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Abstract: Power transmission line icing (PTLI) problems, which cause tremendous damage to the
power grids, has drawn much attention. Existing three-dimensional measurement methods based on
binocular stereo vision was recently introduced to measure the ice thickness in PTLI, but failed to
meet requirements of practical applications due to inefficient keypoint matching in the complex PTLI
scene. In this paper, a new keypoint matching method is proposed based on the local multi-layer
convolutional neural network (CNN) features, termed Local Convolutional Features (LCFs). LCFs
are deployed to extract more discriminative features than the conventional CNNs. Particularly
in LCFs, a multi-layer features fusion scheme is exploited to boost the matching performance.
Together with a location constraint method, the correspondence of neighboring keypoints is further
refined. Our approach achieves 1.5%, 5.3%, 13.1%, 27.3% improvement in the average matching
precision compared with SIFT, SURF, ORB and MatchNet on the public Middlebury dataset, and the
measurement accuracy of ice thickness can reach 90.9% compared with manual measurement on the
collected PTLI dataset.

Keywords: power transmission line icing; keypoint matching; convolutional neural network; feature
fusion; location constraint

1. Introduction

The development of the smart grid makes higher demands on power transmission line design,
operation, and maintenance. However, power transmission lines are vulnerable to icing under the
condition of low temperatures, high air humidity and snow. Indeed, the ice load, wind load and
dynamic oscillation may all cause a massive power system failure, such as the cable rupture, tower
failure as well as transmission line galloping [1–4]. Consequently, an effective power transmission line
icing (PTLI) monitoring and predictive alarm system is critical to ensure power grid safety.

To this end, some traditional PTLI monitoring methods have been widely used, such as artificial
inspection [1], installing pressure sensors [2], building meteorological models [3,4] and so on. In recent
years, computer vision-based PTLI monitoring methods have become a new research direction in which
icing monitoring can be visualized, convenient and economical [5–10]. Some algorithms based on 2D
measurement are presented to get accurate ice edges, such as adaptive threshold segmentation [5],
edge extraction [6] and wavelet analysis [7]. Then the ice thickness can be calculated through the ratio
of pixel widths between edges in normal and icing situations. However, these algorithms have poor
performance under complex context or low visibility conditions. Moreover, this 2D estimation method
cannot obtain the comprehensive information of icing. To address this issue, methods based on 3D
measurement have been introduced to monitor PTLI in order to obtain more accurate information of
icing. In [8–10], the binocular stereo vision methods were presented to measure ice thickness. The main
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implementation steps of these methods can be summarized as: camera calibration, keypoints matching,
and ice thickness calculation. The accuracy of keypoint matching has a crucial impact on measurement
results. Nevertheless, instead of proposing a new algorithm, the aforementioned literature employs the
improved classic feature description and matching methods to verify the feasibility of 3D measurement.

A typical keypoint matching method mainly includes feature description, feature matching and
outlier removal. Although the advanced feature-matching methods and outlier removal approaches
can effectively enhance the final performance of keypoint matching [11–14], discriminative feature
description is the foundation of the aforementioned processes, especially in the complex PTLI scene.
Thus, the focus of this work is on extracting discriminative features and applying it to keypoint
matching in the PTLI.

