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Abstract: Adequate selection of the electrode surface and the strategies for its modification to enable
subsequent immobilization of biomolecules and/or nanomaterials integration play a major role in the
performance of electrochemical affinity biosensors. Because of the simplicity, rapidity and versatility,
electrografting using diazonium salt reduction is among the most currently used functionalization
methods to provide the attachment of an organic layer to a conductive substrate. This particular
chemistry has demonstrated to be a powerful tool to covalently immobilize in a stable and reproducible
way a wide range of biomolecules or nanomaterials onto different electrode surfaces. Considering the
great progress and interesting features arisen in the last years, this paper outlines the potential
of diazonium chemistry to prepare single or multianalyte electrochemical affinity biosensors on
screen-printed electrodes (SPEs) and points out the existing challenges and future directions in this field.
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1. Introduction

Preparation of electrochemical affinity biosensors by immobilization of appropriate bioreceptors
onto an electrode platform implies the selection of the electrode material and the methods for
immobilization as key steps to achieve the desired final performance [1–3]. Accordingly, electrode
surface modification using different physical or chemical strategies to be utilized for further
biomolecules immobilization is an extensively studied subject in the literature. Physical adsorption,
mainly based on the electrostatic interaction between the biomolecule and the support surface, is
a simple and economic method that does not damage the activity of the biological material [4,5].
However, poor reproducibility and low sensitivity due to leaching of the adsorbed component
may be observed. Another physical immobilization involves entrapment of biomolecules into
a three-dimensional network of a natural or synthetic gel [6–8] or conducting polymer [9,10].
However, small size molecules are difficult to immobilize using this approach because they can
be filtered from the matrix and, moreover, this simple immobilization method is not adequate for the
preparation of affinity biosensors because the affinity binding can be strongly hindered.

As it is well known, an interesting alternative to physical methods is the covalent coupling of
biomolecules to activated surfaces containing functional moieties with binding capacity. Using the
most common electrode materials, which include carbon in all forms (glassy carbon, graphite,
carbon nanotubes or graphene), and gold, fabrication of self-assembled monolayers (SAMs) of
thiols on gold [11,12], preparation of electrodes by carboxyl-confined [13], silanized [14] or
aldehyde-derivatives [15,16], and functionalization by means of click-chemistry [17] have been widely
explored. Furthermore, aryl radicals generated from the electrochemical reduction of diazonium
salts [18] have also been used to modify electrode surfaces. The reductive process of such salts results in
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the formation of aryl centered radicals covalently attached onto electrode surfaces after the spontaneous
elimination of dinitrogen [19]. The so-called grafting method has demonstrated to be an excellent
strategy to be used for further immobilization of biomolecules because of the simple preparation and
versatility. In fact, conductive and semiconductive surfaces can be modified with a wide range of
functional groups in aqueous solution at room temperature and without sophisticated equipment.
Other advantages are the reproducibility, uniformity and stability of the covalently attached organic
layer on the surface, which have made this method a suitable choice to develop a wide range of
attractive electrochemical affinity biosensors by immobilizing proteins, antibodies, nucleic acids and
anchoring nanomaterials [5,20–23]. In addition, the ability to create a diazonium-modified surface
by application of an appropriate potential scan or previous modification of the biomolecules with
aryl diazonium allows the selective functionalization of closely spaced microelectrode surfaces with
different molecules leading to the construction of multianalyte biosensors [24–26]. Electrografting as a
method for surface modification was extensively reviewed by Bélanger and Pinson [27]. More recently,
applications in electroanalysis were also reviewed [28].

While the use of carbon surfaces (glassy carbon, screen-printed carbon electrodes or SPCEs,
graphite, graphene, carbon nanotubes and diamond) has dominated this field, a wide range of other
conducting materials such as metals, silicon and indium tin oxide (ITO) have been also employed for
diazonium grafting modification with a second to minutes scale reaction time [29,30]. Moreover, a
surface can be functionalized with either one or multiple types of aryldiazonium salts to create single or
mixed layers, respectively. Indeed, modification with mixed layers is especially relevant in applications
where the interface is required to perform multiple functions, and hence different chemical species
should be incorporated into the layer, or when the bioplatform should operate in complex biological
fluids and a mixture of antifouling and bio-recognition components are needed [30]. However, it
is worth to mention that formation of mixed layers using this chemistry is still in the infancy and
some challenges remain to be addressed to precisely control their structure to the level reached using
alkanethiol mixed SAMs. For example, the unselective reactivity of two aryldiazonium cations makes
it difficult to control the surface composition and the highly reactive radicals can grow both on the
bare electrode surface and on an as-deposited layer resulting in multilayer formation.

Regarding grafting onto SPEs, it should be noted that the use of these electrodes is becoming
more and more widespread for the preparation of electrochemical affinity biosensors because their
disposable nature which simplifies their use, avoids problems with electrode fouling and makes it
easier to perform decentralized assays [31,32]. Moreover, the use of screen-printing technology also
offers other general interesting advantages such as the utilization of small sample volumes, and
the mass production of inexpensive and robust strip solid electrodes suitable to be fabricated in
miniaturized sizes, with different materials, in diverse geometries and multiplexed formats [5,33].
Among the different strategies, immobilization of biorecognition components and nanomaterials
onto these planar and disposable surfaces pre-functionalized with electrografted diazonium salts
has been widely reported in the latest years to develop competitive integrated affinity biosensing
platforms (Figure 1). The use of non-disposable electrodes is less attractive for the application of this
methodology since once the aryl radical is grafted onto the electrode surface, a regeneration protocol
should be implemented according with the employed electrode material for subsequent reutilization.
Moreover, one of the main current trends in the development of biosensors is the ability to allow
multiplexed detection of several biomarkers with a single sensing platform. However, the selective
functionalization of different electrodes remains an obstacle to produce massively multiplexed sensors.
In this context, the combination of the screen-printed electrodes ability for multiplexing with the
versatility, simplicity, speed and capability offered by electrografting methodology to individually
functionalize each working electrode opens up substantial possibilities for the massive fabrication of
integrated electroanalytical bioplatforms for the simultaneous determination of biomarkers of the same
or different molecular level. These very interesting advantages have led to the fact that in recent years
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most of electrochemical biosensors configurations using electrodes modified by grafting of diazonium
salts have been implemented with screen-printed electrodes.
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Figure 1. Functionalization of different carbon nanomaterial-modified SPEs (a) via diazonium salt
reduction and affinity biosensor fabrication (b). Reprinted and adapted from [33] with permission.

