
sensors

Article

User Access Management Based on Network Pricing
for Social Network Applications

Fuhong Lin 1,* ID , Zhibo Pang 2 ID , Xingmin Ma 1 and Qing Gu 3

1 School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB),
Beijing 100083, China; maxingmin1983@163.com

2 ABB Corporate Research, Forskargränd 7, SE-721 78 Västerås, Sweden; Pang.zhibo@se.abb.com
3 School of Mechanical Engineering, University of Science and Technology Beijing(USTB), Beijing 100083,

China; qinggu@ustb.edu.cn
* Correspondence: FHLin@ustb.edu.cn; Tel.: +86-1565-2743-836

Received: 20 December 2017; Accepted: 13 February 2018; Published: 24 February 2018

Abstract: Social applications play a very important role in people’s lives, as users communicate
with each other through social networks on a daily basis. This presents a challenge: How does one
receive high-quality service from social networks at a low cost? Users can access different kinds of
wireless networks from various locations. This paper proposes a user access management strategy
based on network pricing such that networks can increase its income and improve service quality.
Firstly, network price is treated as an optimizing access parameter, and an unascertained membership
algorithm is used to make pricing decisions. Secondly, network price is adjusted dynamically in real
time according to network load. Finally, selecting a network is managed and controlled in terms
of the market economy. Simulation results show that the proposed scheme can effectively balance
network load, reduce network congestion, improve the user's quality of service (QoS) requirements,
and increase the network’s income.

Keywords: resource management; network pricing; unascertained membership degree

1. Introduction

Many aspects of social networks have been studied [1–3]. To guarantee quality of service (QoS)
for users, a considerable amount of resources is required. Many kinds of wireless networks have been
proposed and deployed in recent years, and many can provide transmitting services. In the end, users
must choose a network to connect to, but how a user chooses a network needs to be optimized. In terms
of network resource management, it is difficult to increase profits as well as guarantee effective load
balance and reduce network congestion. One solution is proposed by Alsharif et al. [4] and Luo et al. [5].
Essentially, they integrated all kinds of wireless networks into one network that users can access.
However, a network selection process still exists. Usually, various resource management schemes are
used to solve this problem. Mostaani et al. [6] presented a pricing scheme that can optimize resource
management in cognitive radio networks. However, they focused on single network pricing and
did not consider a multi-network environment. Based on reinforcement learning, Chenwei et al. [7]
proposed a heterogeneous wireless network resource management algorithm. The shortcoming of
this was that the congestion rate was too high. Chanak et al. [8] presented a fuzzy classification
management scheme in a large-scale wireless sensor network. This scheme lowered the congestion rate.
However, the load threshold was too low to be used in the actual environment. Tsiropoulou et al. [9]
proposed an SC-FDMA uplink resource allocation scheme for the Papavassiliou investigation and
classification in a wireless network. In this scheme, the congestion rate and network load threshold
were still unable to meet the actual environment requirements. Amin et al. [10] presented a controlling
algorithm that could evaluate global resources with heterogeneous wireless networks. However,
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this scheme also had a high congestion rate. Hang et al. [11] proposed an interference management
algorithm in a mixed, small, self-organizing cellular network, but the congestion rate could still
be improved. Zhang et al. [12] presented a congestion mitigation scheme but did not consider a
heterogeneous network environment.

In sum, the algorithms mentioned above have made significant achievements in improving
wireless network performance by optimizing the resource management scheme. However, network
performance in terms of congestion rates or load balance can still be further optimized. In this paper,
based on network pricing and the rate of unascertained membership, we propose a wireless network
access management scheme to lower the congestion rate, achieve load balance, and increase the
network revenue. In the proposed scheme, different kinds of wireless networks work cooperatively.
Using an unascertained membership degree algorithm, the network price is adjusted according to the
real-time changes in the following parameters: network bandwidth, load, and the number of users.
Based on the network price, users choose an appropriate network. Numerical simulation shows that
the algorithm works to decrease network congestion, achieve load balance, and improve network
revenue when there is high load and a large number of users.

The sections are organized as follows. In Section 2, the system environment is briefly described.
In Section 3, the access scheme is proposed and analyzed. Numerical simulation is carried out in
Section 4, and conclusions are drawn in Section 5.