The image noise, similarity of foreground and background, high texture repetition, and low
distinction of icing types are the main factors affecting the accuracy of keypoint matching in a PTLI
scene. Under such conditions, it is difficult to achieve discriminative features using traditional
hand-crafted features, such as SIFT (Scale-Invariant Feature Transform) [15], SURF (Speeded Up
Robust Features) [16] and ORB (Oriented FAST and Rotated BRIEF) [17]. As a result, false matching
may be caused. In contrast, the features of CNN have certain invariance on translation, distortion,
and scaling, together with strong robustness and fault tolerance. Additionally, the learning features
have better performance in description of internal information of data and expressiveness [18].
Based on the aforementioned advantages, convolutional features are widely used in matching
tasks [19–24]. In Fischer et al. [19], CNN deep features were compared with standard SIFT
descriptors in terms of region matching and turned out to be superior to SIFT under several typical
challenges. In Zagoruyko et al. [20], several CNN-based models were built for comparing image
patches, which contain two-channel-based ones, two-stream multi-resolution models, and SPP-based
(Spatial-Pyramid-Pooling) Siamese networks. The models can significantly outperform the state-of-art
on several benchmark datasets. In Han et al. [21], three fully-connected layers with ReLU (Rectified
Linear Units) nonlinearity were used to compute the similarity between the extracted features.
In Simo-Serra et al. [22], patch-level correspondence was realized by training deep convolutional
models for the extraction of image descriptors. Zbontar et al. [23] addressed the matching cost
problem by learning a similarity measure on small image patches using CNN. Combining with the
post-processing steps, dense stereo matching can be achieved. Furthermore, Luo et al. [24] replaced
the concatenation layer and subsequent processing layers by a single product layer, which shows
better performance on efficiency than the works in [23]. Different from the models in [19–24], a new
keypoint matching method is presented in this paper based on the local multi-layer CNN features,
termed Local Convolutional Features (LCFs), which can extract more discriminative features better
than the conventional CNNs.

In summary, our main contributions include:

1. A keypoint description method based on CNN deep features is proposed to extract
discriminative features.

2. A multi-layer features fusion scheme is exploited to further boost the discrimination of features.
3. A location constraint method is deployed to refine the matching performance of

neighboring keypoints.

The rest of this paper is organized as follows. Section 2 summarizes feature extraction based on
CNNs. Section 3 illustrates the proposed method for keypoint matching based on LCFs. Section 4
introduces our proposed ice thickness calculation by 3D measurement. Section 5 presents the
experimental results and discussion. In addition, Section 6 states the conclusions and future work.

2. Feature Extraction Based on Convolutional Neural Networks

A typical CNN model is mainly composed of convolution layer and pooling layer alternately.
The convolution layers are used to extract local features, which not only enhance the feature
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information, but also reduce the noise of input image. While the pooling layers are designed to
scale the mapping and reduce the number of parameters, as a result, the extracted features have certain
invariance on translation, rotation, and scaling.

Assume there are L layers in a CNN model, and k feature maps in the lth layer, where
l = 1, 2, . . . . . . , L. At a certain layer, the previous layer’s feature maps are convolved with the learning
filter kernel wl

nk and put through the activation function F(·) to output the feature maps Cl
k [25]. Thus,

the kth feature map of the lth layer can be computed as:

Cl
k = F(∑n∈Ik

wl
nk ∗Ml−1

n + bl
k) (1)

where Ml−1
n is nth feature map in (l − 1)th layer, * represents the convolutional operation, bl

k is an
additive bias of nth feature map in lth layer, Ik denotes all the input convolved images of the kth
feature map. In addition, the activation function F(·) is generally a nonlinear activation function
which operates component wisely, e.g., the tanh or sigmoid function. The feature map is generated by
accumulating the convolutional multiple input maps.

The pooling layer enhances the scaling invariance by reducing the spatial resolution of the
network, and the output map can be expressed as:

Sl
k = F(δl

kdown(Ml−1
k ) + bl

k) (2)

where down(·) denotes the down-sampling function, δl
k is the multiplicative bias, and bl

k represents an
additive bias. The value of δl

k varies with the down-sampling method, which usually includes max and
mean pooling. The max pooling is used for extracting texture features, while the mean pooling helps
to keep the image background. Take the mean pooling as an example, assume δl

k = 1/m, it indicates
that each m × m pixel block is down-sampled and the size of output maps is 1/m of the input.

Generally, multi-layer and feed-forward CNN trained with the back-propagation algorithm is
widely used to solve the classification problems. For a multiclass problem with C classes and N training
samples, the sample error is represented as:

EN =
1
2

N

∑
n=1

C

∑
k=1

(yn
k − ln

k )
2 (3)

where yn
k denotes the kth output unit, and ln

k is the label of kth dimension of the nth sample.