Considering the aforementioned aspects, this review article discusses the basic concepts of
the chemistry involved in aryldiazonium grafting and provides an updated overview of the main
strategies reported so far to develop affinity biosensing platforms at SPEs modified with bioreceptors
or nanomaterials through representative selected examples. Highlighted examples are classified and
discussed in the next sections according to the SPE material and the type of biomolecule immobilized
on the electrografted aryldiazonium salt.

2. Aryl Diazonium Salt Chemistry in Electrochemical Affinity Biosensing

Since in 1992 Pinson and co-workers described the reaction mechanism for the modification
of carbon electrodes by electrochemical reduction of one or multiple types of aryldiazonium salts
(see Scheme 1), this chemistry have demonstrated to be an efficient way to introduce many types of
functional groups onto a variety of surfaces (carbon surfaces, metals, silicon and indium tin oxide)
with a reaction time scale of seconds to minutes [30].

However, the use of aryl diazonium salt chemistry for the preparation of biosensors may show
some drawbacks: (i) the complicated synthesis of new aryl diazonium salts because of the reactivity of
the head group; (ii) the fabrication of only single component layers; (iii) the presence of side reactions
which compromises surface chemistry control by creating multilayers instead of monolayers; (iv) the
need for connection of each electrode to a source of potential for modification; (v) the absence of
established methods to apply different chemistries at well-defined surface locations; (vi) when used
carbon electrodes, the natural heterogeneity of such surfaces may limit the reproducibility of devices.
Despite these problems, the great number of advances made in recent years has provided potential
solutions to all these disadvantages and greatly broaden the utility of this powerful surface chemistry
for biosensing applications. It is worth to note, for example, that using diazonium salt chemistry,
the density of the deposited organic layer on the electrode surface can be controlled by choosing the
electrografting protocol and time [20]. Moreover, as indicated in the Introduction section, this chemistry
has been used so far for the modification of a variety of conducting surfaces: carbon electrodes (glassy
carbon, graphite, screen-printed carbon electrodes, carbon nanotubes [34,35], diamond [36–38]), but
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also metals, silicon and ITO electrodes. In this context, it must be considered that differences existing
in the surface chemistry on all these materials have also been investigated.
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electrode surfaces through electroreductive electrografting of aryldiazonium salts. In (b) R1 and R2

represent two different substituents. Reprinted from [30] with permission.

The in situ formation of aryldiazonium salts has significantly reduced the synthetic burden with no
significant differences between the prepared films and the corresponding pre-made salts [39,40]. This is a
particularly relevant achievement for the preparation of biosensors since the diazotization step, followed
by purification, is a step fraught with problems for some biomolecules. In addition, the great progress
made in the preparation of sensing interfaces with mixed layers [30,41–44] has provided useful insights
regarding factors determining the ratio of the two components on the surface compared with the assembly
solution [45]. These studies demonstrated, for example, that the concentration of the cation most easily
reduced in the electrografted surface is larger than its relative concentration in the mixed solution used
for the deposition. In the specific case of electrochemical affinity biosensors, the modification with mixed
layers where one component is further modified with bio-recognition species (e.g., antibodies, nucleic
acid) and the other component is used to space the attached biorecognition species attached, to immobilize
redox species or to minimize nonspecific adsorptions, is particularly relevant [30].

New strategies have been developed for preparing monolayers derived from aryl diazonium
salts where the 3- and 5-positions of surface bound diazonium salts are blocked [46] as well as from
molecules with a large sacrificial component attached to the 4-position so that, once the layer is
formed, is cleaved from the surface leaving a near monolayer. This later was achieved using aryl
alkyl hydrazones where hydrolysis of the surface bound molecule leaves a benzaldehyde which is
compatible with subsequent coupling of recognition species or a disulfide leaving a surface thiol.
Moreover, spontaneous adsorption of aryldiazonium salts and several different strategies which
allow simple patterning of the sensing substrate have been reported also on a range of different
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surfaces [47–52]. This is especially important for sensors as it is much more compatible with the bulk
manufacture of devices.

Although the application of aryldiazonium salts for the preparation of biosensors was recognized
soon after the first report on electrode modification with such derivatives [53], the great explosion of this
chemistry for biosensing started ten years ago. Since then, the number of approaches has grown rapidly
and has been used for the immobilization of enzymes [54–56], antibodies [5,19,20,24,29,33,57–74],
DNA [24,65–67], and PNA probes [68], aptamers [21,69,70], peptides [71–73], and even whole
cells [74]. Furthermore, the aryldiazonium salt derived layers have demonstrated also very interesting
advantages for attaching nanomaterials and other components, to prepare more sophisticated
(bio)sensing layers [75–84].

Table 1 summarizes the methods and analytical characteristics of some selected configurations of
electrochemical affinity biosensors using SPEs modified by grafting with aryldiazonium salts, which
have been applied to clinical and food samples. In the following sections, we discuss the relevant
aspects of such designs.

2.1. Electrochemical Immunosensors Involving Aryl Diazonium Salt Chemistry onto Screen-Printed Electrodes

Strategies involving conjugation of capture antibodies with 4-carboxy methylaniline followed
by diazotization to the respective diazonium salt modified antibody [23,24] (Figure 2), or with
4-carboxyphenyldiazonium salt to avoid the diazotization step in the presence of the protein, have
been reported. Due to the high number of primary amines on the exterior, the proteins are indeed
modified with several diazonium species.

Sensors 2018, 18, x FOR PEER REVIEW  5 of 21 

 

surfaces [47–52]. This is especially important for sensors as it is much more compatible with the bulk 

manufacture of devices. 

Although the application of aryldiazonium salts for the preparation of biosensors was 

recognized soon after the first report on electrode modification with such derivatives [53], the great 

explosion of this chemistry for biosensing started ten years ago. Since then, the number of 

approaches has grown rapidly and has been used for the immobilization of enzymes [54–56],  

antibodies [5,19,20,24,29,33,57–74], DNA [24,65–67], and PNA probes [68], aptamers [21,69,70], 

peptides [71–73], and even whole cells [74]. Furthermore, the aryldiazonium salt derived layers have 

demonstrated also very interesting advantages for attaching nanomaterials and other components, 

to prepare more sophisticated (bio)sensing layers [75–84]. 

