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Abstract: In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for
initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree
CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering,
the innovation covariance matrix is calculated recursively by an innovative sequence with an
exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed.
The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the
fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error
covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient
of azimuth reaches the maximum. The experimental results show that the improved algorithm has
better alignment accuracy with large misalignment angles than the traditional algorithm.

Keywords: initial alignment; large misalignment angle; fifth-degree cubature Kalman filter; fading
memory index weighting

1. Introduction

Initial alignment is the basis for obtaining accurate misalignment angles of Strapdown
Inertial Navigation Systems (SINS), and its accuracy and efficiency will directly affect the SINS
performance [1,2]. In an application environment with large misalignment angles and moving bases,
the linear initial alignment algorithm is greatly restricted [3], while nonlinear algorithms have been
increasingly used for initial alignment [4,5].

In order to apply the linear Kalman filter to a nonlinear system, the Extended Kalman Filter
(EKF) [6] truncates the Taylor series expansion of the nonlinear function. The accuracy of EKF is
low for strongly nonlinear systems, and there may be a problem in that the Jacobi matrix cannot be
solved [7]. An Unscented Transformation (UT) is used in the Unscented Kalman Filter (UKF) [8] to
replace the local linearization for obtaining the first two moments of the states. Although the precision
of UKF is higher than EKF, there is a “dimension disaster” problem [9] in high dimensional applications
of UKF, and parameter adjustment is needed when using UKF. Spherical Radial Cubature Rule (SRCR)
is used in the third-degree CKF (hereinafter referred to as CKF3) to approximate the nonlinear integral
and obtain the two moments of the states, which can achieve third-order accuracy [10]. CKF has a
better numerical stability than UKF, and has been widely applied [11,12]. In order to further improve
the accuracy of the CKF3, fifth-degree CKFs (hereinafter referred to as CKF5) [13,14] have been applied
gradually [15]. CKF5 has problems of numerical stability and big calculation [16], and in this sense,
CKF5 is more suitable for low dimensional systems. The adaptive Kalman filter is an effective method
to restrain the divergence and improve the accuracy of filtering. The main idea of the adaptive Kalman
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filter is to scale the part of error covariance matrix or system noise matrix by calculating the ratio of
matrix ranks of actual updating and filter updating [17,18]. The traditional method for estimating
the updating covariance is the open window method, which uses the mean value of historical data
and not takes into account the different weights of new and old updates. The accuracy and real-time
performance of the traditional adaptive Kalman filter should be improved. Combining EKF and
adaptive filtering [19], the update covariance matrix is directly introduced into the calculation of gain
matrix, which improves the utilization rate of updates. However, EKF cannot effectively meet the
accuracy requirement of the nonlinear initial alignment with large misalignment angles. Adaptive
filtering is introduced into Unscented Particle Filter (UPF) [20], and the efficiency of convergence can be
improved by partially scaling the error covariance matrix. Nevertheless, the precision of in-motion and
nonlinear initial alignment with large misalignment angles should be further verified experimentally.
The 5-th CKF is directly applied to the initial alignment [12], but experiments on initial alignment with
large misalignment angles are lacking. The singular value decomposition can improve the robustness
of the initial alignment algorithm [21], but there is no verification of actual data except for simulations.

In order to improve the efficiency and accuracy of the 5-th CKF in initial alignment situations, an
entire scaling of the error covariance matrix method with the ratio of matrix ranks of actual updates
and filtered updates is introduced in this paper. To solve the problem of oscillation or divergence
of improved 5-th CKF caused by excessive scaling of the error covariance matrix, the scaling is
terminated when the gradient of the azimuth error reaches the maximum. The improved algorithm
needs to store the historical IMU data, GNSS data and the calculated azimuth misalignment angle
data, and then recalculate it for alignment. To improve the stability of the 5-th CKF algorithm, the
Singular Value Decomposition (SVD) algorithm is used instead of the Cholesky’s method in the matrix
decomposition. The large misalignment angle model is simplified in this paper, which means that
only the velocity errors and the misalignment angles are used as the states. The reduction of the states
has the advantages of requiring less calculation and better calculation stability, which can reduce the
chances of filter divergence.

In this paper, the nonlinear model of initial alignment with large misalignment angles is first
analyzed and a simplified alignment model with 6-dimensional state variables is proposed. Secondly,
the traditional CKF5 algorithm is briefly described in this paper, and then the improved algorithms
based on fading factor for the updating covariance matrix, short-term scaling of the error covariance
matrix and SVD decomposition are introduced. Finally, the effectiveness of the improved algorithms is
verified by simulation experiments and the dynamic vehicle experiments.

