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Abstract: Intrusion detection system (IDS) design for mobile adhoc networks (MANET) is a crucial
component for maintaining the integrity of the network. The need for rapid deployment of IDS
capability with minimal data availability for training and testing is an important requirement of such
systems, especially for MANETs deployed in highly dynamic scenarios, such as battlefields. This work
proposes a two-level detection scheme for detecting malicious nodes in MANETs. The first level
deploys dedicated sniffers working in promiscuous mode. Each sniffer utilizes a decision-tree-based
classifier that generates quantities which we refer to as correctly classified instances (CCIs) every
reporting time. In the second level, the CCIs are sent to an algorithmically run supernode that
calculates quantities, which we refer to as the accumulated measure of fluctuation (AMoF) of the
received CCIs for each node under test (NUT). A key concept that is used in this work is that the
variability of the smaller size population which represents the number of malicious nodes in the
network is greater than the variance of the larger size population which represents the number of
normal nodes in the network. A linear regression process is then performed in parallel with the
calculation of the AMoF for fitting purposes and to set a proper threshold based on the slope of
the fitted lines. As a result, the malicious nodes are efficiently and effectively separated from the
normal nodes. The proposed scheme is tested for various node velocities and power levels and
shows promising detection performance even at low-power levels. The results presented also apply
to wireless sensor networks (WSN) and represent a novel IDS scheme for such networks.

Keywords: intrusion detection; MANET; WSN; decision trees; linear regression; accumulated
measure of fluctuation (AMoF); finite sample size

1. Introduction

The mobile adhoc network (MANET) is a type of wireless network that does not require
infrastructure for its operation. This feature makes it very appealing for rapid deployment in harsh and
challenging environments. There are many applications for these highly versatile networks. The most
important applications of MANETs are in support of military special operations and civil emergencies.
MANETs lack a centralized architecture which affects the level of security inside the network and
increases vulnerability. Encryption helps to increase network security level but is not sufficient to
protect against malicious intruders.

The rapid deployment of MANET nodes implies training data sets that are small vis-à-vis the
problem dimensionality, which could lead to inaccuracies in the decision process [1]. The dynamic
nature of such networks also leads to dataset drift [2]. These causes generally lead to errors made
in the determination of malicious MANET nodes, but they also make the use of bilevel detection
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schemes of special interest. A bilevel detection scheme is meant to deploy a two-stage detection
process, which uses dedicated sniffers to collect data and make decisions locally, while the global
detection is performed via a supernode based on the data provided by the dedicated sniffers.

The proposed intrusion detection scheme in this work is based on cross-layer feature collection
and packet counts (from both the medium access control (MAC) and network layers) and is trained
based on the network behavior under normal and malicious activity. To facilitate the understanding of
the ideas presented in this paper, we preview the architecture used in the intrusion detection process.
It is shown below in Figure 1, where dedicated sniffer nodes, Si, i = 1, . . . , n, capture information from
several network layers and compute quantities which are referred to as correctly classified instances
(CCI). The CCI used here is the ratio of the correctly classified instances obtained by the classifier to the
total number of instances for both classes, normal and malicious. These quantities are then aggregated
in a supernode which computes what we refer to as accumulated measure of fluctuation (AMoF).

A supervised approach to learning is adopted, having datasets labeled for both normal and
malicious classes. The labeling was obtained based on the state of the network, that is, based on
when there are no malicious nodes, and when some malicious nodes are deployed in the network.
This approach will add robustness when compared to labeling based on node level. A node level
labelling is prone to a change in the node functionality (different types of nodes). The classical detection
measures such as true positive (TP) and true negative (TN), will have inaccurate inference regarding
node status; instead, we used the accumulated variation of the CCIs calculated by the dedicated
sniffers to generate a more solid inference regarding node status. A detailed discussion for dataset
generation, labeling and detection algorithms, is presented in Sections 4 and 5.
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Figure 1. Simplified architecture of the proposed intrusion detection system (IDS).

