application, considering two
AE samples, which were generated under the same condition, their skewness values were similar to
each other, and the majority of the members were overlapped. As a result, the BC should be larger
and closer to one. On the contrary, AE samples generated under different conditions should have less
overlap members. As a result, the BC should be smaller and closer to zero.

Based on the aforementioned attribute of BC, we defined the AE discrete probability distribution
relative similarity as the BC value of two AE signals. The framework of calculating AE discrete
probability distribution similarity using BC is formulated as follows.

1. Data acquisition: Collect raw acoustic emission waveforms via the DAQ system.
2. Splitting: Split the raw waveform into equilong time sections.
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3. Define reference distribution: A random time section should be singled out and defined as the
reference. Its distribution is denoted as reference distribution pre f . The reference distribution is
usually selected from steady machining conditions.

4. Distribution edge setting: A suitable distribution edge should be assigned for probability
distribution calculation. The distribution edge or boundary should cover the maximum absolute
value of AE amplitude during monitoring.

5. Bin width setting: The bin width is the partition in which discrete probability distributions are
calculated. The bin width should be set as close to the resolution of the DAQ system as possible,
since the resolution is bound up with the signal quantity and coding.

6. Probability distribution calculation: pi,re f should be calculated for the i-th bin of reference
time section. qi,j should be calculated for the corresponding i-th bin of another j-th section.

7. Bhattacharyya coefficient calculation: Calculate Rs based on Equation (8), which is derived
from Equation (6).

Rs =
n

∑
i=1

√
pi,re f · pi,j, j = 1, 2, · · ·, m, (8)

where m is the number of the time sections. The framework to represent AE discrete probability
distribution relative similarity using the Bhattacharyya coefficient is illustrated in Figure 4.

Figure 4. Framework of calculating AE discrete probability distribution relative similarity.

3. Experimental Setup

3.1. Setup of Monitoring Systems

To verify the proposed approach for filament breakage detection via acoustic emission,
a monitoring system was built. In order to detect the acoustic emission signals and eliminate noises,
an optimal placement for sensor mounting is of great importance. Major acoustic emission signals
during the printing process are generated from the electric motors, the movement of the printing head,
the friction between the filament and pinch rollers and the extruding process. However, compared
with the other two sources, the extruding generates rather weak AE signals. Thus, the sensor should
be mounted as close to the extruder as possible. Since most of the extruders operate at temperatures
between 50 and 200 ◦C and are enclosed inside a housing, there is a need to find a waveguide tightly
attached to the extruder’s surface. After several trial and error tests, it is found that the housing, which
is physically connected with the extruder/liquefier, has a proper surface temperature (lower than
100 ◦C) and could be used as an optimal waveguide (Figure 5).

The acoustic emission instrumentation was made up of acoustic emission transducers,
preamplifiers and an acoustic emission acquisition system (PCI-2, Physical Acoustic Corp., New York,
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NY, USA). A wide band and heat-resistant transducer (Model: WSa, Physical Acoustic Corp.,
New York, NY, USA) was used, with operation frequency bands ranging from 100 kHz–1000 kHz.
Its working temperature ranges from −65–175 ◦C, which ensures a consistent level of signal collection.
The transducer head was mounted on the extruder’s shell using glue (Figure 6). The interface of the
two surfaces was filled with high-temperature resistant vacuum grease. The sampling frequency for the
recording waveforms was 5 MHz. The waveforms were amplified with a 40-dB gain by a preamplifier.

Figure 5. 3D layout of the FDM extruder.

Figure 6. Sensor placement.

3.2. Filament Breakage Test

The filament breakage monitoring systems were tested on two FDM machines (a printer from
Statasys Ltd., New York, NY, USA and a printer from JG Aurora, Shenzhen, China, Table 1). Tests on
the Stratasys machine, marked as Test #1, were to explore the feasibility of the monitoring system,
while tests on the other machine, marked as Test #2, were to verify its universality.
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Table 1. Parameters of FDM machines.