2. Nonlinear Model of Initial Alignment with Large Misalignment Angle

The SINS updating algorithm includes attitude-updating, speed-updating and position-updating,
and the corresponding differential equations are expressed with Equations (1) to (3) [22]:

.
C

n
b = Cn

b (ω
b
nb×), (1)

.
vn

= Cn
b f b

s f − (2ωn
ie + ωn

en)× vn + gn, (2)
.
L
.
λ
.
h

 =

 0 1/RMh 0
sec L/RNh 0 0

0 0 1

vn. (3)

where Cn
b is the direction cosine matrix of the attitude converting from the measurement reference

frame (abbreviated as b frame) to the navigation reference frame (abbreviated as n frame),
ωb

nb = ωb
ib −

(
ωb

ie + ωb
en

)
is the rotational angular rate of b frame relative to n frame, i is the inertial

reference frame, (ωb
nb×) is the antisymmetric matrix of ωb

nb, the vector νn = [νE νN νU ]
T expresses

the eastern velocity, northern velocity and vertical velocity, respectively, f b
sb is the output of the
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accelerometer, L is the latitude of the location of carrier, λ is the longitude of the location of carrier, h is
the height of the location of carrier, RMh is the radius of meridian of the location of carrier and RNh
is the radius of prime vertical circle of the location of carrier. Assuming n′ and n are the calculation
reference frame and ideal navigation reference frame, respectively, the misalignment (expressed as
Euler angle) between the two navigation reference frames can be expressed as:

.
φ = C−1

ω ωn′
nn′ , (4)

ωn′
nn′ = (I − Cn′

n )ω̂n
in + Cn′

n δωn
in − Cn′

b (εb + wb
g), (5)

where ωn′
nn′ is the relative rotational angular rate between the n reference frame and n′ reference frame,

εb is the random constant drift of Fiber Optic Gyroscope (FOG) and wb
g is the random drift of FOG.

C−1
ω and Cn′

n can be expressed as:

C−1
ω =

 cos φy 0 sin φy

sin φx sin φy/ cos φx 1 − sin φx cos φy/ cos φx

− sin φy/ cos φx 0 cos φy/ cos φx

 (6)

Cn′
n ≈

 cos φy cos φz − sin φx sin φy sin φz cos φy sin φz + sin φx sin φy sin φz − cos φx sin φy

− cos φx sin φz cos φx cos φz sin φx

sin φy cos φz + sin φx cos φy sin φz sin φy sin φz − sin φx cos φy cos φz cos φx cos φy

. (7)

Under the reference frame, Equation (2) can be written as:

.
v̂

n′
= Cn′

b f̂ b
s f − (2ω̂n

ie + ω̂n
en)× v̂n + ĝn. (8)

Subtracting Equation (2) from Equation (8) and neglecting the calculation error of gravitational
acceleration and higher-order terms, we obtain:

δ
.
vn

= [I − (Cn′
n )

T
]Cn′

b f̂ b
s f + (Cn′

n )
T

Cn′
b ∇

b − (2ω̂n
ie + ω̂n

en)× δvn, (9)

where ν̂n′ = νn + δνn, f̂ b
s f = f b

s f + δ f b
s f , ∇b = δ f b

s f , and we have:

.
ε

b
= 0, (10)

.
∇

b
= 0. (11)

The purpose of initial alignment is to quickly identify the misalignment angles. It is difficult
to estimate the errors of inertial sensors accurately, and that is not the purpose of initial alignment,
then the errors of εb and ∇b can be regarded as system noises. Therefore, the states used in initial
alignment are misalignment angles φ and the velocity error δνn, which can reduce the dimensions of
the filter, and thus reduce the computation and improve the numerical stability of CKF5. In order to
simplify the filtering error equation, a SINS nonlinear error model which can reflect the characteristics
of SINS errors has important practical value in the initial alignment [20]. When the SINS and GNSS are
integrated for initial alignment under moving base conditions, GNSS can provide relatively accurate
velocity and location information, then Equations (4) and (9) can be simplified as:

.
φ = C−1

ω [(I − Cn′
n )ω̂n

in,g − εn′ ] + C−1
ω Cn′

b wb
g, (12)

δ
.
vn

= [I − (Cn′
n )