In this paper, the type of attack used to simulate the malicious activity is a black hole attack,
which is network layer-based [3]. A more detailed discussion of the attack is found in Section 2.
A non-specification-based IDS is adopted here, so features are collected and processed without taking
special consideration of the specification of the attack behavior. We believe that this approach, given
the nature of dataset preparation that is based on network behavior, rather than node behavior, and
the non-specification-based detection, would lead to an IDS that exhibits robust behavior in the face
of a variety of attacks. For example, in a black hole attack, the ratio of packets received to packets
forwarded is an attack-specific feature that is not used here. In stage one, the detection process uses a
decision tree (C4.5 or random forest) to produce CCIs, at the sniffer level, every reporting time (Tr).
In stage two, the CCIs are sent to a fusion center (or supernode) that in turn applies an algorithm
which calculates the AMoF for each sniffer’s data related to the node under test (NUT). This is done by
calculating the accumulated variation of CCIs using a sliding window approach. An iterative slope
fitting is performed in conjunction with the AMoF calculation process to establish a detection threshold.
In the CCI calculations, to be described in the sequel, the usage of higher variance for larger groups of
random variables has been favored to using smaller groups in the same sample space.
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The C4.5 decision tree-based IDS is adopted due to its simplicity and reliability of
performance [4–10]. An ensemble of decision trees, known as a random forest, is also adopted
in this work due to its superior performance, especially when dealing with variability when compared
to C4.5 decision trees. This point is very important, since we use the variation of the correctly classified
instances (CCIs) as a major feature to differentiate between normal and malicious nodes. The random
forest is considered to be one of the most effective data mining techniques [11]. A detailed comparison
between different learning algorithms based on training time, computational complexity and resources
consumption can be found in [12].

The data acquisition scheme used in the proposed IDS is based on promiscuous monitoring, and it
relies on eavesdropping on the traffic activity of the neighboring nodes [13,14]. Dedicated sniffers use
the collected data which consists of packet traces from MAC and network layers to build a model for
normal and abnormal behavior at the node level.

This paper is divided into the following sections. Section 2 presents a brief introduction about the
blackhole attack in MANET, while Section 3 presents mathematical modeling for the CCIs. It has been
determined that, despite having a mathematical model for the CCIs, it is extremely difficult to find an
analytical form for the AMoF. This motivates the utilization of a more tractable heuristic approach.
The system architecture and a heuristic multilevel detection approach utilizing decision trees and
linear regression is described in detail in Section 4. In Section 5, the experimental setup is explained
in detail. Results and a discussion are provided in Section 6. A brief survey of related work is also
presented in Section 7. Finally, Section 8 is devoted to conclusions and thoughts about future work.

2. AODV Routing and Blackhole Attack

The routing protocol used in this work is the adhoc on-demand distance vector (AODV), which is
a reactive routing protocol that performs the discovery process between two nodes only when needed.
There are three main control packets used in this protocol: route request (RREQ), route reply (RREP),
and route error (RERR).

The black hole attack is a network layer-oriented attack that affects the routing pattern in the
MANET by forging a fake RREP with a high-sequence number, thereby deceiving the network into
believing that the attacking node has the shortest path to the destination [15]. Once the sender receives
the forged RREP, the traffic behavior in the network changes by directing the traffic to a malicious
node that drops the packets.

3. Mathematical Modeling of the CCIs

An analytical form of the AMoF is desired, in order to establish a proper detection threshold to
distinguish between two classes, malicious and normal nodes. To obtain such a form, extensive work
was conducted to obtain best distribution fitting of the accumulated CCIs, at the supernode, which
represents the main block of the AMoF modeling. The data is collected in a matrix form, where the
number of rows is equal to the number of reporting times N, and the number of columns is equal to
the number of sniffing sensors n.

The matrix is populated with the CCIs obtained at every Tr, as shown in Table 1. The reporting
time (Tr) is simply the simulation time divided by N, and is the time used to collect data by the sniffers
to generate a CCI which is then sent to the supernode. An example of Tr/Ts calculation is shown in
Section 5. The sample fitting was performed column-wise to show the best distribution fit for each
sniffing sensor. The log-likelihood ratio is employed to decide the closest distribution to our data
samples. The top three distributions that provided best fits were found to be the extreme value (EV),
gamma, and Nakagami distributions.