2. System Environment Description

The following scenario is considered in this paper. As shown in Figure 1, the integrated network
is composed of three wireless networks and two cellular networks. The wireless network in Figure 1
could be a WLAN or a wireless network that is organized by a micro-base station. A user can receive
service by accessing either. The difference between the wireless network and cellular network is that
the bandwidth is smaller and the coverage area is larger in the cellular network. The radiation ranges
of the cellular network and wireless network are 2 km and 0.1 km, respectively. The initial basic
bandwidth provided by the wireless network is about ten times that of the cellular network.
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In the integrated heterogeneous network, since user access is affected by multiple factors, user
access strength is different. There are four main factors: network signal coverage intensity, network
load, network available bandwidth, and regional network pricing.
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In general, the network signal coverage intensity is one of the determinants of network availability.
The higher the signal strength, the stronger the availability, but the higher the network pricing is.
Usually, users tend to access the network whose price is the lowest. If increased numbers of users access
the cheaper network, then network congestion and load imbalance problems are easily produced.
In the proposed scheme, the four factors mentioned are set as the inputs of the unascertained algorithm.
Using this algorithm, the network decision is obtained, further providing effective guidance for the
user in choosing the optimal network from which to receive service.

3. Algorithm Description

Unascertained is a new kind of uncertainty that is different from randomness and fuzziness, and
this uncertainty is very common. The processing of unascertained information cannot be processed
according to exact information; the information must be treated as uncertain. Because it is different
from random information and fuzzy information, it cannot be handled according to methods of random
information and fuzzy information. The unascertained degree of membership is a new method to
solve the ascription of unascertained information.

In 2004, Liu Kaidi, Cao Qingkui, and Pang Yanjun put forward the unascertained set for the first
time and applied it to ship engine fault diagnosis [13]. In [13], a new set of uncertainty is defined,
called the unascertained set. Its characteristic is the measurement criteria explicitly in the definition of
membership function. The unascertained set has a property that is usually set, and the unascertained
logic system can deal with unascertained information. Due to the introduction of the concept of weight
index classification, the algorithm can be reliably interpreted. Therefore, the method of unascertained
membership is also applicable to the comparison and judgment of the parameters of different network
access standards in heterogeneous networks.

Let U = {x1, x2, · · · , xn}, where xi represents the i-th object. The property or state provided by
the object is designated as F and called the property or state space Fi (i = 1, 2, . . .) is the i-th specific
property or state in F, recorded as Fi ∈ F [14]. All subsets of F compose the set E. If Ai ∈ E, then
A−1 ∈ E. In other words, E is closed to the complement operation. If Ai ∈ E(i = 1, 2, . . . , k), then

k
∪

i=1
Ai ∈ E, A−1 ∈ E In other words, E is closed to a finite union operation, and E is called an algebra

set, which is based on F. If E is an algebra set, E is close to the complement operation and the finite

union operation. If E is closed for countable collections A−1 ∈ E, then
∞
∪

i=1
Ai ∈ E. E is an σ algebra set.

Obviously, if E is an σ algebra, then any complementing set of E is in E, and the union of countable
sets of E is also in E [15].

3.1. The Measure of Uncertainty and the Uncertainty Set

U is set as the domain and F as the property of space on U. {F1, F2, . . . , Fk} is a division of F.
The property or state of object x in U is usually affected by many factors [16]. The impact of these
factors is the attribute or index. There are m kinds of specific attributes I1, I2, . . . , Im affecting the
property or state of the object x, where I = {I1, I2, . . . , Im} is called the attribute space on the domain
U. Arbitrarily given xi ∈ U, the observation value of the j-th attribute can be measured in detail and
called xij. The problem is how to define the property of Fk, considering the object xi with the observed
value xij, and how to describe it quantitatively [17]. However, it is difficult, or even impossible, to
accurately quantify the property with incomplete information or uncertain conditions.

However, using the problem background and prior knowledge, the decision maker can quantify
the property. In fact, a different property is introduced by a different quantity. From this point, it can
be measured. To carry out measurement, we need to establish a measurable space and then take the
measurement according to relevant criteria. We have discussed in Section 2 that E of F can be generated
by a division of a given property space F. Therefore, it can be constructed in the form of a measurable
space in order to quantitatively describe the property of the observed object with a specific property of
E. Therefore, whether or not a reasonable measurement can be carried out is decided by the possibility
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of constructing a measurement criterion in the space (F, E) [18]. The following measurement criterion
is proposed [19].