T
]Cn′

b f̂ b
s f + (Cn′

n )
T
∇n′ + (Cn′

n )
T

Cn′
b wb

a, (13)

where wb
a is the random drift of accelerometer, ω̂n

in,g is the angular velocity of the Earth determined by
the information from GNSS. With the difference between the velocity of SINS measured by GNSS and
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the calculated velocity working as the measurement of z, the nonlinear filtering equations of initial
alignment with large misalignment angles can be expressed as:{ .

x = f (x) + g(x)w,
z = Hx + v,

(14)

where x = [φ (δνn)T], w =

[(
wb

g

)T(
wb

a

)T
]

, H = [03×3 I3×3], ν is the error vector of measurement and

the function of f can be obtained from Equation (12). The model of initial alignment (Equations (12)
and (13)) takes into account of the moving base situation, so the estimation of the initial alignment
angles will theoretically not be affected by the line movement and angle movement of SINS.

3. CKF5 and Improved CKF5

3.1. CKF5 Algorithm

For the integral of the global nonlinear function I(f ) and variable x = ry in the spherical-radial
coordinate system, I(f ) can be written as:

I( f ) =
∫ ∞

0

∫
Un

f (ry)rn−1e−r2
dσ(y)dr, (15)

where δTδ = 1, r ∈ [0, ∞), Un is n-dimensional unit hypersphere and σ(g) is the element of Un. I(f ) can
be divided into two parts, spherical integral S(r) and radial integral R:{

S(r) =
∫

Un
f (ry)dσ(y),

R =
∫ ∞

0 S(r)rn−1e−r2
dr.

(16)

The numerical integration is approximated with the summation of weighted sigma points in the
algorithm of CKF, then Equation (16) can be expressed as:

S(r) ≈
Ns
∑

j=1
ωs,j f (ryj),

R ≈
Nr
∑

i=1
ωr,i f (ri).

(17)

Then:

I( f ) ≈
Nr

∑
i=1

Ns

∑
j=1

ωr,iωs,j f (riyj). (18)

The m-order approximation of S(r) can be written as:

S =


2

n
∏

i=1
Γ[(di+1)/2]

Γ[(|d|+n)/2] , {di} are even numbers,

0, at least one odd number in {di},
(19)

where d = [p1,p2, . . . ,pn],
∣∣∣∣d =

n
∑

i=1
di

∣∣∣∣, |d| ≤ m, and Γ(g) is the gamma function. Note that when m = 5,

the value of S is calculated with f1(y) = 1, f2(y1) = y2
1, f3(y1) = y4

1 and f4(y1, y2) = y2
1y2

2. The points
set on the Un is defined as: {

[e]n =
{
±{ei}n

i=1
}

,

[s]n =
{
±{si}

n(n−1)
i=1

}
,

(20)
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where {ei}n
i=1 and {si}

n(n−1)
i=1 are defined as:{
{ei}n

i=1 = {e1, e2, . . . , en},
{si}

n(n−1)
i=1 =

{
(ek ± el)/

√
2 : k, l = 1, 2, . . . , n. and k < l

}
,

(21)

where ei is the ith column of identity matrix In×n. Then the Equation (19) can be expressed as:

S(r) ≈ ω1

2n

∑
i=1

f (r[e]i) + ω2

2n(n+1)

∑
i=1

f (r[s]i), (22)

where ω1 = (4−n)An
2n(n+2) , ω2 = An

n(n+2) and An = {[a]n, [s]n}. For the symmetry, S1(r) = 1, S2(r) = r2 and

S3(r) = r4 are needed to calculated in the solution of 5-order integral of S(r). Then
ωr,1r0

1 + ωr,2r0
2 = 1

2 Γ(n/2),
ωr,1r2

1 + ωr,2r2
2 = 1

2 Γ(n/2 + 1) = n
4 Γ(n/2),

ωr,1r4
1 + ωr,2r4

2 = 1
2 Γ(n/2 + 2) = 1

2 (
1
2 n + 1)(n/2)Γ(n/2).

(23)

Let r1 = 0, then we have: 
r2 =

√
1
2 n + 1,

ωr,1 = 1
(n+2)Γ(n/2),

ωr,2 = n
2(n+2)Γ(n/2).