Table 1 summarizes the methods and analytical characteristics of some selected configurations 

of electrochemical affinity biosensors using SPEs modified by grafting with aryldiazonium salts, 

which have been applied to clinical and food samples. In the following sections, we discuss the 

relevant aspects of such designs.  

2.1. Electrochemical Immunosensors Involving Aryl Diazonium Salt Chemistry onto Screen-Printed Electrodes 

Strategies involving conjugation of capture antibodies with 4-carboxy methylaniline followed 

by diazotization to the respective diazonium salt modified antibody [23,24] (Figure 2), or with  

4-carboxyphenyldiazonium salt to avoid the diazotization step in the presence of the protein, have 

been reported. Due to the high number of primary amines on the exterior, the proteins are indeed 

modified with several diazonium species. 

 

Figure 2. Preparation of a diazonium-modified antibody electrode: carboxyl diazonium is covalently 

attached to antibody by EDC/NHS (1) and diazonium–antibody is deposited onto an electrode by 

cyclic voltammetry (2). Reprinted and adapted from [26] with permission. 

More conventional strategies involve antibody immobilization onto electrodes previously 

modified with the diazonium salt. These strategies include: (i) modification of  

SPCEs [5,58,68–70,85], carbon nanomaterial-modified SPEs [33], graphene-modified SPEs  

(GSPEs) [59,60], carbon nanofiber-modified SPCEs (CNF SPCEs) [61] and reduced graphene oxide 

(rGO)-SPCEs [62,63] with 4-carboxyphenyl diazonium salt; (ii) modification of GSPEs with 

p-nitroaniline diazonium salt [20]; (iii) modification of graphite-based SPEs with p-aminophenyl 

acetic acid [58]; (iv) modification of glassy carbon electrodes (GCEs) with a mixed layer of 

oligo(ethylene glycol) species (OEG) and oligo(phenylethynylene) molecular wires (MW) [44]. 

In these immunosensing approaches, antibodies were covalently immobilized onto the 

electrografted surface using carbodiimide chemistry [5,33,58–63], glutaraldehyde [20], via an amidic 

bond [20] and through aminophenylboronic acid [85] or biotin-streptavidin interaction [44]. 

Electrochemical immunosensors have gained prominence for protein detection in recent years 

due to their sensitivity, selectivity, portability, simplicity, low cost, fast response time and 

compatibility with multiplexed determination and miniaturization [2,33,61]. The key points for the 

design of an electrochemical immunosensor are the choice of the electrode support and the 

immobilization of the antibody or the analyte onto its surface. As the following examples show, the 

Figure 2. Preparation of a diazonium-modified antibody electrode: carboxyl diazonium is covalently
attached to antibody by EDC/NHS (1) and diazonium–antibody is deposited onto an electrode by
cyclic voltammetry (2). Reprinted and adapted from [26] with permission.

More conventional strategies involve antibody immobilization onto electrodes previously
modified with the diazonium salt. These strategies include: (i) modification of SPCEs [5,58,68–70,85],
carbon nanomaterial-modified SPEs [33], graphene-modified SPEs (GSPEs) [59,60], carbon
nanofiber-modified SPCEs (CNF SPCEs) [61] and reduced graphene oxide (rGO)-SPCEs [62,63] with
4-carboxyphenyl diazonium salt; (ii) modification of GSPEs with p-nitroaniline diazonium salt [20];
(iii) modification of graphite-based SPEs with p-aminophenyl acetic acid [58]; (iv) modification of
glassy carbon electrodes (GCEs) with a mixed layer of oligo(ethylene glycol) species (OEG) and
oligo(phenylethynylene) molecular wires (MW) [44].

In these immunosensing approaches, antibodies were covalently immobilized onto the
electrografted surface using carbodiimide chemistry [5,33,58–63], glutaraldehyde [20], via an amidic
bond [20] and through aminophenylboronic acid [85] or biotin-streptavidin interaction [44].

Electrochemical immunosensors have gained prominence for protein detection in recent years
due to their sensitivity, selectivity, portability, simplicity, low cost, fast response time and compatibility
with multiplexed determination and miniaturization [2,33,61]. The key points for the design of an
electrochemical immunosensor are the choice of the electrode support and the immobilization of the
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antibody or the analyte onto its surface. As the following examples show, the chemistry of diazonium
salts offers a very interesting alternative for the manufacture of immunosensors onto SPEs with
attractive performance.

A label-free voltammetric immunosensor for the detection of β-lactoglobulin was developed by
electrochemical modification of GSPEs with 4-nitrophenyldiazonium cations. The diazonium cations
were prepared by the diazotization of 4-nitroaniline. Subsequently, the in situ generated diazonium
cations were covalently grafted through an electrochemical reduction step on the graphene electrode
surface, followed by the electrochemical reduction of the terminal nitro to amine groups used, upon
their activation with glutaraldehyde for covalent immobilization of β-lactoglobulin antibodies [20].
By monitoring the decrease in the DPV reduction peak current of [Fe(CN)6]3−/4− in the presence of
β-lactoglobulin, the immunosensor enabled a dynamic range from 1 pg mL−1 to 100 ng mL−1 and a
LOD of 0.85 pg mL−1. Moreover, the immunosensor was applied to the analysis of different samples
(cake, cheese snacks and sweet biscuits). Same authors proposed the use of the same GSPEs modified
by cyclic voltammetry reduction of in situ generated 4-carboxyphenyldiazonium salt to develop
voltammetric immunosensors for the sensitive detection of okadaic acid (OA) [59] and ovalbumin
(OVA) [60]. The antibody was covalently immobilized onto the electrografted GSPE via carbodiimide
chemistry. The immunosensor for OA determination was based on a competitive assay between OA
and a fixed concentration of OA–ovalbumin conjugate (OA–OVA) for the immobilized antibodies and
on measuring the [Fe(CN)6]3−/4− reduction peak current obtained by SWV (Figure 3). The higher the
concentration of OA, the larger the SWV signal due to the lower amount of immobilized OA-OVA.
The method allowed reaching a LOD of 19 ng L−1, a linear determination range up to ~5000 ng L−1

and successful applicability for the analysis of spiked shellfish tissue extracts and certified reference
mussel samples. The method developed for OVA, based on the decrease in the reduction peak of
[Fe(CN)6]3−/4− measured by DPV in the presence of the antigen, demonstrated to be appropriate
for OVA determination in the concentration range from 1 pg mL−1 to 0.5 µg mL−1 with a LOD of
0.83 pg mL−1 and for the analysis of spiked cake extracts.
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Figure 3. Schematic display of the working principle of the immunosensor based on a direct competitive
format and SWVs of the immunosensor before the competition step (1) and after incubation with
different concentrations of OA: 0.00 (2), 1.00 (3), 10.0 (4), 100 (5) and 1000 (6) ng L−1. Reprinted and
adapted from [59] with permission.
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Table 1. Electrochemical affinity biosensors involving aryldiazonium salt chemistry onto screen printed electrodes.