Model Materials Layer Thickness (mm) Size Capacity (W × H × L (mm)) Nozzle Diameter

Stratasys uPrint ABS 0.254, 0.330 203 × 203 × 152 0.5 mm
JG Aurora ABS, PLA 0.100∼0.300 180 × 180 × 280 0.5 mm

Filament breakage in the two sets of tests was implemented in different ways. With regard to the
exploration test on uPrint SE Plus, artificial clipping was made at a distance of 200 mm ahead of the
extruder. Filament that has already been fed into the pinch roller continued moving into the extruder,
while the rest of the filament remained in the cartridge due to the lack of drag force. The machine
proceeded to print until all of the 200 mm of filament were fed into the extruder. The whole process
was monitoring through an acoustic emission sensor attached on the surface of the extruder’s shell,
as illustrated in Section 3.1.

For the universality verification tests on the JG Aurora printer, filament breakage was realized
through the modulation of process parameters according to the analysis result in Section 2, in order to
best mimic the actual working conditions. Based on the critical feed rate model (Equation (4)) and
experimental trials, a critical factor of 0.015 was obtained, and the critical feed rate was 72.5 mm/s.
Table 2 lists the key parameters. Buckling occurred 12 min after the printing started, and the filament
was broken therewith. Acoustic emission signals were recorded both in the normal conditions and the
filament breakage states.

Table 2. Critical feed rate parameters.

Parameters E d D2 η l L W H

Values 1.50 GPa 1.75 mm 0.50 mm 155 Pa·s 3.50 mm 8.00 mm 0.50 mm 0.20 mm

4. Results and Discussion

4.1. Results

Raw acoustic emission signals were acquired in order to obtain abundant information about the
FDM AM processes. The sampling rate of acoustic emission was as high as five mega-samples per
second. It generated 1 × 108 bytes every 10 s ((5 ×106 samples)× (2 bytes)× (10 s)). It occupied a huge
storage space and consumed considerable computing resources at the same time. Being awareness
of such a situation, spectrum analysis was performed in order to check the frequency distribution
and to determine a proper sampling rate. The frequency distributions of the steady fabrication
condition and breakage condition are displayed in Figure 7. Overall, the graphs were occupied
by low frequency bands, both under steady fabrication and breakage conditions. To be more specific,
the frequency ranged from several hertz to 150 kHz. In addition, there was a slight increase in the
amplitude after breakage occurred. The frequency at 100 kHz experienced a small increase. However,
it was not that appreciable. Nevertheless, Figure 7 can help us improve the sampling rate. According
to the frequency distribution to the graph, a smaller sampling rate, i.e., 1 MHz, was redefined for the
purpose of reducing computation resources.

Afterwards, the raw AE signals were transformed based on the proposed instantaneous skewness.
The calculation of skewness using Equation (5) involves the traversal of all the datasets to obtain their
mean value and variance. For the purpose of reducing computational burden, the origin moments
were used for simplification as follows,

µi = E[x] (9)

σ2
i = E[(x − E[x])2] = E[x2]− E2[x] = E[x2]− µ2

i (10)
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accordingly,

γ =
1

σ3
i N

N

∑
i=1

(x − µi)
3

= E[(
x − µi

σi
)3]

=
E[(x − µi)

3]

σ3
i

=
E[x3]− 3µiE[x2] + 3µ2

i E[x]− µ3
i

σ3
i

=
E[x3]− 3µiE[x2] + 2µ3

i
σ3

i

=
E[x3]− 3E[x]E[x2] + 2E3[x]

(E[x2]− E2[x])3/2

(11)

On the basis of the above-mentioned equations, the moving skewness is defined using the
following equation,

γinstant(n) =
E[x3(n)]− 3E[x(n)]E[x2(n)] + 2E3[x(n)]

(E[x2(n)]− E2[x(n)])3/2 (12)

where x(n) is each of the amplitude values of the n-th section.
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Figure 7. Amplitude spectrum of acoustic emission signals under different manufacturing conditions.