(24)

Then it follows from Equations (19) and (23) that the integrated result of Equation (18) can be
obtained. The algorithm flow of CKF5 is shown as follows:

Prediction phase:

1. Let xk−1 ∼ N(xk−1; x̂k−1|k−1, Pk−1|k−1) be the estimated state at time k − 1 and decompose
Pk−1|k−1 with Cholesky’s method:

Pk−1|k−1 = Sk−1|k−1Sk−1|k−1
T . (25)

2. Compute cubature points:

x1 = Sk−1|k−1 · 0 + x̂k−1|k−1,
x2 = Sk−1|k−1

√
n + 2 · s+j + x̂k−1|k−1,

x3 = −Sk−1|k−1
√

n + 2 · s+j + x̂k−1|k−1,
x4 = Sk−1|k−1

√
n + 2 · s−j + x̂k−1|k−1,

x5 = −Sk−1|k−1
√

n + 2 · s−j + x̂k−1|k−1,
x6 = Sk−1|k−1

√
n + 2 · ej + x̂k−1|k−1,

x7 = −Sk−1|k−1
√

n + 2 · ej + x̂k−1|k−1,

(26)

where
{

s+j
}
,
{√

1
2(ek + el) : k < l, k, l = 1,2, . . . ,n

}
and

{
s−j
}
,
{√

1
2(ek− el) : k < l, k, l = 1,2, . . . ,n

}
.

3. Compute the predicted mean x̂k|k−1 and predicted covariance Pk|k−1:

x̂k|k−1 = w1 f (x1) + w2

n(n−1)/2
∑

j=1
( f (x2) + f (x3))

+w2

n(n−1)/2
∑

j=1
( f (x4) + f (x5)) + w3

n
∑

j=1
( f (x6) + f (x7)),

(27)
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Pk|k−1 = w1 f (x1) f (x1)
T + w2

n(n−1)/2
∑

j=1

(
f (x2) f (x2)

T + f (x3) f (x3)
T
)

+w2

n(n−1)/2
∑

j=1

(
f (x4) f (x4)

T + f (x5) f (x5)
T
)
+ w3

n
∑

j=1

(
f (x6) f (x6)

T + f (x7) f (x7)
T
)

−x̂k|k−1 · x̂T
k|k−1 + Qk−1,

(28)

where w1 = 2
n+2 , w2 = 1

(n+2)2 , w3 = 4−n
2(n+2)2 and Qk−1 is system noise covariance matrix.

Update phase:

4. Decompose Pk|k−1 with Cholesky’s method:

Pk|k−1 = Sk|k−1Sk|k−1
T . (29)

5. Compute cubature points: 

x′1 = Sk|k−1 · 0 + x̂k|k−1,
x′2 = Sk|k−1

√
n + 2 · s+j + x̂k|k−1,

x′3 = −Sk|k−1
√

n + 2 · s+j + x̂k|k−1,
x′4 = Sk|k−1

√
n + 2 · s−j + x̂k|k−1,

x′5 = −Sk|k−1
√

n + 2 · s−j + x̂k|k−1,
x′6 = Sk|k−1

√
n + 2 · ej + x̂k|k−1,

x′7 = −Sk|k−1
√

n + 2 · ej + x̂k|k−1.

(30)

6. Compute the estimated measurement ẑk|k−1, the gain matrix Kk and the covariance matrixes of
Pzz

k|k−1, Pxz
k|k−1:

ẑk|k−1 = w1h(x′1) + w2

n(n−1)/2
∑

j=1
(h(x′2) + h(x′3))

+w2

n(n−1)/2
∑

j=1

(
h(x′4) + h(x′5)

)
+ w3

n
∑

j=1
(h(x′6) + h(x′7)),

(31)

Pzz
k|k−1 = w1h(x′1)h(x′1)

T + w2

n(n−1)/2
∑

j=1

(
h(x′2)h(x′2)

T + h(x′3)h(x′3)
T
)

+w2

n(n−1)/2
∑

j=1

(
h(x′4)h(x′4)

T + h(x′5)h(x′5)
T
)
+ w3

n
∑

j=1

(
h(x′6)h(x′6)

T + h(x′7)h(x′7)
T
)

−ẑk|k−1 · ẑT
k|k−1 + Rk,

(32)

Pxz
k|k−1 = w1x′1h(x′1)

T + w2

n(n−1)/2
∑

j=1

(
x′2h(x′2)

T + x′3h(x′3)
T
)

+w2

n(n−1)/2
∑

j=1

(
x′4h(x′4)

T + x′5h(x′5)
T
)
+ w3

n
∑

j=1

(
x′6h(x′6)

T + x′7h(x′7)
T
)

−x̂k|k−1 · ẑT
k|k−1,

(33)

Kk = Pxz
k|k−1Pzz

k|k−1
−1. (34)