Algorithm 1 and the preceding paragraphs in Section 4, provide a detailed explanation and
calculation of the AMoF, which are based on subtracting the consecutive CCIs for each sensor, taking
the average CCI of the n sniffing sensors and finally, adding to the calculated sample from the
previous iteration.
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Table 1. A sample table for the collected correctly classified instances (CCIs) at the super node every Tr.

Sniffers

Correctly Classified Instances (CCIs) for every repotting time Tr

S1 Sn

CCI(S1)
1 CCI(Sn)

1
CCI(S1)

N CCI(Sn)
N

The extreme value distribution proved to be the best fitting distribution for a wide range of
reporting time/sampling time (Tr/Ts) ratios based on the log-likelihood value. Samples of fitted
distributions using a reporting time of Tr = 100 s and a sampling time of Ts = 10 s (for two extreme cases
of node mobility and power level) are shown in Tables 2 and 3. The data fitting for the first scenario
with node velocity 1 m/s and power level 3 dBm is shown in Table 2. The other scenario is presented
in Table 3, where the node velocity is 15 m/s and the power level is 7 dBm. Node 13, a normal
node, and Node 19, a malicious node, are used to illustrate the best fit for the CCIs. In Tables 2 and 3,
the node under test (NUT) is indicated. The node speed and power levels are used to describe different
scenarios in this work, for example, a node speed of 1 m/s and power level of 3 dBm is abbreviated
as NS1P3.

Table 2. The log-likelihood for three different density fits in scenario NS1P3.

NS1P3, Tr = 100 s, Ts = 10 s

NUT: 13 NUT: 19

Log-likelihood for sensor 5 Log-likelihood for sensor 5

EV 21.4374 EV 20.0272
Gamma 15.2119 Gamma 17.4694

Nakagami 16.0349 Nakagami 18.1008

As mentioned earlier, an analytical model for the AMoF proved to be challenging; therefore,
well-established heuristic methods were employed to develop a model and algorithm that calculates
the AMoF. Given that the underlying distribution of the AMoF is extremely complex to obtain, we see
it is important, at least, to model the main unit in calculating it, that is the CCI.
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Figure 2. Data fitting for the CCIs of sensor 5: (a) Data fitting for three distributions, extreme value
(EV), Gamma, and Nakagami in scenario NS1P3 for node under test (NUT) 13; (b) Data fitting for
three distributions, EV, Gamma, and Nakagami in scenario NS1P3 for NUT 19.
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Table 3. The log-likelihood for three different density fitting in scenario NS15P7.

NS15P7, Tr = 100 s, Ts = 10 s.

NUT: 13 NUT: 19

Log-likelihood for sensor 5 Log-likelihood for sensor 5

EV 14.4636 EV 32.4864
Gamma 13.1913 Gamma 31.0568

Nakagami 13.4487 Nakagami 31.2517

The distribution fitting shown in Figure 2 shows that the EV distribution fits the CCIs better than
the Gamma and Nakagami distributions.

Sensors 2018, 18, x FOR PEER REVIEW  5 of 17 

 

Table 3. The log-likelihood for three different density fitting in scenario NS15P7. 

NS15P7, Tr = 100 s, Ts = 10 s.
NUT: 13 NUT: 19 

Log-likelihood for sensor 5 Log-likelihood for sensor 5 
EV 14.4636 EV 32.4864 

Gamma 13.1913 Gamma 31.0568 
Nakagami 13.4487 Nakagami 31.2517 

The distribution fitting shown in Figure 2 shows that the EV distribution fits the CCIs better than 
the Gamma and Nakagami distributions.  

(a) (b)

Figure 3. Data fitting for the CCIs of sensor 5: (a) Data fitting for three distributions, EV, Gamma, and 
Nakagami in scenario NS1P3 for NUT 13; (b) Data fitting for three distributions, EV, Gamma, and 
Nakagami in scenario NS15P7 for NUT 19. 