Definition 1. Given the arbitrarily fixed objects xi ∈ U and arbitrarily fixed attributes Ij, xij is the observed
value of xi according to Ij, If there is a mapping µ with any A ∈ E satisfying the constraints presented in
Equations (1)–(3), then µA

(
xij
)

is the measurement function of the uncertainty in measurable space (F, E).

0 ≤ µA
(
xij
)
≤ 1 (1)

µ ∪
l=1

Al

(
xij
)
= ∑

l=1
µAl

(
xij
)

(2)

µF
(

xij
)
= 1 (3)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, Al ∈ E, l = 1, 2, . . ..

Equation (1) is a nonnegative bounded constraint. Equation (2) is an additivity constraint;
Equation (3) is a normalization constraint. These three constraints are the criteria that must be obeyed
in the usual measurement [20]. Decision makers are often limited to the measurement function under
the condition that the information is not sufficiently complete. As such, µ is unascertained. In addition
to the necessary prior knowledge, it also contains the decision maker’s preferences, requirements, and
other subjective factors [21].

Definition 2. If U is a domain, F is the property of space on U, (F, E) is the measurable space on U, µA(x)
(x ∈ U, A ∈ E) is the uncertainty measurement function on the measurable space (F, E), and (F, E, µA(x)) is
called the uncertainty measure space on domain U.

Definition 3. If U is a domain and (F, E, µA(x)) is the uncertainty measure space on U, then µA(x) is
the membership function to determine an uncertain subset Ã of algebraic E in domain U, and S

(
Ã
)

is the

supporting set of Ã, which is shown in Equations (4) and (5). If x ∈ S
(

Ã
)

, x is the support point of Ã and A

is preimage set of Ã on E.
Ã = {x|0 ≤ µA(x) ≤ 1 , ∀x ∈ U , A ∈ E} (4)

S
(

Ã
)
= {x|0 < µA(x) ≤ 1 , ∀x ∈ U, A ∈ E} (5)

Any given A ∈ E, Ã can be treated as a fuzzy subset of the domain U. For any fixed x ∈ U, µA(x)
is a function on σ algebra E [22]. As such, µA(x) is defined as two element functions on U× E. For any
x ∈ U, 0 ≤ µA(x) ≤ 1, a fixed x, and Ai ∈ E, i = 1, 2, . . . , k, µAi (x) satisfies the constraint presented in
Equation (6). 

µ k
∪
l

Al
(x) =

k
∑

l=1
µAl (x)

Ai ∩ Aj = ϕ, (i 6= j)
µF(x) = 1

(6)

Therefore, in σ algebra, µA(x) meets the criteria for the additive criterion because space F ∈ E,
µA(x) meets the normalization criterion.

3.2. The Uncertainty Measurement Function

Although the uncertainty measurement function is defined on the measurable space (F, E),
and the measurement criterion is defined according to the definition of the measurement function,
the definition is non-constructive. In practical applications, decision-making is specifically constructed
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by background, relevant domain knowledge, prior knowledge, and personal needs and preferences.
In order to facilitate the application, there are several construction methods commonly used for
measurement function.

If a partition of the property space F contains k specific properties, we can insert k − 1 points
a1, a2, . . . , ak−1 (these can be equally inserted or unequally inserted) on the distributed interval. Where
k is the number of the partition of the F in the property space [23], assuming that the value of the
property at the left of the point ai is in the i-th state, when the attribute value is increasing from
ai to ai+1, the i-th state of the attribute is gradually weakened. The degree of the i + 1 state of the
attribute observation is reduced to zero. At the same time, when the observed value increases from ai
to ai+1, the degree of the i + 1 state of the attribute observation increases from zero to 1. We should pay
attention to the observed state changes in the relevant reference point in the vicinity of the sensitive area
on the property values. Based on the severity of the state change, as mentioned in [15], decision makers
can use a straight line, two curves, a sine curve, an exponential curve, and other curves connecting to
construct the concrete expression of the measurement function, which is shown in Figure 2.
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The corresponding expressions of the uncertainty measurement function are in Equations (7)–(10):
µi(x) =