7. Update x̂k|k and Pk|k:
Pk|k = Pk|k−1 − KkPzz

k|k−1Kk
T , (35)

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1), (36)

where zk is the measurement at time k.
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3.2. Improved CKF5 Algorithm

The filtering precision of CKF5 can reach the fourth order, and the accuracy of CKF3 can reach the
second order. The amount of sigma points of CKF5 is 2n2 + 1, and that of CKF3 is 2n, so the cost of
computing of CKF3 is less than that of CKF5. In order to estimate the numerical stability of nonlinear
filter, the stability factor can be defined as [23]:

I =
N

∑
i=1
|ωi|, (37)

where ωi is the weight of sigma point and N is the amount of sigma points. If I = 1, the numerical
integration has absolute stability theoretically, on the contrary, non-absolute stability for I 6= 1. When
I 6= 1, the cumulative truncation error may leads to a non-positive error covariance matrix, even
further to the error of calculation or divergence. For CKF3, I = 1 and for CKF5, I 6= 1, which means
that CKF3 has better numerical stability than CKF5. For CKF5, we have:

I=
∣∣∣∣ 2
n + 2

∣∣∣∣+
∣∣∣∣∣n(n− 1)

(n + 2)2

∣∣∣∣∣+
∣∣∣∣∣ n(4− n)

2(n + 2)2

∣∣∣∣∣
=

2
n + 2

+
n(n− 1)

(n + 2)2 +
n(n− 4)

2(n + 2)2 , n > 4,

=
3n2 − 2n + 8

2(n + 2)2 , n > 4.

(38)

According to Equation (14), n = 6 and I = 13/16, the robustness of CKF is poor in this situation.
The non-positive covariance matrix caused by strong nonlinear or data errors may bring many
problems in Kalman filters, such as filtering error or divergence, which also can lead to the error of
Cholesky decomposition in CKF. In order to improve the numerical stability of CKF5, and considering
that the singular value decomposition (SVD) has better numerical robustness than Cholesky [24],
SVD is introduced into CKF5.

For s linear optimal Kalman filter, when the gain matrix Kk is optimal, the innovation sequence
Zk should be orthogonal. This conclusion can be extended to nonlinear filtering. The adaptive Kalman
(hereinafter referred to as AKF) scales the error covariance matrix or system noise matrix by calculating
the ratio of matrix ranks of actual innovation and filtered innovation [17,18]. Essentially, the traditional
AKF only partly scale the error covariance matrix in the next filtering period, and the utilization rate of
innovation is low. For the innovation sequence, the contribution of the new innovation to the state
estimation is large than the old one. Therefore, ICKF5 uses the exponent fading factor to weigh the
innovation sequence, and then scale the entire error covariance matrix in the next filtering period.
Assuming the current filter period is k and the weight set of innovation sequence is {αi}, we have:

k

∑
i=1

αi = 1, αi−1 = αi · ξ, (39)

where ξ is fading factor and ξ ∈ (0, 1), empirically, ξ ∈ (0.6, 1). To illustrate the impact of ξ on αi,
ξ was taken as 0.7, 0.8, and 0.9, respectively, for the convenience of observation, the innovations are
weighted by the exponent fading factor from k = 100. The distribution of αi is shown in Figure 1.
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Figure 1. The distribution of weights of innovations under different ξ.

Figure 1 shows that if the ξ is big, the weight of the current innovation is small, correspondingly,
the weights of old innovations are big, which means that the old innovation has bigger influence
than the new innovation on calculating the covariance matrix of innovation sequence. The opposite
conclusion can be obtained if ξ is small. A recursive formula for the covariance matrix of the innovation
sequence Zk is given below. When the forgetting factor ξ is determined, then:

ρk =
k−1

∑
i=1

ξ i. (40)

It follows from Equations (39) and (40) that:

αi =
ξk−i

ρk
, i = 1, 2, . . . , k. (41)

The open window method is used in traditional AKF, the covariance matrix P̂Z,k of innovation Zk
at time k can be expressed as:

P̂Z,k =
1

k− 1

k

∑
i=1

ZiZT
i . (42)

The weight of 1/(k− 1) in Equation (42) can be replaced by the weights of αi in Equation (41),
then a recursive formula between P̂Z,k and P̂Z,k−1 can be expressed as:

P̂Z,k=
k

∑
i=1

ξk−i

ρk
ZiZT

i

=
ZkZT

k
ρk

+

k−1
∑

i=1
ξk−iZiZT

i

ρk

=
ZkZT

k
ρk

+
ξρk−1
ρkρk−1

k−1

∑
i=1

ξk−i−1ZiZT
i

=
ZkZT

k
ρk

+
ξρk−1
ρkρk−1

k−1

∑
i=1

ξk−i−1ZiZT
i

=
ZkZT

k
ρk

+
ρk − 1

ρk

(
1

ρk−1

k−1

∑
i=1

ξk−i−1ZiZT
i

)

=
ZkZT

k
ρk

+
ρk − 1

ρk
P̂Z,k−1.