The distribution fitting shown in Figure 3 shows that EV distribution fits the CCIs better than 
the gamma and Nakagami distributions. Gamma and Nakagami distribution fitting are very close 
(Figures 2 and 3); this is expected considering the Nakagami distribution is a specific type of gamma 
distribution. 

The last set of distribution fitting results is presented in Table 4 and Figure 4, for scenario NS5P7, 
Tr = 25 s, and Ts = 5 s which has more fitting samples compared to the previous scenarios, in this case 
2000/25 = 80 sample. 

Table 4. The log-likelihood for three different density fitting in scenario NS5P7. 

NS5P7, Tr = 25 s, Ts = 5 s
NUT: 13 NUT: 19 

Log-likelihood for sensor 5 Log-likelihood for sensor 5 
EV 43.8455 EV 61.8714 

Gamma 33.0146 Gamma 55.1129 
Nakagami 34.326 Nakagami 56.2025 

Again, the EV distribution shows to be the best fit compared with gamma and Nakagami 
distributions. All the results presented in this section are based on experimental setup described in 
Section 5. 

Figure 3. Data fitting for the CCIs of sensor 5: (a) Data fitting for three distributions, EV, Gamma,
and Nakagami in scenario NS1P3 for NUT 13; (b) Data fitting for three distributions, EV, Gamma,
and Nakagami in scenario NS15P7 for NUT 19.

The distribution fitting shown in Figure 3 shows that EV distribution fits the CCIs better
than the gamma and Nakagami distributions. Gamma and Nakagami distribution fitting are very
close (Figures 2 and 3); this is expected considering the Nakagami distribution is a specific type of
gamma distribution.

The last set of distribution fitting results is presented in Table 4 and Figure 4, for scenario NS5P7,
Tr = 25 s, and Ts = 5 s which has more fitting samples compared to the previous scenarios, in this case
2000/25 = 80 sample.

Table 4. The log-likelihood for three different density fitting in scenario NS5P7.

NS5P7, Tr = 25 s, Ts = 5 s

NUT: 13 NUT: 19

Log-likelihood for sensor 5 Log-likelihood for sensor 5

EV 43.8455 EV 61.8714
Gamma 33.0146 Gamma 55.1129

Nakagami 34.326 Nakagami 56.2025

Again, the EV distribution shows to be the best fit compared with gamma and Nakagami
distributions. All the results presented in this section are based on experimental setup described
in Section 5.
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4. System Architecture

The system shown in Figure 5 consists of n dedicated sniffers, Si, i = 1, . . . , n. The packet
traces are collected from the MAC and network layers related to the NUTs. The packets collected
from the MAC layer are received and transmitted: request to send (RTS), clear to send (CTS),
and acknowledgment (ACK). The packets collected from the network layers are received and
transmitted: RREQ, RREP, and RERR. Both layers’ features are shown in Table 5.
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The variability in the consecutive CCIs is a key feature used to distinguish between normal and
malicious nodes, where normal nodes have higher variability in consecutive CCIs. This idea is based
on the smaller size population (which represents the number of malicious nodes in the network)
vis-à-vis the larger-size population (which represents the number of normal nodes in the network).

The first stage of detection is conducted at the sniffer level, where each sniffer is a classifier and
performs a local classification using a C4.5 decision tree or random forest. The outcome of this process
is a CCI every Tr seconds, which is sent to the supernode for further processing. The simulation time is
N × Tr, where the supernode performs the second stage of detection by applying an iterative slope (β)
and threshold (δ) calculation based on linear regression for each NUT as shown in Algorithms 1 and 2.
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Table 5. Cross Layer Features.