{
−x

ai+1−ai
+

ai+1
ai+1−ai

ai < x ≤ ai+1

0 x > ai+1

µi+1(x) =

{
0 x ≤ ai

x
ai+1−ai

− ai
ai+1−ai

ai < x ≤ ai+1

(7)


µi(x) =

 1−
(

x−ai
ai+1−ai

)2
ai < x ≤ ai+1

0 x > ai+1

µi+1(x) =

 0 x ≤ ai(
x−ai

ai+1−ai

)2
ai < x ≤ ai+1

(8)
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µi(x) =

{
1− 1−ex−ai

1−eai+1−ai
ai < x ≤ ai+1

0 x > ai+1

µi+1(x) =

{
0 x < ai

1−ex−ai

1−eai+1−ai
ai < x ≤ ai+1

(9)


µi(x) =

{
1
2 −

1
2 sin π

ai+1−ai

(
x− ai+1−a

2

)
ai < x ≤ ai+1

0 x > ai+1

µi+1(x) =

{
0 x ≤ ai

1
2 + 1

2 sin π
ai+1−ai

(
x− ai+1−ai

2

)
a < x ≤ ai+1

(10)

In the above function expression, the value of µi(x) at the left point is 0. The images of µi(x) at
[ai+1, ai+2] and µi+1(x) at (ai, ai+1] are the same. Additionally, the images of µi+1(x) at [ai−1, ai] and
µi(x) at [ai, ai+1] are the same. The value of µi+1(x) at the left point is 0.

The above proposed unascertained membership function µi(x) (i = 1, 2, . . . , k) is defined in
(−∞,+∞). The linear unascertained measurement function is used in the paper.

For a heterogeneous network, the unascertained membership degree [15,24–26] method works as
follows. (1) Compare and judge each of the parameters of different networks. (2) Make the common
characters into an unascertained membership degree and turn the input parameters into suitable
values using the unascertained membership degree function. (3) According to the unascertained
membership degree rules, delete the parameter unascertained. Then, use the outcomes to make a
network access judgment and control the user’s behaviors. In our proposed scheme, the unascertained
membership degree input consists in the four parameters mentioned in Section 2, which are network
signal coverage intensity, network load in the region, network available bandwidth in the zone, and
regional network pricing. Using the proposed unascertained membership degree method, the optimal
network access and the optimal user’s behaviors can be determined, as shown in Figure 3.Sensors 2018, 18, x  7 of 14 
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Figure 3. The uncertainty membership processing procedures.

The output of the membership function can be defined as excellent, good, bad, worse, or terrible.
Moreover, the uncertainty function is determined as F ∈ (1, 0,−1). According to the network
environment proposed in Section 2, the membership functions are given in Figure 4 by considering the
four parameters.
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Figure 4. (a) Cellular network signals membership function; (b) WLAN (wireless local area
network) receiving signals membership function; (c) network traffic membership function; (d) collect
fees membership function; (e) cellular network load membership function; (f) WLAN load
membership function.

There are three WLAN access points and two cellular network access points that are indexed as i,
i ∈ [1, 5]. The four parameters are indexed as k, k ∈ [1, 5], respectively. The network fuzzy steady-state
values are determined as shown in Equation (11).

Mi =
4

∑
k

Mik (11)

where Mik is the k-th fuzzy value of the i-th user. Mi represents the total fuzzy steady-state value of
the i-th user. All the fuzzy steady-state values are calculated for each user and are then compared with
each other. When the fuzzy steady-state value of a user Meng_now is lower than the preset threshold
M_threshold that is shown in Equation (12), the user switches to another network for service.

Meng_now < M_threshold (12)

In order to avoid frequent switching in a short period of time, the following rule is established.
When the fuzzy steady-state value of the switching target network Meng_target is greater than the
value of Meng_now that is shown in Equation (13), then switching may occur.