Electrode Configuration Analyte Detection Scheme Detection
Technique Linear Range LOD Sample Ref.

SPCE Sandwich immunosensor, grafted
p-ABA-4-APBA-anti-ACTH-ACTH-Biotin-Strept-AP ACTH

1-NPP + AP→
1-NP

1-NP→ quinone
DPV 0.025–1.0 pg mL−1 18 pg L−1 serum [19]

SPdCE
Sandwich immunosensor, grafted
p-ABA-4-APBA-anti-ACTH-ACTH-Biotin-Strept-AP
Direct competitive, grafted p-ABA-4-APBA-anti-cortisol-cortisol-AP

ACTH
cortisol

1-NPP + AP→
1-NP

1-NP→ quinone
DPV 5.0 × 10−5–0.1ng mL−1

0.1–500 ng mL−1
40 pg L−1

37 pg mL−1 serum [85]

SPCE Sandwich immunosensor, grafted
p-aminothio-phenol-AuNPs-anti-BNP-BNP-anti-BNP-HRP BNP H2O2 + HRP + HQ

→ quinone amperometry 0.014–15 ng mL−1 4 pg L−1 serum [84]

SPCE Sandwich immunosensor, grafted
p-ABA-DWCNTs-M&G-anti-APN-APN-Biotin-Strept-HRP APN H2O2 + HRP + HQ

→ quinone amperometry 0.05–10.0 µg mL−1 14.5 ng mL−1 serum [86]

SPdCE
Direct competitive immunosensor, grafted p-ABA-anti-GHRL
GHRL-Biotin-Strept-HRPDirect competitive, grafted p-ABA-anti-PYY-
PYY-Biotin-Strept-HRP

GHRLPYY H2O2 + HRP + HQ
→ quinone DPV 10−3–100 ng mL−1

10−4–10 ng mL−1
1.0 pg mL−1

0.02 pg mL−1
serum,
saliva [62]

SPdCE

Sandwich immunosensor, grafted p-ABA-DWCNTs
-M&G-anti-TNF-TNF-anti-TNF-Biotin-poly-Strept-HRP. Sandwich,
grafted
p-ABA-DWCNTs-M&G-anti-IL1β-IL1β-anti-IL1β-Biotin-poly-Strept-HRP

TNF-α
IL-1β

H2O2 + HRP + HQ
→ quinone amperometry 1–200 pg mL−1

0.5–100 pg mL−1
0.85 pg mL−1

0.38 pg mL−1
serum
saliva [87]

SPCE Sandwich immunosensor, grafted
p-ABA-Strept-Biotin-anti-TGF-TGF-anti-TGF-SWCNT(-HRP)-Phe-V TGF-β1 H2O2 + HRP + HQ

→ quinone amperometry 2.5–1000 pg mL−1 0.95 pg mL−1 saliva [88]

SPAuE Direct competitive immunosensor, grafted 4-nitrophenyl
red.-GA-anti-OTA-HRP OTA TMB reduction amperometry up to 60 ng mL−1 12 ng mL−1 - [89]

SPCE Indirect competitive immunosensor, grafted
4-carboxy-phenyl-HMDA-OA-anti-OA-IgG-AP OA

1-NPP + AP→
1-NP 1-NP→

quinone
DPV - 1.44 ng L−1 mussel [5]

SPCE array Sandwich immunosensor, grafted 4-aminophenyl-GA-anti-CEA(or
anti-AFP)-anti-CEA(or anti-AFP)-HRP CEAAFP H2O2 + HRP + HQ

→ quinone amperometry 0.10–50 ng mL−1 0.03 ng mL−1

0.05 ng mL−1 serum [90]

SPCE Label free immunosensor, grafted 4-carboxyphenyl-anti-OA-OA OA RCT
[Fe(CN)6]4−/3− EIS 0.195–12.5 µg mL−1 0.3 µg L−1 mussel [58]

GrSPE Label free direct competitive immunosensor, grafted
4-carboxyphenyl-anti-OA-OA-OVA OA reduction current

[Fe(CN)6]4−/3− SWV up to 5000 ng mL−1 19 ng L−1 shellfish
tissue [59]

GrSPE Label free immunosensor, grafted 4-nitrophenyl
red.-GA-anti-β-LGB-β-LGB β-LGB reduction current

[Fe(CN)6]4−/3− DPV 1 pg mL−1–100
ng mL−1 0.85 pg mL−1 cake, cheese,

snacks [20]

CnFSPE Label free immunosensor, grafted 4-carboxyphenyl-anti-pSA-pSA pSA reduction current
[Fe(CN)6]4−/3− DPV 0.5–500 pg mL−1 0.5 pg mL−1 fresh meat [61]

CnFSPE Label free immunosensor, grafted 4-carboxyphenyl-anti-pSA-pSA SMN reduction current
[Fe(CN)6]4−/3− SWV 1.0 pg mL−1–100

ng mL−1 0.75 pg mL−1 whole blood [33]

GrSPE Label-free immunosensor, grafted 4-carboxyphenyl-anti-OVA-OVA OVA reduction current
[Fe(CN)6]4−/3− DPV 1.0 pg mL−1–0.5

µg mL−1 0.83 pg mL−1 egg-free
cake [60]
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Table 1. Cont.

Electrode Configuration Analyte Detection Scheme Detection
Technique Linear Range LOD Sample Ref.