(43)
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In order to improve the feedback effect of innovation, we scale the error covariance matrix of the
next filtering period βk times entirely. The increase of the error covariance matrix makes the filter gain
Kk increase and the error correction ability of the innovation in the next filtering period is strengthened.
This method can reduce the dependence of the filter on the model, and then improve the filtering
accuracy and reduce the risk of divergence. βk is defined as:

βk = Max

{
trace(P̂Z,k − Rk)

trace(HkPk|k−1Hk
T)

, 1

}
, (44)

where trace(·) is the operator of obtaining the rank of a matrix, Rk is the measurement error covariance
matrix at time k, Hk is the measurement matrix at time k. The error covariance matrix of next filtering
period is scaled as:

Pk+1|k = βk · Pk+1|k. (45)

The algorithm of ICKF5 is summarized as follows:
Prediction phase:

(1) Input the initial values for filtering: xk−1|k−1, Pk−1|k−1, Qk−1, βk−1 = 1, Rk.

(2) Compute cubature points xi, (i = 1, . . . , 7) according to Equation (26).
(3) Compute the predicted mean x̂k|k−1 and predicted covariance Pk|k−1 according to Equations (27)

and (28), respectively.
(4) Scaling the entire Pk|k−1: Pk|k−1 = βk−1 · Pk|k−1.

Update phase:

(5) Decompose Pk|k−1 with the SVD method.

(6) Compute cubature points x′i , (i = 1, . . . , 7) according to Equation (30).
(7) Compute the estimated measurement ẑk|k−1, the gain matrix Kk and the covariance matrixes of

Pzz
k|k−1, Pxz

k|k−1 according to Equations (31)–(34), respectively.

(8) Update x̂k|k, Pk|k and βk according to Equations (35), (36) and (44), respectively.

The scaling of the error covariance matrix by ICKF5 can effectively improve the utilization of
innovation and speed up the convergence of initial alignment. ICKF5 is a kind of suboptimal algorithm,
if the scaling value of βk is too large, the system will be in a state of overshoot, which may lead to
oscillation or divergence. For example, when getting the initial alignment in the convergence stage,
the gain Kk and the error covariance matrix Pk|k−1 should ideally remain unchanged or little changed.
If the feedback for error covariance matrix is big at the stage of alignment convergence, it may cause
the filtering convergence to be unstable or lead to the divergence. In order to reduce the possibility
of divergence of initial alignment filtering and ensure the stationarity after convergence, we use
a short-term feedback strategy that we stop the scaling of βk in ICKF5 before the filtering occurs
oscillating or diverging, which can ensure the convergence of initial alignment. For convenience, we
call the short-term feedback algorithm IICKF5. The first step of IICKF5 is that the ICKF5 is used to
complete the initial alignment firstly, then the gradient sequence ∇ψi = diff(ψi) of the set of azimuth
misalignment angle {ψi} outputted by ICKF5 can be obtained, where di f f (·) is gradient operator. The
second step, the time Tmax corresponding to the maximum value of the gradient is chosen as the time
to terminate the feedback to the error covariance matrix Pk|k−1. Tmax can be expressed as:

Tmax = Max{abs{∇ψ}}. (46)

To be brief, ICKF5 is used in the period of [1, Tmax) and CKF5 is used in [Tmax, Tend], where Tend
is the end time of initial alignment filtering. The flow chart of IICKF5 is shown in Figure 2.
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Compared to ICKF5, IICKF5 needs to recalculate the stored IMU data and the misalignment angle
set {xk} output by ICKF5. IICKF5 has a certain delay compared with ICKF5, and some storage space
is needed.