3. Proposed Approach

As shown in Figure 1, our proposed approach framework for keypoint matching is illustrated.
Given the stereo image pairs, we first detect the keypoints as the fundamental elements for matching.
Then, we describe the keypoints by the proposed local convolutional features. Next, the features are
matched by cosine similarity. Finally, a location constraint method is constructed to optimize the
initial matching.
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3.1. Keypoints Detection

To extract features and build the optimized matching model, the first step is to detect keypoints
from the input image. In this paper, the keypoints detection method is based on the widely used
difference-of-Gaussian (DOG) method [15], which has advantages of scale invariance and being
anti-fuzzy. DOG operator is a method of gray image enhancement and corner detection, which mainly
includes scale space construction, local extreme detection, and elimination of poor keypoints. To detect
stable keypoint location in scale space more efficiently, the difference-of-Gaussian function is proposed,
which can be computed from the difference of two nearby scales. To detect the extreme point in the
scale space and two-dimensional image space, the grey value of the target point should be compared
with that of the neighboring 26 points. Then, DOG identifies the location and scale accurately by fitting
the three-dimensional quadratic function. In addition, the low-contrast and unstable edge response
points are removed, which can enhance the matching stability and improve the anti-noise ability.

In Section 5.3.1, some experiments are carried out on PTLI images to compare detection
performance between DOG and three classic algorithms, including Hessian, Harris, and FAST.

3.2. Local Convolutional Features

The feature description of the keypoint plays a critical role in the matching process. In contrast
to the traditional hand-crafted local features, this paper proposes a feature description method by
extracting the LCFs.

3.2.1. Keypoints Description Using CNN Features

As mentioned in Section 1, some related CNN-based approaches [19–24] have suggested that
the CNN-based features outperform the traditional hand-crafted features. To extract the robust and
internal features, in this section, we introduce a novel multi-scale feature description method based on
local convolutional features. The proposed method allows the full-size image to input the CNN model,
and all the features of the keypoints can be extracted once.

Our method is based on the well-known fully convolutional network (FCN) [26] model. In FCN,
the fully connected layers are transformed into convolution layers one by one, which makes the
input image unconstrained by the fixed size. Moreover, small stride of each layer contributes to
keeping details of information. Based on the aforementioned factors, the model FCN-VGG16 (fully
convolutional network based on VGG 16-layer net) is utilized to extract convolutional features, and its
feature network architecture is shown in Table 1. The focus of this work is on extracting the discriminate
features in a new way.

After the keypoint detection by DOG, we obtain P feature points of the input image. Suppose pi
is the ith keypoints of the image, where pI ∈ P. As the analysis in Section 2, the convolutional feature
of the keypoint pi in lth layer can be written as:

V l
i = (Cl

i1, Cl
i2, · · · · · · , Cl

ik, · · · · · · , Cl
i(N−1), Cl

iN) (4)

where Cl
ik is a feature component of the feature map Cl

k in lth layer. It can be seen that V l
i is composed

of these feature components in order. Intuitively, the feature component Cl
ik of kth feature map in lth

layer is selected as the feature description of keypoint pi. However, it is just one number, which does
not provide a rich description. Thus, we extract the feature components of all the feature maps in lth
layer. In addition, the collection of the feature components is called a local convolutional feature vector
V l

i , which gives a rich description. Apparently, it is critical to find the mapping location of keypoint in
each layer.

Locations in various layers correspond to the locations in the image they are path-connected to,
which are called their receptive fields. Figure 2 illustrates the corresponding mapping location of
keypoint in different layers.
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Table 1. Feature network architecture of fully convolutional network based on VGG 16-layer net
(FCN-VGG16) (C: convolution, MP: max-pooling).