SPCE Label free aptasensor, grafted 4-carboxyphenyl-aptamer AFB1 AFB1 RCT
[Fe(CN)6]4−/3− EIS 0.125 ng mL−1–16

ng mL−1 0.12 ng mL−1 beer
wine [91]

SPCE Label free immunosensor, grafted 4-carboxyphenyl-acetic-anti-MUC4 MUC4 RCT
[Fe(CN)6]4−/3− EIS 1–15 µg mL−1 0.33 µg mL−1 serum [64]

SPCE Label free aptasensor, grafted p-ABA -aptamer-OTA OTA RCT
[Fe(CN)6]4−/3− EIS 0.15–2.5 ng mL−1 0.15 ng mL−1 cocoa beans [92]

SPCE Label free aptasensor, grafted 4-carboxyphenyl-aptamer-AFM1 AFM1 RCT
[Fe(CN)6]4−/3− EIS 2–150 ng L−1 1.15 ng L−1 milk [93]

SPCE Label free DNA sensor, grafted 4-nitrophenyl red.-DNA MRP3 gene reduction current
Ru(NH3)6

3+ DPV 1.0–7.3 ng µL−1 210 pg µL−1 - [94]

SPCE Label free aptasensor, grafted
4-carboxyphenyl-NH2-aptamer-salmonella S. typhi. RCT

[Fe(CN)6]4−/3− EIS 10–108 CFU mL−1 6 CFU mL−1 apple juice [95]

SPCE Sandwich aptasensor, grafted
4-carboxyphenyl-aptamer-anti-Lys-Biotin-avidin-AP Lys

1-NPP + AP→
1-NP 1-NP→

quinone
DPV 5 fM–5 nM 4.3 fM wine [70]

SPCE Label free aptasensor, grafted 4-((trimethylsilyl)ethynyl) benzene-
p-nitrobenzene + click azide aptamer-OTA OTA RCT

[Fe(CN)6]4−/3− EIS 1.25–500 ng L−1 0.25 ng L−1 beer [21]

ACTH, adrenocorticotropin; 2-ABA, 2-aminobenzyl amine; p-ABA, p-aminobenzoic acid; AFB1, aflatoxin B1; AFM1, aflatoxin M1; AP, alkaline phosphatase; 4-APBA, 4-aminophenylboronic
acid; APN, adiponectin; AuNP, gold nanoparticles; BNP, brain natriuretic peptide; CEA, carcinoembrionic antigen; CnFSPE, carbon nanofibers screen printed electrode; DPV, differential
pulse voltammetry; DWCNTs, double walled carbon nanotubes; EIS, electrochemical impedance spectroscopy; GQDs, graphene quantum dots; GHRL, ghrelin; GrSPE, graphene-modified
screen-printed carbon electrode; HQ, hydroquinone; HRP, horseradish peroxidase; IL-1β; interleukin-1β; β-LGB, β-lactoglobulina; Lys, lysozyme; M&G, Mix&Go;MRP3 gene; MUC4,
mucin 4; 1-NP, 1-naphthylphenol; 1-NPP, 1-naphthylphosphate; OA, okadaic acid; OTA, ochratoxin A; OVA, ovoalbumin; PYY, peptide YY; pSA, porcine serum albumin; RCT, charge
transfer resistance; S. typhi., Salmonella typhimurium; SMN, survival motor neuron: SPAuE, screen printed gold electrode; SPCE, screen printed carbon electrode; SPdCE, screen printed
dual carbon electrode; SWCNT, single walled carbon nanotubes; SWV, square wave voltammetry; TGF-β1, transforming growth factor β1; TNF-α, tumor necrosis factor alpha; V, viologen.
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Hayat et al. [5] developed another electrochemical immunosensor for OA through its
covalent immobilization onto SPCEs modified by grafting with 4-carboxyphenyl film followed by
terminal carboxylic group activation by N-hydroxysuccinimide (NHS) and N-(3-dimethylamino
propyl)-N-ethylcarbodiimide hydrochloride (EDC). Hexamethyldiamine was then covalently bound
by one of its terminal amine group to the activated carboxylic group. The carboxyl group of
OA, activated by EDC/NHS, was then conjugated to the second terminal amine group on other
side of the hexamethyldiamine through amide bond formation. After immobilization of OA, an
indirect competitive immunoassay involving the labeling of a specific OA antibody with an alkaline
phosphatase (AP)-labeled secondary antibody and DPV detection in the presence of 1-naphtyl
phosphate (1-NP) was employed to detect OA. This immunosensor allowed a LOD of 1.44 ng L−1

and showed applicability to the analysis of certified reference mussel samples. One year later, same
authors developed an impedimetric immunosensor for OA by covalent immobilization of the specific
antibody onto the same carboxyphenyl-modified SPCE [58]. The increase in electron transfer resistance
measured by electrochemical impedance spectroscopy (EIS) in the presence of [Fe(CN)6]4−/3− was
linearly proportional to the OA concentration in the 0.195–12.5 µg L−1 range, with a LOD of 0.3 µg L−1.
The analysis performed in spiked mussel samples demonstrated acceptable recovery percentages.

A label-free electrochemical immunosensor for the detection of porcine serum albumin (pSA)
using CNF SPEs with a 4-carboxyphenyl layer electrografted using the 4-carboxyphenyl diazonium salt
was proposed by Lim et al. (Figure 4) [61]. Antibodies were covalently immobilized onto the modified
electrodes previously activated with EDC/NHS and the increase in the SWV cathodic peak current of
anionic redox probe recorded after immunocomplex formation with antibodies, attributed to the strong
affinities of serum albumins like pSA towards anions, was used for the detection. This immunosensor
exhibited a wide linear range (0.5–500 pg mL−1) and a low LOD (0.5 pg mL−1) in buffer solution.
Moreover, the feasibility of this approach for practical application was demonstrated by satisfactory
recoveries in spiked undiluted fresh raw pork samples.
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Pingarrón ś group proposed the development of immunosensing platforms using SPCEs for the 

covalent immobilization of capture antibodies through a 4-ABA diazonium salt grafting strategy. 