In order to identify the filament breakage without delay, as well as to reduce the total computation
time, an optimal signal section length N has to be determined. A smaller length results in larger
data points, which makes the calculation of skewness time consuming. Furthermore, during the
manufacturing process, the feed rate was controlled under 25 mm/s. The length of the nozzle was
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59 mm. Therefore, it will take the filament approximately 2.5 s to pass through the nozzle, which
means that the time of breakage alarming could be as short as 2.36 s, provided that a suitable section N
is given. Accordingly, the length N is designated as 5 ×105, which is 50 ms correspondingly. The result
of Test #1 is displayed in Figure 8. Figure 9 shows the instantaneous skewness of Test #2.

Figure 8. Instantaneous skewness of the AE signal for Test #1 (section length = 50 ms).

Figure 9. Instantaneous skewness of AE signal for Test #2 (section length = 50 ms).

As shown in Figure 8, the graph is roughly divided into two stages. The skewness went up and
down in the first stage. However, it roughly maintained a positive level. In contrast, the skewness
value crept down below zero after the filament broke. A similar tendency is also noticed in Figure 9.
As mentioned above, a positive skew indicated that the mass of the distribution is concentrated on the
left of the figure. The mean is being skewed to the left of a typical center of the acoustic emission signal,
and vice versa. For the steady manufacturing condition, acoustic emission signals produced by the
extruder were rather weak. This is because of the feeble friction between melting material and the
inner wall of the extruder. As a consequence, its discrete probability density distribution was slightly
right-skewed. In contrast, the rest of the broken filament, which cannot be fed into the extruder will be
constantly rubbing with the pinch rollers. The friction could produce slightly higher emissions than
the steady condition. The narrow differences could be magnified in their probability distribution.

It cannot be neglected from Figures 8 and 9 that there are several positive values after the break
point. They were caused by the unsteady fluctuations after breakage. Such a phenomenon should be
eliminated. In order to extract features that could precisely represent the variations in the probability
distribution, a random time section was selected from steady feeding AE signals and designated as the
reference. The relative similarity was calculated using the proposed framework. The bin width was
fixed as 0.001 volts, because the quantization resolution of the DAQ was 18 bit and the voltage input
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range was ±10 v. A single bin width contained only one possible voltage value. Results are described
in Figures 10 and 11.

Figure 10. Relative similarity of the AE signal for Test #1 (section length = 10 ms).

Figure 11. Relative similarity of AE signal for Test #2 (section length = 10 ms).

As can be seen in Figure 10, two stages, i.e., steady feeding and filament breakage, are clearly
identified. The relative similarity values are higher and closer to one at steady feeding stage, because
AE signals at this stage are similar to the reference. The relative similarity values decrease markedly
with fluctuations after breakage. This is due to the differences between the breakage AE signals and
the reference. In contrast to Figures 8 and 10, the boundaries of the two stages are much more clear.

The effectiveness of instantaneous skewness and relative similarity were also quantified by
the Coefficient of Variation (CV). CV is a standardized measure of the dispersion of a probability
distribution and is defined as the ratio of the standard deviation δ to the mean µ,

CV =
δ

µ
. (13)

A CV of zero suggests that all values are the same with no variability, while wider scatters should
have larger CV values. The results of the instantaneous skewness and relative similarity are displayed
in Table 3.

It is noticed that CV values of the instantaneous skewness are markedly higher than the relative
similarity in Table 3. This suggests that the instantaneous skewness experienced more significant
fluctuations than the relative similarity, as can be seen from the above four graphs. This indicates that
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the skewness is more sensitive to the breakage. However, the boundary of instantaneous skewness is
not clear enough. Overall, the results suggest that the relative similarity is better than the instantaneous
skewness in filament breakage detection.