Name Type Output Dim. Kernel Size Stride

conv1_1 C 64 3 × 3 1
conv1_2 C 64 3 × 3 1

pool1 MP 64 2 × 2 2
conv2_1 C 128 3 × 3 1
conv2_2 C 128 3 × 3 1

pool2 MP 128 2 × 2 2
conv3_1 C 256 3 × 3 1
conv3_2 C 256 3 × 3 1
conv3_3 C 256 3 × 3 1

pool3 MP 256 2 × 2 2
conv4_1 C 512 3 × 3 1
conv4_2 C 512 3 × 3 1
conv4_3 C 512 3 × 3 1

pool4 MP 512 2 × 2 2
conv5_1 C 512 3 × 3 1
conv5_2 C 512 3 × 3 1
conv5_3 C 512 3 × 3 1

pool5 MP 512 2 × 2 2
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Assume the location of keypoint pi in original image is (xi, yi), the mapping location (xli, yli) in
lth layer can be expressed as: 

xli =
xi

S
∏

s=1
ms

yli =
yi

S
∏

s=1
ms

(5)

where s denotes the number of pooling layers before the lth layer, and ms is scale of the sth pooling
layer. In FCN-VGG16, each convolutional layer does not change the size of input map for that the
value of stride is 1. Thus, the mapping location in each layer is mainly influenced by the pooling layers.

3.2.2. Multi-Layer Features Fusion

In a multi-layer CNN model, the expression abilities of various layers’ features are different,
which can be summarized as follows. With the small size of receptive field and shallow convolutional
operation, the low-level features can get more accurate location with fewer points matched. In addition,
the middle-level features can match larger number of points for the large size of receptive field, however,
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the matching accuracy is slightly lower than that of low-level features, while the high-level features are
not suitable for keypoint matching due to its large receptive field. Thus, a fusion scheme of the low-
and middle-level features is proposed to extract robust features, which inherits the advantages of the
original features and achieves a better matching performance. Multi-scale information is introduced
into the aggregated features, which can boost the discrimination and robust of features.

The visualization of our multi-layer features fusion scheme is shown in Figure 3. After extracting
the features in each layer, the aggregated features are formulated as the fusion of features from the low
level and middle level layers. In the process of fusion, the initial weight of each layer’s feature is based
on its proportion of correct matches, then fine-tuned for the best matching results. The multi-layer
features fusion is given as:

Vf = {αVl , Vm} (6)

where α is a scaling factor. Vl and Vm are the features from low-level and middle-level layers
respectively. Intuitively, Vl and Vm are concatenated to a single feature vector Vf , the length of
which is the sum of the lengths of Vl and Vm.
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3.3. Feature Matching

Through the keypoint detection and description, each keypoint is given a multi-dimensional
feature. Then, features are matched by cosine similarity for its high running speed and relatively
accuracy. Additionally, a distance ratio described in [15,27] is defined for better matching, which is
the ratio between the distances of a keypoint from the left image to its nearest keypoint and to its
second-nearest keypoint in the right image. The ratio is given as:

distratio =
dnearest

dsec-nearest
(7)

where dnearest is the nearest distance and dsec-nearest is the second-nearest distance. We accept the match
if the distratio is smaller than 0.6, which is set empirically by experiments. The smaller the value of
distratio is, the fewer points will be matched and higher matching accuracy will be. On the contrary,
the number of matched points will increase while the accuracy decreases when the value of distratio
becomes larger.
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3.4. Matching Optimization Based on Location Constraint

Based on the feature extraction of LCFs, an extracted feature corresponds to a region of pixels in the
original image. For example, a feature in the conv3_2 layer corresponds to a 4× 4 region in the original
image due to the two pooling operations. Thus, the pixels in this region are described by the same
feature. When there are multiple keypoints in this region, the description cannot distinguish them.