Meng_target > Ment_now (13)
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3.3. The Network Pricing

The network controlling algorithm is divided into two parts, which are the pricing decision and
the unascertained membership decision. The threshold values of the price decision are load_max
and load_min. The network control pricing variation of a step is ∆P. If a network detects that there
is a large number of users in it and that the real-time load_now is above the threshold load_max,
then its bandwidth resource is constrained and there is a higher probability that the network
becomes congested. The network increases its price with [(load_now − load_max)∆P] to reduce
the unascertained stable value. This action can prompt users to choose another network to access.
By contrast, if load_now smaller than the threshold load_min, the network decreases its price with
[(load_now− load_max)∆P] to increase the unascertained stable value. If the load is between the two
thresholds, the network maintains its price. After network pricing has been decided, together with the
three other factors, they enter into the unascertained part of the process. The unascertained decision is
thus determined, thereby determining the user’s behaviors in choosing the optimal network to access.
The whole process is introduced in Figure 5.
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threshold _M threshold  that is shown in Equation (12), the user switches to another network for 
service. 

_ _Meng now M threshold<  (12)

In order to avoid frequent switching in a short period of time, the following rule is established. 
When the fuzzy steady-state value of the switching target network _Meng target  is greater than the 
value of _Meng now  that is shown in Equation (13), then switching may occur. 

_ _Meng target Ment now>  (13)

3.3. The Network Pricing 

The network controlling algorithm is divided into two parts, which are the pricing decision and 
the unascertained membership decision. The threshold values of the price decision are load_max  and 
load_min . The network control pricing variation of a step is . If a network detects that there is a 
large number of users in it and that the real-time _load now  is above the threshold load_max , then its 
bandwidth resource is constrained and there is a higher probability that the network becomes 
congested. The network increases its price with [ ( _ _ max)load now load P− Δ ] to reduce the 
unascertained stable value. This action can prompt users to choose another network to access. By 
contrast, if _load now  smaller than the threshold load_min , the network decreases its price with  
[ ( _ _ max)load now load P− Δ ] to increase the unascertained stable value. If the load is between the two 
thresholds, the network maintains its price. After network pricing has been decided, together with 
the three other factors, they enter into the unascertained part of the process. The unascertained 
decision is thus determined, thereby determining the user’s behaviors in choosing the optimal 
network to access. The whole process is introduced in Figure 5. 
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4. Numerical Simulation

In this section, based on the proposed scheme, the system performance evaluation is carried out.
The simulation experiment in this paper is implemented on matlab 2014 (The MathWorks, Inc., Natick,
MA, USA). Computer processor: Intel (R) Core (TM) i5-3210M CPU @ 2.5 GHz; memory: (8.00 GB),
64 bit operating system. The simulation parameters are listed in Table 1. In a community, there are
two kinds of services provided: a cellular network and a wireless network. The cellular network is
WDMA (wideband code division multiple access), and the wireless network is an 802.11b network.
Users can receive services from either of them. Users are distributed in the network coverage area,
independently moving in any direction at a speed of E[v] = 40 m/s, which is evenly distributed.
The arrival rate of these system services (including voice and data services) can be considered as a
Poisson distribution [27] with a mean of λ = 6/hour, and service duration is exponentially distributed
with a mean of v = 20 s. The average traffic per user is about 0.2 erl. Supposing the load threshold of
the integrated network is 10 erl, the load_max is 7 erl, and the load_min is 3 erl. The initial price for
cellular and wireless networks are both 5 units/erl.
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Table 1. Simulation parameters.

Parameter Power/W M_threshold/dB S_hysteresis/dB Price/$ Available Bandwidth/(Mbit.s−1)

Cellular network 2.0 2.5 0.4 5 0.3
Wireless network 0.2 2.5 0.4 5 1, 2, 3

With the increase in the number of users, the probability of cellular network congestion changes.
The integrated network load equals the sum of each user’s communication load, and each user accords
with Equation (14).

User_communication_rate = λ × v (14)

In Equation (14), λ is the user business arrival rate, and v represents the users’ average service time.
In [7], the authors claimed that communication services can be classified as either business data or

voice service. The data service follows a normal distribution with a mean of 0.2 and a variance of 0.2,
and the bandwidth of the data traffic is 2.5 times that of the voice business. The authors of [9] showed
that the initial network load threshold can be set at 7 erl and changed with the network load in real
time. The network load_max threshold can be set at 20 erl.