Using this strategy, an electrochemical immunosensor for the determination of adrenocorticotropin 

hormone (ACTH) was reported [19]. The immunoelectrode design involved grafting with 4-ABA 

followed by using of amino phenylboronic acid for the oriented immobilization of anti-ACTH 

antibodies onto SPCE-modified electrode surfaces. A competitive immunoassay between the 

antigen and the biotinylated hormone for the binding sites of the immobilized antibody was 

performed. The electroanalytical response was generated by using alkaline phosphatase-labelled 

streptavidin and 1-naphtyl phosphate as the enzyme substrate. The electrochemical oxidation of the 

enzyme reaction product, 1-naphtol, measured by DPV was employed to monitor the affinity 

Figure 4. Electrochemical immunosensor developed for pSA determination onto a CNF SPE modified
with a 4-carboxyphenyl layer (a) and comparison of the DPV responses provided by the immunosensor
to 100 pg mL−1 of serum albumin from porcine, bovine, rabbit and albumin in chicken egg (b).
Reprinted and adapted from [61] with permission.

Pingarrón´s group proposed the development of immunosensing platforms using SPCEs for
the covalent immobilization of capture antibodies through a 4-ABA diazonium salt grafting strategy.
Using this strategy, an electrochemical immunosensor for the determination of adrenocorticotropin
hormone (ACTH) was reported [19]. The immunoelectrode design involved grafting with 4-ABA
followed by using of amino phenylboronic acid for the oriented immobilization of anti-ACTH
antibodies onto SPCE-modified electrode surfaces. A competitive immunoassay between the antigen
and the biotinylated hormone for the binding sites of the immobilized antibody was performed.
The electroanalytical response was generated by using alkaline phosphatase-labelled streptavidin and
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1-naphtyl phosphate as the enzyme substrate. The electrochemical oxidation of the enzyme reaction
product, 1-naphtol, measured by DPV was employed to monitor the affinity reaction. Under the
optimized working conditions, an extremely low detection limit of 18 pg L−1 was obtained and an
excellent selectivity against other hormones (cortisol, estradiol, testosterone, progesterone, hGH and
prolactin) were achieved. The immunosensor was used to analyze a human serum sample containing a
certified amount of ACTH with good results. This strategy was further extended to the construction of
a novel dual electrochemical immunosensor for the multiplexed determination of adrenocorticotropin
(ACTH) and cortisol onto dual screen-printed carbon electrodes (SPdCEs) [85].

Another configuration of a disposable immunosensing platform for the simultaneous
determination of two obesity-related hormones, ghrelin (GHRL) and peptide YY (PYY) was also
reported by this group [62,63]. SPdCEs were modified with reduced graphene oxide (rGO) and, after
grafting of the diazonium salt of 4-ABA on these modified electrode surfaces, the corresponding
capture antibody for each target hormone was covalently immobilized onto the 4-carboxyphenyl
moieties of each working electrode via EDC/NHS chemistry (Figure 5). The determination of each
hormone was performed by direct competitive immunoassays with the corresponding biotinylated
hormones for the immobilized capture antibody. After labeling the attached biotinylated hormones
with a polymer of streptavidin-phosphatase (AP-Strep), the DPV signal obtained in the presence of
1-NP was used to monitor the affinity reactions. This dual immunosensing scaffold provided linear
current vs. log [hormone] plots extending between 10−3 and 100 ng mL−1 and 10−4 and 10 ng mL−1 for
GHRL and PYY, respectively. The usefulness of this approach was also demonstrated by its application
for the accurate determination of the analytes in spiked human serum and saliva samples.
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Figure 5. Schematic illustration of the different steps and protocols involved in the preparation and
functioning of the dual GHRL and PYY immunosensor. Reprinted from [63] with permission.

SPCEs modified with double-walled carbon nanotubes (DWCNTs) previously functionalized with
an aryl diazonium salt by the Bahr and Tour’ method [96] were used for developing an electrochemical
immunosensor for adiponectin (APN). DWCNTs were treated with p-ABA in the presence of isoamyl
nitrite in N-methyl-2-pyrrolidone (NMP) resulting in the formation of 4-carboxyphenyl-DWCNTs
without any electrochemical treatment. The oriented binding of specific antibodies toward APN was
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accomplished by using the metallic-complex chelating polymer Mix&GoTM (Figure 6). A calibration
plot for APN was constructed with a range of linearity extending between 0.05 and 10.0 µg mL−1, and
a detection limit of 14.5 ng mL−1. The usefulness of the immunosensor for the analysis of real samples
was demonstrated by analyzing human serum from female or male healthy individuals [86].
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Figure 6. Schematic display of the different steps involved in the construction of an amperometric
immunosensor for APN involving grafted DWCNTs and oriented immobilization of anti-APN by using
the metallic-complex chelating polymer Mix & Go. Reprinted from [86] with permission.

A simple label-free impedimetric immunosensor for determination of mucin 4 (MUC 4)
protein was proposed using graphite SPEs modified with p-aminophenylacetic acid for antibody
immobilization via amidic bond [58]. The immunosensor provided a LOD of 330 pg µL−1.
Eissa et al. [33] carried out a comparative study of six different carbon nanomaterial-modified
electrodes (carbon, graphene (G), GO, single wall carbon nanotube (SWCNT), multi-wall carbon
nanotube (MWCNT), and carbon nanofiber (CNF)) which were modified by grafting with
4-carboxyphenyl layers to develop voltammetric immunosensors for the detection of survival
motor neuron (SMN) protein. The SMN antibody was covalently immobilized onto the terminal
carboxylic moieties on the electrode surfaces through EDC/NHS chemistry. Results showed that the
CNF-modified electrode exhibited the best performance for the SMN immunosensor. By measuring
the increase in the SWV reduction peak current of [Fe(CN)6]3−/4− in the presence of SMN due to the
positive charge of the protein, the CNF-based immunosensor provided a LOD of 0.75 pg mL−1 and
feasibility to perform the determination in a spiked blood sample from healthy volunteer.