To address this problem, a method for matching optimization based on location constraint is
presented, which can use the location information to discriminate each keypoint in the same region.
Assume there are nl and nr keypoints correspond to feature Vl and Vr, respectively. If feature Vl and Vr

are matched, the matching relationship of keypoints from these two point sets can be expressed as:
Pl(

nl
∑
i

xli

nl
,

nl
∑
i

yli

nl
)←→ Pr(

nr
∑
j

xrj

nr
,

nr
∑
j

yrj

nr
), nl 6= nr

Pl(xli, yli)
cmp(xli ,xrj)↔
cmp(yli ,yrj)

Pr(xrj, yrj), nl = nr

(8)

where Pl(xli, yli) is the position of ith keypoint in left image and Pr(xrj, yrj) is that of jth keypoint in
right image. cmp(·) denotes a function that compares the value of the inputting data. When nl 6= nr,
the central position of nl points corresponds to that of nr points. When nl = nr, the correspondence of
each point from the two point sets is determined by comparing the location information. After a series
of experiments using DOG operator, it was found that the values of nl and nr are not lager than 3 in a
4 × 4 region, furthermore, the probability of nl = 3 (nr = 3) is small.

4. Ice Thickness Calculation Using 3D Measurement

Ice thickness is the key indicator of ice disaster. In this section, we present an approach to ice
thickness measurement based on the proposed keypoint matching method. Figure 4 illustrates the
flowchart of the ice thickness calculation. Given the binocular images, we first compute the camera
parameters through camera calibration. Then, edge detection is used to find the top and bottom
boundary of ice formed on power transmission lines. Next, the 3D coordinates of the keypoints on the
edge of ice are computed by using the proposed keypoint matching method. Finally, the ice thickness
is calculated.
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m) are
keypoints near the top and bottom of ice edges, respectively. The 3D coordinates of those keypoints
are obtained through the 3D measurement process. Thus, the top line Lt and bottom line Lb of ice edge
can be fitted easily. The distance D between these two lines can be considered as the total thickness
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after icing. Apparently, D is the sum of wire diameter and twice the ice thickness. If the diameter of
the power line is dl , then the ice thickness can be expressed as:

d =
D− dl

2
(9)

5. Experiments and Evaluation

In this section, we evaluate the proposed method on two different challenging tasks: the actual
collected simulated PTLI scene dataset and Middlebury dataset. On the PTLI dataset, we verify the
effectiveness of the proposed method on the ice thickness measurement. In addition, on the Middlebury
dataset, the overall performance of our method is evaluated in terms of matching precision and recall.
A keypoint pair is considered to be a correct match if the error of true match is within 3 pixels.
Moreover, the repetitive matches are deleted for reasonable comparison.

5.1. Datasets and Evaluation Metrics

5.1.1. Datasets

The matching performance of our proposed method is evaluated on the actual collected simulated
PTLI scene dataset and Middlebury stereo dataset. On the one hand, the image pairs of simulated PTLI
dataset are collected via Daheng binocular camera. It is a huge and difficult work doing pixel-level
labeling on collected images, thus, the measurement results of ice thickness by the proposed method
are directly compared with the results of manual measurement. On the other hand, Middlebury
is a stereo dataset, with each part published in five different works in the years 2001, 2003, 2005,
2006, 2014, respectively [28–32]. The image pairs of this database are indoor scenes taken controlled
lighting conditions, and the density and precision of true disparities are high via using structured light
measurement. The dataset is divided into 35 training sets and 25 testing sets, and the resolution of
image pairs is selected the smallest–size of the given configuration. There are ten thousand keypoints,
which are enough for point matching test.

5.1.2. Evaluation Metrics

Two evaluation metrics described in [33] are adopted to assess the matching performance. The first
criterion is precision, which is based on the number of correct matches (# correct matches) with respect
to the number of all matched points (# all matches) by the matching algorithm. The formula is shown as:

precision =
#correct matches

#all matches
(10)

The second criterion is recall, namely the number of correct matches with respect to the number
of corresponding points (# true matches) between input image pairs. It can be expressed as:

recall =
#correct matches

#true matches
(11)

5.2. Performance of the Proposed Method

5.2.1. Experiments Using Various Layers’ Features

In this section, the matching performance of various layers’ features is tested at all image pairs
from Middlebury dataset. Thus, the features from different layers are extracted by the proposed
method. The statistical results of precision and recall are shown in Figures 5 and 6.