3.3. Simulation and Its Analysis

In order to verify the effectiveness of ICKF5 and IICKF5, a simulation of initial alignment under
static base conditions is performed. The simulation conditions are set as follows: the gyro constant
drift is εC = 0.01 (◦/h), random drift is εN = 0.001 (◦/

√
h); the accelerometer zero bias is∇C = 50 µg,

random deviation is ∇N = 5 (µg/
√

h); the local geographic latitude is 34◦, longitude is 108◦; the
misalignment angles are set as φ(0) = [20◦, −40◦, 170◦] and the simulation period is 800 s. The
general parameters of the initial alignment algorithms are set with the same values. The initial value
of X0 is set as X0 = [0; 0; 0; 0; 0; 0]. The matrix of Q is determined according to the random drift of
IMU, and Qk = diag{(0.001◦); (0.001◦); (0.001◦); (5ug); (5ug); (5ug)}2. The initial error covariance
matrix is set as P0 = diag([[10; 10; 180] · π/180; [1; 1; 1]])2. Where diag(·) is the operator of obtaining
the diagonal matrix with diagonal elements. For UKF, α = 1e− 3, β = 2 and λ = 0. EKF, UKF [25],
CKF3, CKF5, ICKF5 and IICKF5 algorithms are applied to the nonlinear initial alignment. In addition
to IICKF5, the calculated misalignment angles are as shown in Figure 3.
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Figure 3. The estimated misalignment angles (φ(0) = [20◦, −40◦, 170◦]): (a) Pitching misalignment
angle; (b) rolling misalignment angle; (c) azimuth misalignment angle.

Figure 3 shows that the pitching misalignment angles converge to 20◦ and the rolling misalignment
angles converge to −40◦ with the exception of EKF, and only the azimuth misalignment angles of
CKF5 and ICKF5 converge to 170◦.

The gradient values of the azimuth angle errors of ICKF5 are shown in Figure 4.
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Figure 4. The gradient values of azimuth angle error.

Figure 4 shows that there is an obvious mutation in the azimuth angle error at t = 4 s, which is
the overshoot caused by ICKF5, so Tmax = 4 s. The estimated azimuth angles of CKF5, ICKF5 and
IICKF5 are shown in Figure 5.
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As seen in Figure 5, IICKF5 enters the convergence stage at about 400 s, while CKF5 and ICKF5
converge slower than IICKF5. Figure 3 also shows that the convergences of horizontal misalignment
angles are faster than that of the azimuth misalignment angles, which is due to the fact that the
observability of the horizontal misalignment angles is high under the velocity matching mode. There
is a coupling relationship between the horizontal misalignment angles and the bias of accelerometer.
When the variation of heading angle is small, the accuracies of the horizontal misalignment angles
depend on the bias of the accelerometer. The simulation experiment in this paper is based on static
base, so the variation of heading angle is very small, and the horizontal misalignment has a slow drift
due to the bias of the accelerometer. From this point of view, the estimation period of the horizontal
misalignment angles is not the longer the better. For the sake of accuracy, we select the estimations of
horizontal misalignment angles at 50 s and select the estimation value of azimuth misalignment angle
at the last moment (800 s) as the outputs of alignment, and the alignment errors are shown in Table 1.

Table 1. Comparison of alignment errors (◦).

EKF UKF CKF3 CKF5 ICKF5 IICKF5

error of pitch (◦) −7.0205 0.0899 0.1270 0.1590 0.0829 0.0291
error of roll (◦) 7.8234 −0.1464 −0.1634 −0.2078 −0.2949 −0.2738

error of heading (◦) 62.7783 157.7361 61.2902 13.6403 −1.2458 −0.0878

Table 1 shows that the pitch and the azimuth misalignment errors of IICKF5 are the smallest, and
the azimuth misalignment error is close to the limitd alignment precision of 0.05◦, which meets the
initial alignment requirement.

4. Dynamic Vehicle Experiment

The experimental equipment is shown in Figure 6. The GNSS real-time differential system
consisted of two model ProPak6 receivers (NovAtel, Calgary, AB, Canada). The attitude reference
system is a NovAtel SPAN system (NovAtel, Calgary, AB, Canada), which can reach centimeter
level precision. An LN-200 IMU named from the Novatel Company is used for the initial alignment
experiment. The bias of the accelerometer is 0.3 mg and its scale factor is 300 ppm. The constant
drift, the random drift and the scale factor of gyro are εC = 1 (◦/h), εN = 0.07(◦/

√
h) and 100 ppm,

respectively. The output rates of the LN-200, SPAN system and GNSS system are 200 Hz, 100 Hz and
5 Hz, respectively.
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The period of initial alignment is 700 s. In addition to IICKF5, the calculated azimuth angle errors
are as shown in Figure 7.
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Figure 7. The alignment errors of large azimuth misalignment angle of dynamic vehicle experiment:
(a) Pitch errors; (b) roll errors; (c) heading errors.