Table 3. CV values for instantaneous skewness and relative similarity.

Parameters Test #1 Test #2

Instantaneous skewness 1.25 1.23
Relative similarity 0.014 0.011

4.2. Discussion

The proposed methods involve limited pre-defined parameters. However, the length of the time
section could influence the results of both the instantaneous skewness and the relative similarity.
As a consequence, it should be cautiously determined.

The temporal resolution and computation time of instantaneous skewness are dependent
on the section length time. In general, longer length brings worse temporal resolution, but less
computation time. Therefore, the length should be determined based on the monitoring object. In this
work, the filament feeding rate is relatively slow. As a consequence, a longer time section was selected.
The results of a section length of 10 ms for both tests are displayed in Figures 12 and 13.

Figure 12. Instantaneous skewness of AE signal for Test #1 (section length = 10 ms).

Figure 13. Instantaneous skewness of AE signal for Test #2 (section length = 10 ms).
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As expected, the scatter densities are higher in Figures 12 and 13 and give rise to more fluctuations
than Figures 8 and 9. The CV values of both tests rise with the increase of temporal resolution, as can
be seen in Table 4. Both negative skew and positive skew occupy the scatter. Although the two stages
could be identified visually, their boundaries are still vague.

Table 4. CV values of instantaneous skewness for different time sections.

Parameters Length of 10 ms Length of 50 ms

Test #1 2.07 1.25
Test #2 1.93 1.23

As regards relative similarity, the section length time is also linked to the temporal resolution of the
identification result. A longer section length will give rise to more computation time for the calculation
of the probability distribution, while a shorter section length will cause a similar consequence since it
increases the total amount of time sections. Two different section length times, i.e., 10 ms and 50 ms,
were used to calculate the relative similarity. Results on Test #1 are presented in Figure 14. According
to the graph, it is clear that different lengths exerted slightly different similarity values. The relative
similarity is slightly lower at a section length of 50 ms. However, the break point can be identified
from both scatters. Furthermore, Table 5 proclaims that a longer section produces slightly higher CV,
which suggests that the relative similarity experienced more fluctuations with the increase of section
length, as we expected. The results of Test #2 have similar trends as Test #1, so they are not displayed
in this section.

Table 5. CV values of relative similarity for different time sections.

Parameters Length of 10 ms Length of 50 ms

Relative similarity 0.014 0.020

Figure 14. Relative similarity results using different time sections for Test #1.

5. Conclusions

The aim of the present study was to identify filament breakage features through the acoustic
emission technique. Filament breakage is a common failure in FDM processes. It could cause several
malfunctions such as nozzle clogging, geometrical misalignments or manufacturing failure. To address
this issue, firstly, the present work analyzed the mechanism of filament breakage. A critical feed
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rate was obtained, which is dependent on the process parameters. Secondly, the feasibility of
identifying filament breakage using the AE technique was depicted. Based on the FDM process
and AE technique, it is deduced that AE signals after breakage should have a different probability
distribution, which was further realized using two quantified indicators, i.e., instantaneous skewness
and relative similarity. The frameworks for calculating both indicators are thoroughly described.
Afterwards, the proposed methods were validated through several FDM tests. Results indicated
that the instantaneous skewness could be used as a preliminary indicator for filament breakage.
However, it is not good enough to represent the malfunction. In contrast, filament breakage could
be clearly identified via relative similarity. The breakage states could be separated from the steady
feeding states. The influences of section length were discussed. It is found that the increase of section
length could increase the relative similarity. Nevertheless, it did not add difficulties for filament
breakage identification.

The results of the present work could provide a potential approach for in situ process monitoring
of the FDM process. For future work, monitoring other process malfunctions, such as nozzle clogging
and manufacturing failure using the AE technique in the FDM process will be further studied. Building
a closed-loop FDM process monitoring system based on the acoustic emission technique will be another
interesting work.
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