Figure 5 illustrates the average matching precision of various layers’ features. In general,
the features of pooling layers show lower performance. As the number of layers continuously increase,
the matching precision of convolutional layers may increase before decreasing. For the small receptive
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field and few convolutions, the matching performance of layer conv1 is poor. On the contrary,
the features of layer conv2 and conv3 are suitable for point matching because of the appropriate
receptive field and convolutional operation. Apparently, the conv2_2 features achieve the superior
performance in matching precision, and the average precision is 91.3%. Nevertheless, too large
receptive field leads to lower performance of the high layer features, such as layer conv4 and conv5
features. Figure 6 shows the average matching recall of various layers’ features. The distribution
of recall is similar to that of precision, and the highest recall 42.9% can be achieved by using
conv3_2 features.Sensors 2018, 18, x FOR PEER REVIEW  9 of 16 
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5.2.2. Importance of the Proposed Feature Fusion scheme and Location Constraint Method

To prove the effect of the proposed multi-layer features fusion scheme and location constraint
method in matching performance, we also evaluate it on Middlebury dataset. The LCFs features
are the integration of conv2_2 and conv3_2 features, and the weight parameter α is chosen as 0.6
based on experimental validations. From the experimental results of various layers’ features, conv2_2
and conv3_2 features are the best candidates in terms of matching precision and recall, respectively.
Figure 7 gives the matching comparison of LCFs with the conv2_2 and conv3_2 features. The matching
precision of LCFs 91.6% is higher than conv2_2 features 91.3% and conv3_2 features 89.5%, and the
recall of LCFs 43.2% is also higher than conv2_2 features 39.9% and conv3_2 features 42.9%. It is
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shown that the feature fusion scheme has already achieved promising performance. Furthermore,
with the proposed location constraint optimization, the matching precision goes up from 91.6% to
92.2%, recall from 43.2% to 43.5%. It indicates that our optimization method has improved the matching
performance without affecting the efficiency. In addition, we note that the optimization method mainly
works when the keypoints fall in the same region. In summary, our method achieves excellent results
in terms of precision and recall. Furthermore, the proposed idea is also flexible enough to combine any
layer features to achieve further performance boost.
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5.3. Ice Thickness Measurement

In this section, experiments are carried out on ice thickness measurement by using the proposed
keypoint matching method at the actual collected simulated PTLI scene dataset.

5.3.1. Keypoint Detection with Different Operators

Keypoint detection is the basis for feature extraction and matching. Figure 8 shows the detection
results by DOG, Hessian, Harris and FAST in the PLTI scene. It presents that: (1) by contrast,
the number of detected keypoints of DOG is the largest, and enough edge-points provide a guarantee
for ice thickness measurement. (2) Hessian is less sensitive to illumination, and its detection speed is
faster than DOG while the extraction of edge-points is not much. (3) the standard Harris does not have
invariance in terms of scale transformation. (4) FAST runs the fastest; however, its robustness is poor
when the noise is high, and the detection results depend on the value of the threshold t. Based on the
analysis above, this paper utilizes DOG to detect keypoints.
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5.3.2. Results of Ice Thickness Measurement

With 3D measurement principle of binocular stereo vision, the 3D information of the keypoint is
determined by camera parameters and the correspondence of the keypoint. Through Zhang Zhengyou
calibration method [34], the stereo calibration results of our binocular stereo camera are as follows.

KK_le f t =

 2405.78292 0 542.17752
0 2429.85134 394.52050
0 0 1

, KK_right =

 2528.76308 0 447.60667
0 2522.2384 449.83808
0 0 1

 (12)

R =

 0.9995846 0.0096263 −0.0271654
−0.0111616 0.9983151 −0.0569422
0.0265715 0.0572218 0.9980078

, T =

 172.68493
32.17323
57.83972

 (13)

Here, KK_left and KK_right are the internal parameters of left and right camera. R and T are the
rotation matrix and the translation matrix between the coordinate system.