As shown in Figure 6, when the number of users increases, the proposed scheme works better
than the schemes proposed in [7,9]. The reason is that the network pricing controls the network users’
access behavior. When too many users access the network, the price is increased, the membership
function’s unascertained lower steady-state value is decreased, and lastly the integrated network
steady-state value is decreased. The user then chooses the network that has the higher steady-state
value, which finally reduces the integrated network load and keeps the network congestion rate
below 50%. Due to the network loading threshold being fixed, the scheme in [7] can easily result in a
higher congestion rate when the amount of users increases. When the number of users exceeds 30,
the network congestion rate is higher than 50%. Owing to the initial network load threshold being
lower in [9], the congestion probability is lower than the scheme proposed in [7] but higher than in our
proposed scheme.
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Figure 6. The integrated network congestion rate with smaller wireless network bandwidth.

Further, we set another scenario in which the bandwidth of wireless networks are 4 Mbit/s,
4 Mbit/s, and 5 Mbit/s. The reason why we set these values is that we want to show the trends
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of network congestion changes. Again, we can simulate the network congestion rate using these
three algorithms. The outcome is shown in Figure 7. We can see that the trends of the network
congestion rate are similar to the ones in Figure 6. The difference is that, for a certain number of users,
the congestion rate is lower. The reason for this is that the wireless network bandwidth is set larger.
There is hardly any congestion when the number of users is smaller than 50 in our proposed scheme.
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Figure 7. The integrated network congestion rate with larger wireless network bandwidth.

The network revenue increases with the increase in the number of users, which is shown in
Figure 8. For a user i, assuming the communication load is Ti and the network price is p, the network
income generated by user i is Ti × p. There are n users in total on the network at this time. Therefore,
the total network income is ∑n

i−1Ti × p. Comparing the three schemes, our proposed scheme has
a higher income than the other two when the number of users is more than 55. The reason is that,
in our scheme, although the network load is close to the threshold and the network congestion rate is
increased when the number of users is greater than 55, it increases the network price by decreasing the
number of access users. Therefore, network revenue is guaranteed. In [9], the network price remains
constant, and the network revenue increases with the increase in the number of users. However, there
is a threshold in terms of the number of users. As such, the income becomes stabilized when the
number of users reaches the threshold value. In [7], the network load threshold and the network price
are fixed. Therefore, the network revenue does not change when the number of users is more than 60
at one time. The reason for this is that the network capacity is limited.
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Figure 8. The integrated network income.

Figure 9 shows the ratio of the congestion rate and network income under a different number
of users for the three algorithms. In this simulation, the congestion rate is a negative factor for the
network, while the network income is a positive factor. The ideal situation for a given network is
where congestion rate is the lowest and network income is highest. From Figure 9, we can see that
our proposed algorithm has the highest ratio for most situations. An exception is that there are two
singular points at which the performance of our proposed algorithm is inferior to the performance
using the algorithm proposed in [7]. Analyzing these further, we can conclude that these two singular
points are abnormal and result in a flawed scenario. The two singular points are caused by random
fluctuations in the system. They do not have actual physical meaning, so they can be ignored. As such,
we can ignore these singular points.
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We can also simulate the following scenario. No special scheme is employed and the users
randomly access either network to receive service. The network income is based on the different
number of users. The outcome is shown in Figure 10. The network income using a random access
algorithm is higher than that using the proposed one when the number of users is small. If the number
of users increases, the network income from the random access algorithm is lower than that from
ours. The reason for this is that, when the number of users falls into the first situation, the network
congestion rate is low, so users in the proposed algorithm tend to choose the cheapest network to
receive service. Users do not consider the price parameter in the random access algorithm. From the
users’ perspective, this is an optimal situation, as they get the required quality of service and pay less
money. When the number of users falls into the second situation, the network congestion rate is higher.
Therefore, if users want to receive better service, they need to pay more.
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5. Conclusions

Various kinds of wireless networks are readily available, but users are usually concerned with
service quality and pricing. To meet QoS requirements and save costs, access point selection needs to
optimized. In this paper, an integrated network access algorithm that takes pricing and unascertained
membership into account is proposed. Real-time changes in network bandwidth, load, the number of
users, and the price of service is dynamically adjusted in accordance with the degree of unascertained
membership. In this algorithm, these parameters affect a user’s choice of network. If this algorithm is
employed, users can enjoy better service and pay less, and the network can also increase its income.
Simulation results show that the proposed scheme controls user access, decreases network congestion,
and increases network income with high loads and a high number of users.
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