As it is well known, strategies allowing a high control over the fabrication of sensing interfaces
on gold electrodes include mainly the use of SAMs [97,98] and, more recently, also modification
with aryldiazonium salts [72]. This latter method provides not only an effective method for
immobilization of bioreagents but also the stable incorporation of gold nanoparticles onto gold
electrodes [82,83]. Although alkanethiols assembling offers a simply and versatile way to prepare
sensing interfaces, their stability is a big issue when the as prepared sensors should operate over
long measurement times or their fabrication involves multiple coupling steps. In these cases, the
oxidation of alkanethiols and the resultant loss of SAM becomes problematical. In contrast to thiol–Au
chemistry, diazonium modification on Au surfaces improves stability in terms of long-term storage
in air, potential cycling under acidic conditions, and wider potential window for electrochemical
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detection methods [24,26]. Various examples of application of this methodology to gold electrode
surfaces have been reported in the literature. For example, the direct modification of a gold
electrode with aminophenyl groups by electrochemical reduction of in situ generated aminophenyl
monodiazonium cations synthesized from p-phenylendiamine and NaNO2 was reported by Lyskawa
and Bélanger [99]. Very recently, Phal et al. [100] prepared a gold electrode electrografted with
4-carboxybenzenediazonium for developing a methotrexate (MTX) immunosensor. However, only one
work has been found regarding the use of screen printed gold electrodes [89]. In this method, SPAuE
was modified with 4-nitrophenyl groups assembled from 4-nitrophenyl diazonium salt and, then, the
nitro groups were electrochemically reduced to amines followed by activation with glutaraldehyde
for covalently bind ochratoxin A (OTA) antibodies. A direct competitive-type immunosensor using
OTA-HRP was prepared using 3,3′,5,5′-tetramethyl-benzidine (TMB) for the amperometric detection
of OTA in a dynamic range up to 60 ng mL−1 with a LOD of 12 ng mL−1.

2.2. Electrochemical Nucleic Acid Biosensors Involving Aryl Diazonium Salt Chemistry onto
Screen-Printed Electrodes

Nucleic acid biosensors typically involve the immobilization of a single strand (ss) of a nucleic acid,
typically a short oligonucleotide, to detect a complementary strand [101] or nucleic acid duplexes to
detect small molecules, such as drugs [102] and of aptamers for a wide variety of (bio)molecules
determination [21,69,70]. The immobilization of capture probes on electrode surfaces is thus a
crucial step to obtain reliable nucleic acid biosensors [103]. A very attractive route involves covalent
attachment of thiol-functionalized oligonucleotides on gold electrodes [104]. Regarding carbon
electrode surfaces, although adsorption is one of the simplest techniques to immobilize nucleic
acids [105–108], the resulting multiple-point linkage usually leads to poor hybridization efficiency and
the release of the nucleic acids from the surface during the hybridization is a potential problem.
To overcome these drawbacks, the covalent attachment of an oligonucleotide monolayer on a
chemically-functionalized carbon surface appears as more advantageous because it allows increasing
the sensitivity of the assay and the use of more stringent washing conditions to reduce the background
signal. A very attractive method to covalently attach oligonucleotides on carbon surfaces relies on
surface functionalization with diazonium groups [109,110]. During the coupling reaction, the amine
electron-releasing group contained in the aromatic rings of adenine, guanine and cytosine undergo an
electrophilic attack by in situ generated diazonium ions [65]. Moreover, as DNA sensors sometimes
require reasonably high temperatures to ensure efficient duplexes denaturation or hybridization, the
thermal stability of the linkage of the DNA to a substrate using diazonium salts chemistry is especially
attractive [76]. The selected examples described below demonstrate the potential of this chemistry for
developing electrochemical nucleic acid sensors with very attractive characteristics.

The novelty of diazonium chemistry towards the electroaddressable selective functionalization
of a single electrode in an electrode array [24] was successfully explored to develop arrays for
multi-determination of different proteins [26,111]. Moreover, dual functionality sensors able to
detect simultaneously target DNAs and proteins were proposed also using this chemistry [24,25].
These approaches relied on modification of the electrodes in the array with 4-carboxyphenyl-diazonium
salts further activated with EDC/NHS to allow the covalent attachment of biomolecules [24] and on
the biomolecules modification with aryl diazonium prior to the addressing [25].

The first example of using aryldiazonium salt-derived layers for the preparation of nucleic
acid-based biosensors involved the attachment of the DNA probe onto SPCEs modified with
p-aminophenyl using p-nitroanilinodiazonium salt and further converted to diazophenyl functions [65].
Moreover, to reduce nonspecific adsorptions, the interface was modified with a mixed layer
by spacing the nitrophenyl moieties using carboxyphenyl molecules. Other binary films
of 4-((tri-methylsilyl)ethynyl) benzene (TMSi-Eth-Ar) and p-nitrobenzene (p-NO2-Ar) prepared
sequentially by electrografting onto SPCEs were used after deprotection and in the presence of copper(I)
catalyst to attach aptamers with azide function by forming a covalent 1,2,3-triazole linkage [21].
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Covalent immobilization of amino terminated aptameric [69,70] and PNA [68] probes have been
successfully achieved using carbodiimide chemistry onto SPCEs modified via diazonium coupling
reaction with 4-aminobenzoic acid. A different DNA immobilization strategy relied on the selective
covalent binding between thiols and maleimides [112] and the coupling of the 4-phenylmaleimide
diazonium salt to a thiol-terminated oligonucleotide prior surface assembly. Another novel strategy for
immobilizing DNA and preparing aryldiazonium salts [113] involved the use of a triazene (a protected
aryldiazonium salt) and its activation using dimethyl sulfate to reveal the diazonium moiety. In the
DNA electrochemical sensor reported, a unique ferrocene derivative (used as electrochemical reporter)
was prepared with a phenyl triazene attached to one of the ferrocene cyclopentadienyl (Cp) ring and a
succinimide ester to the other Cp ring. An aminated DNA was further attached to this activated ester.

DNA-sensing platforms for the determination of an amplified herpes virus DNA sequence were
prepared by attaching covalently oligonucleotide capture probes onto p-aminophenyl functionalized
SPCEs using p-nitroanilinodiazonium salt [65]. The subsequent conversion of the p-aminophenyl
groups to diazophenyl moieties provided a convenient and versatile way to covalently link
nucleic acids on carbon surfaces. In this approach, the PCR-amplified 406 base-pairs (bp) human
cytomegalovirus (HCMV) DNA sequences were detected through a sandwich-type hybridization
assay with the immobilized DNA probe and a colloidal gold-labeled detector probe. The hybridization
event was followed by measuring the Au(III) ions generated by acid dissolution of the gold metal
nanoparticles attached to the hybrids using anodic stripping voltammetry at a screen-printed
microband electrode (SPMBE).