In this experiment, ten image pairs of PTLI scene are used for testing the measurement accuracy
of ice thickness. The ice thickness values of specified locations from the ten image pairs are obtained
by our method and manual measurement respectively. In addition, the manual measurement results
are measured by Vernier caliper with the accuracy of 0.02 mm. Table 2 shows the comparison results
in detail. It shows that the absolute error is acceptable for ice thickness measurement. Assume the
true value of ice thickness is the manual measured value, the average accuracy of our method can
reach 90.9%.

Table 2. Experimental results of ice thickness (mm).

Number 1 2 3 4 5 6 7 8 9 10

Manual measurement 7.12 10.10 13.98 8.92 11.85 10.60 5.85 10.50 8.34 9.80
LCFs 6.83 11.26 12.85 8.60 10.98 11.32 7.46 11.31 9.26 9.49

Absolute error 0.29 1.16 1.13 0.32 0.87 0.72 1.61 0.81 0.92 0.31

5.4. Benchmark Comparisons

5.4.1. Comparison with Other Feature Description Methods

In this part, the proposed method LCFs is compared with four state-of-the-art algorithms at
25 test image pairs from Middlebury dataset, including traditional hand-crafted features SIFT, SURF,
ORB as well as CNN-based models MatchNet [21]. MatchNet is a typical method for comparing image
patches in recent years. For fair comparison, we modify the matching process of all approaches under
the same metric shown in Section 3.3. In addition, the mismatched points are not removed in all
methods. Moreover, the repetitive matches are deleted for reasonable comparison. In the experiment
of MatchNet, we use the pre-trained model to compute the matching scores of the patches (with the
size of 64 × 64). In addition, the patches are considered as a matching pair if their output score is 1.
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Figure 9 demonstrates that LCFs is better than SURF, ORB in most cases except for a few, besides,
it achieves comparable performance with SIFT in terms of matching precision. Our approach achieves
1.5%, 5.3%, 13.1%, 27.3% improvement in the average precision compared with SIFT, SURF, ORB
and MatchNet. MatchNet can only output the matching score of two image patches, which makes
it inefficient to implement the matching between the two images without other optimization
matching strategies. Furthermore, there are patches that match with multiple patches due to the
low discrimination of the model without being fine-tuned.
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Figure 10 reports the comparison of matching recall. Above all, the number of matches depends
on the keypoints detection method and matching approach. The detection operator of our method is
DOG, the same with SIFT, while the operators of SURF and ORB are Hessian and FAST, respectively.
The results show that the proposed method is lower than SIFT in terms of matching recall. As we know,
the correspondence of the keypoints depends on whether the corresponding features are matched.
However, for the case of high similarity and dimension, cosine similarity treats each feature component
equally and does not take interrelation into account. As a result, some correct matches are discarded in
the process of matching. This problem can be addressed by integrating more discriminative metrics
into our framework, which help to verify the correspondence between the similar features. This topic
will be investigated in our future research.Sensors 2018, 18, x FOR PEER REVIEW  13 of 16 
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5.4.2. Comparison with Outlier Removal Method

After the process of the proposed method, the initial correspondences have been established.
The initial correspondence typically includes most of the true matches, but still a small number of
false matches. The purpose of our method is to get more accurate initial matching. It is known that
keypoint matching can be further improved by false matching removal. In this section, we conduct
comparative experiments to examine the effect of outlier removal. The method [14] is used to remove
the false matches of the initial matching.

Table 3 shows the experimental results in detail. By combining with method [14], the final average
precision of SIFT goes up from 92.3% to 98.1%. As for LCFs, the final average precision is improved
from 93.8% to 99.6%. The work of outlier removal can effectively improve the final matching accuracy.
Moreover, it also indicates that our method gets a more stable initial match than SIFT dose. In terms of
recall, the average recall is slightly reduced after the outlier removal process. This is because some
correct matches are deleted while the outlier is removed. Therefore, we will focus on the outlier
removal algorithms in the future work.

Table 3. Experimental results with outlier removal method.