For the azimuth angle errors, Figure 7 shows that EKF, UKF, CKF3 did not converge to the accurate
azimuth angle, ICKF5 has faster convergence rate than CKF5, and ICKF5 has much more oscillations
in the convergence process than CKF5 because of the overshoot. For the pitch angle and the roll angle
errors, we can see that CKF5 and ICKF5 have greater oscillations than other algorithms, which is
caused by the inaccuracy of model noises, such as the GPS’s measurement noise, IMU noise and so on.
The nonlinear filter of high order precision amplifies the noises with high frequencies, which easily
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results in larger estimation errors if the estimated state values are small. When obtaining the gradient
of the azimuth angles of ICKF5 in Figure 7c, the gradient values are as shown in Figure 8.Sensors 2018, 18, x FOR PEER REVIEW  14 of 16 
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Figure 8. The gradient values of azimuth angle error (dynamic vehicle experiment).

Figure 8 shows that there is a mutation in the azimuth angle error at t = 50 s, so Tmax = 50 s.
The estimated misalignment angles of all the algorithms are shown in Figure 9.
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Figure 9. The alignment errors of different algorithms: (a) Pitch errors; (b) roll errors; (c) heading errors.

From Figure 9 we can find that IICKF5 has a faster convergence rate than CKF5 and ICKF5
except for the pitching misalignment angle, and the azimuth misalignment angle of IICKF5 has better
convergence stability than ICKF5. The alignment errors at the end of alignment (at 700 s) are shown in
Table 2.
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Table 2. Comparison of alignment errors with in-motion base (◦).

EKF UKF CKF3 CKF5 ICKF5 IICKF5

error of pitch (◦) −3.2814 −1.2868 −2.6771 −3.7189 3.0270 5.9149
error of roll (◦) −1.2960 −0.2867 3.3751 5.4245 −2.9030 1.8357

error of heading (◦) −139.5622 −266.3212 −204.3457 7.9986 42.5004 −1.9540

Table 2 shows that IICKF5 has better accuravy than CKF5 in estimating the rolling misalignment
angle and azimuth misalignment angle. When the alignment is finished, the alignment errors of ICKF5
and IICKF5 did not converge to small values (e.g., 1◦), so more time is needed for fine alignment. In
order to further compare the convergence abilities of different algorithms, the mean and standard
deviation of azimuth misalignment errors are calculated in the range of [100 s, 700 s], which can be
regarded as a relatively complete convergence period for ICKF5 and IICKF5, and the results are shown
in Table 3.

Table 3. Mean and Standard Deviation (SD) of azimuth misalignment errors (◦).

EKF UKF CKF3 CKF5 ICKF5 IICKF5

Mean (◦) −155.2618 −264.1352 −201.1962 1.6920 −6.1625 −0.6852
SD (◦) 38.8935 3.8062 11.5359 10.2307 41.2056 4.6229

From Table 3 we can see that IICKF5 has the smallest errors of mean and standard deviation.
In this sense, the improved algorithm is suitable for quickly identifying a large azimuth misalignment
angle in a complex alignment environment. ICKF5 is a kind of real-time algorithm that represents an
improvement on CKF5, which does not need to process historical IMU data and no storage space for
the IMU is needed. IICKF5 needs to obtain the gradient value of the historical azimuth angle, so the
historical IMU data need to be stored for the second initial alignment filtering. For the 700 s period of
in-motion initial alignment, the length of IMU data is 70,000 (in order to synchronize with the reference
system), and the storage space for IMU data is 2869 KB. The data stored are double and floating types
with 64 bits. The update rate of GNSS is 5 Hz, so the storage space it needs is small, and the size is
10 KB. The capacity of the azimuth misalignment angle data is 6 KB. The total storage space needed for
IICKF5 is 2885 KB, and the additional burden on the navigation computer is small.

5. Conclusions

It is not only convenient to calculate the innovation variance matrix in a recursive and exponent
fading factor way, but also to effectively use the current and old updates. The speed and precision
of convergence can be effectively improved by scaling error covariance matrix with the ratio of
matrix ranks of actual updates and filter updates. In order to solve the problem of oscillation or
divergence caused by excessive scaling of the error covariance matrix, the scaling scheme is terminated
when the azimuth gradient reaches the maximum. The improved CKF can improve the precision of
initial alignment better than the traditional CKF. The length of filtering time is also dependent on the
experience, and the robustness of the improved algorithm is also worthy of further study.
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