Hayat et al. [21] developed a highly sensitive and reusable aptasensor for the impedimetric
detection of ochratoxin A (OTA) by covalent immobilization of a specific aptamer onto SPCEs modified
with two binary films of diazonium salts via click chemistry. SPCEs were modified sequentially
by electrografting of protected layers of 4-((trimethylsilyl)ethynyl) benzene (TMSi-Eth-Ar) and
p-nitrobenzene (p-NO2-Ar) by means of electrochemical reduction of their corresponding diazonium
salts. After deprotection, by treatment with tetrabutylammonium fluoride (TBAF), and in the presence
of copper (I) catalyst, the active ethynyl groups of the film and the azide moiety of the aptamer reacted
efficiently forming a covalent 1,2,3-triazole linkage (Figure 7). The increase in the electron-transfer
resistance (RCT) values measured by EIS in the presence of [Fe(CN)6]4−/3− was proportional to the
OTA concentration between 1.25 and 500 ng L−1 with a LOD of 0.25 ng L−1. The aptasensor could be
regenerated 10 times with a mild solution, showed a storage stability of at least 10 days at 4 ◦C, and
was successfully applied to the analysis of spiked beer samples.
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The use of an aptamer immobilized on SPCEs through diazonium coupling reaction using
4-ABA was also exploited by Del Valle’s group to develop competitive aptasensors for lysozyme
(Lys) determination. One of these approaches involved a direct assay and impedimetric detection
providing linearity between 0.025 and 0.8 mM, and a LOD of 25 nM (Figure 8) [69]. Another reported
method relied on an aptamer-antibody sandwich assay involving the use of a biotinylated antibody
further labeled with avidin-AP. By DPV monitoring of the oxidation signal of 1-naphthol generated by
enzymatic hydrolysis of 1-naphthyl phosphate substrate, the method exhibited a wide detection range
(5 fM–5 nM) and a LOD 4.3 fM [70]. Both aptasensors were used for the quantification of the target
protein in spiked wine samples. Additional claimed advantages of these aptasensors are the use of
simple instrumentation, low production cost and rapid response.
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SPCEs fabricated using Low Temperature Co-fired Ceramics (LTCC) technology and
functionalized with amino-modified PNA probes by electrografting via in situ generated diazonium
cations (4-ABA) were proposed for label-free molecular detection of antibiotic resistance by targeting
blaNDM, one of the main antimicrobial resistance factors in carbapenem-resistant Enterobacteriaceae.
This impedimetric PNA-based biosensor provided a LOD of 200 nM [68]. The excellent molecular
detection performance combined with a low cost and accelerated sensor manufacturing and
functionalization process (over six times faster than protocols used for gold electrodes) make this
platform very attractive for rapid detection of antimicrobial resistance at point-of-care POC with
competitive costs.

2.3. Other Electrochemical Biosensors Involving Aryl Diazonium Salt Chemistry onto
Screen-Printed Electrodes

Apart from antibodies and nucleic acids, aryl diazonium salt derived layers have also been
used for cells immobilization [74,114]. For this purpose, a novel phenyl boronic acid pinacol ester
diazonium salt was synthesized so that, after assembly onto the electrode surface, addition of sodium
iodate removed the pinacol protecting group to yield a phenylboronic acid functionalized surface.
By exploiting the selective reaction of boronic acid with sugars, these scaffolds were used to immobilize
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yeast cells [74] and murine macrophages (mammalian cells belonging to the immune system) [114].
Claimed advantages of these bioscaffolds include the possibility to release the captured cells from
the surface by exposure to fructose due to the competitive reaction of this sugar with the cells for
the boronic acid of the functionalized surface. Furthermore, a label free impedimetric aptamer
sensor for Salmonella typhimurium (S. typhimurium) detection was reported by Bagheryan et al. [95].
A diazonium-supporting layer was fabricated onto a SPCE followed by immobilization of aminated
aptamer (Figure 9). The developed design responded linearly over the 10–108 CFU mL−1 range with a
limit of detection of 6 CFU mL−1. Good recoveries were obtained in the application to spiked apple juice.
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3. General Considerations, Challenges and Prospects

Electrochemical grafting consisting of covalent modification of carbon surfaces by aryl radicals
generated from electrochemical reduction of diazonium salts has demonstrated to facilitate the
electron transfer and provide a highly stable binding surface with enhanced properties for selective
and controlled immobilization of chemical and biological compounds [62,64]. Advantages of this
method include the ease of diazonium preparation, a covalent attachment to the electrode, the speed
of the chemistry involved [29] and the ability to modify closely-spaced electrodes with different
biological entities (proteins, nucleic acid strands, and peptides) [23,29]. Moreover, the application of
aryldiazonium salts for (bio)sensing has recently seen the integration of nanomaterials together with
the recognition species into interfaces thus taking advantage of the nanomaterials properties.

As it has been pointed out above, diazonium chemistry-based biosensing platforms include
SPCEs [5,58,68–70,85], carbon nanomaterial-modified SPEs [33], GrSPEs [59,60], CNF SPEs [55],
rGO-SPCEs [62,63] and graphite-based SPEs [64]. Regarding the aryl diazonium substrates,
4-ABA [5,33,58–63,68–70,85], p-nitroaniline [20] and p-aminophenylacetic acid [64] were mostly used.

Despite the modification of surfaces using aryl diazonium salts has been explored for almost
20 years now, the application of aryl diazonium salts for fabricating biosensing interfaces is still in
its infancy. Although variations of aryldiazonium salts mixed layers have been employed for affinity
biosensing at conventional electrodes [30], they have been scarcely explored onto disposable electrodes.
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Therefore, additional efforts should be focused on exploring multicomponent layers and to prepare
more stable analogues of sensing interfaces that those developed with another surface chemistry.

However, it is worth to mention that despite these issues, the exciting advances made in the
understanding of aryl diazonium salt chemistry, and how to assemble complex layers on surfaces, the
range of new synthesized aryldiazonium salts, and the incorporation of nanomaterials are providing
aryl diazonium salts derived sensors with the stability and flexibility advantages this chemistry
provides. Furthermore, possible drawbacks, relative to other surface chemistries such as that of
the alkanethiols, that are in a much more advanced state, are rapidly being resolved which makes
aryldiazonium salt chemistry almost the ideal surface chemistry for preparing sensing interfaces.
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