Method Precision (Average) Recall (Average)

SIFT 92.3% 67.4%
LCFs 93.8% 53.6%

SIFT + [14] 98.1% 66.9%
LCFs + [14] 99.6% 53.1%

6. Conclusions

This paper proposes a new keypoint matching method based on the local convolutional features.
First, a novel keypoint description method that utilizes the CNN features is proposed, which can
extract local discriminative features. Then, a fusion scheme of multi-layer features is presented to
aggregate the low and middle level CNN features. Since combining the multi-scale information, LCFs
can extract more discriminative features. In addition, a location constraint method is exploited to
refine the correspondence of neighboring keypoints. We apply the proposed method to measure
the ice thickness in PTLI scene, and the average accuracy can reach 90.9% compared with manual
measurement. Finally, the experimental results show that the proposed approach achieves 1.5%, 5.3%,
13.1%, 27.3% improvement in the average precision compared with SIFT, SURF, ORB and MatchNet on
Middlebury dataset. In the future, we aim to use metric learning and outlier removal algorithm to
optimize the matching performance. Furthermore, we will apply the proposed method to Unmanned
Aerial Vehicle (UAV) power line inspection [35,36], and combine our method with correlation filter [37]
for the other applications.
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Stereo Datasets with Subpixel-Accurate Ground Truth. In Pattern Recognition; Lecture Notes in Computer
Science; Jiang, X., Hornegger, J., Koch, R., Eds.; Springer: Cham, Switzerland, 2014; Volume 8753, pp. 31–42.
[CrossRef]

33. Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 27, 1615–1630. [CrossRef] [PubMed]

34. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22,
1330–1334. [CrossRef]

35. Li, Z.; Liu, Y.; Walker, R.; Hayward, R.; Zhang, J. Towards automatic power line detection for a UAV
surveillance system using pulse coupled neural filter and an improved Hough transform. Mach. Vis. Appl.
2010, 21, 677–686. [CrossRef]

36. Zhang, B.; Liu, W.; Mao, Z.; Liu, J.; Shen, L. Cooperative and geometric learning algorithm (CGLA) for path
planning of UAVs with limited information. Automatica 2014, 50, 809–820. [CrossRef]

37. Zhang, B.; Luan, S.; Chen, C.; Han, J.; Wang, W.; Perina, A.; Shao, L. Latent Constrained Correlation Filter.
IEEE Trans. Image Process. 2018, 27, 1038–1048. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/TIP.2015.2412374
http://www.ncbi.nlm.nih.gov/pubmed/25781876
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1109/CVPR.2003.1211354
http://dx.doi.org/10.1109/CVPR.2007.383191
http://dx.doi.org/10.1109/CVPR.2007.383248
http://dx.doi.org/10.1007/978-3-319-11752-2_3
http://dx.doi.org/10.1109/TPAMI.2005.188
http://www.ncbi.nlm.nih.gov/pubmed/16237996
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1007/s00138-009-0206-y
http://dx.doi.org/10.1016/j.automatica.2013.12.035
http://dx.doi.org/10.1109/TIP.2017.2775060
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Feature Extraction Based on Convolutional Neural Networks 
	Proposed Approach 
	Keypoints Detection 
	Local Convolutional Features 
	Keypoints Description Using CNN Features 
	Multi-Layer Features Fusion 

	Feature Matching 
	Matching Optimization Based on Location Constraint 

	Ice Thickness Calculation Using 3D Measurement 
	Experiments and Evaluation 
	Datasets and Evaluation Metrics 
	Datasets 
	Evaluation Metrics 

	Performance of the Proposed Method 
	Experiments Using Various Layers’ Features 
	Importance of the Proposed Feature Fusion scheme and Location Constraint Method 

	Ice Thickness Measurement 
	Keypoint Detection with Different Operators 
	Results of Ice Thickness Measurement 

	Benchmark Comparisons 
	Comparison with Other Feature Description Methods 
	Comparison with Outlier Removal Method 


	Conclusions 
	References