Mac Layer
Tx/Rx Tx/Rx Tx/Rx

RTS CTS ACK

Network Layer
Tx/Rx Tx/Rx Tx/Rx Tx/Rx

RREQ RREP RERR Hello messages

The AMoF is calculated in Algorithm 1 by applying a sliding window of size 1 on an N× n matrix,
which is populated by the CCIs gathered about any NUT by the dedicated sniffers. This process if
performed by subtracting the consecutive CCIs for each sensor, taking the average CCI of the n sniffing
sensors, and finally adding the average of all the columns of the normalized absolute differences
within each column, to the calculated sample from the previous iteration. The variable Temp(Sj)i
represents the subtraction of the consecutive CCIs, row-wise, where every column represents a number
of sniffers. The absolute value is taken at each iteration and then divided by 100, which is the maximum
possible difference between two consecutive CCIs. Finally, the AMoF(Sj)i is calculated by finding the
accumulated mean of the sniffers’ CCIs. The second algorithm uses linear regression to iteratively find
the fitted slope and confidence intervals regarding the CCIs of each NUT. Note that is the number of
instances received by the supernode, which is also the number of reporting times in the experiment.

Linear regression explains the dependency between the dependent variable X and independent
variable Y as [16],

Yi = β0 + β1Xi + εi, (1)

where β0 and β1 are the model parameters. The errors εi are assumed to be independent N
(
0, σ2).

The confidence interval for β1 is given as

b1 ±
t
(
n− 2, 1− α

2
)
s

{∑(xi − x́)2}1/2 , (2)

where t
(
n− 2, 1− α

2
)

is the 100
(
1− α

2
)

percentage point of a t-distribution with (n− 2) degrees of
freedom and the residual sum of squares s2. The confidence of the slope in (2) is C as in Algorithm 2.
Once enough AMoF samples have been generated (three samples suffice), the iterative regression
calculates the fitted slope β1, including its upper and lower bounds. The threshold is calculated first
by finding an initial threshold (δ∗) which is the difference between the maximum of the upper bounds
and the minimum of the upper bounds of all NUTs divided by two and added to the minimum of the
upper bounds for that iteration.

Algorithm 1 Calculating the AMoF for malicious and normal nodes

1: Input: CCI(Sn)1, . . . . . . . . . , CCI(Sn)N ,
2: Output: AMoF
3: At the super node
4: ∀node ∈ NUT
5: Receive CCI(Sn)1, . . . . . . . . . , CCI(Sn)N S.T CCI(NUT) is N × n
6: Initialize Temp(Sj), Norm_Temp(Sj) i, Sigma(Sj) i, AMoF(Sj) i
7: for i = 1 to N do
8: for j = 1 to n do

9: Temp(Sj) i←
∣∣∣(CCI(Sj) i+1 − CCI(Sj) i)

∣∣∣+Temp(Sj) i−1

10 Norm_Temp(Sj) i←Temp(Sj) i/100
11: end for
12: AMoF(Sj) i← (Norm_Temp(Sj) i/n) + AMoF(Sj) i−1

13:end for
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The permanent threshold (δ) value is adopted once a small number (say 3) of consecutive initial
thresholds achieve the criterion |∆|.

Algorithm 2 Calculating the fitted slope (β) for every NUT, setting the detection threshold (δ)

1: Input: AMoF(NUT)
1, . . . . . . . . . , AMoF(NUT)

N−1

2: Output: fitted slope (β), detection threshold (δ)
3: At the super node:
4: ∀node ∈ NUT where the number of elements in NUT = l
5: Receive AMoF(NUT)

1,.., AMoF(NUT)
N−1 S.T AMoF(NUT) is l × (N − 1)

6: for k = 1 to N − 1 do
7: for j = 1 to NUT do
8: If k ≥ 3 then
9: Find βk by solving (1)
10: Find Ck by solving (2)

11: Find initial threshold δ∗k =
(

max(Ck)−min(Ck)
2

)
+ min(Ck)

12: If δ∗k − δ∗k−1 ≤ |∆|
13: δk ← δ∗k
14: If δk > δ

15: node is normal
16: else
17: node is malicious
18: end for
19: end for

The normal nodes are those which have a higher upper bound value than the permanent threshold.
In other words, normal nodes maintain higher fluctuation in the received CCIs compared to the
malicious nodes.

5. Experimental Setup

In the network of 30 nodes, there exist five data sources transmitting data to five destination
nodes (sinks). All other nodes act as routers following an AODV protocol. In the experiment, UDP
(user datagram protocol) connection was used and data traffic of constant bit rate (CBR) was applied
between source node to destination nodes. The network used in this experiment has a data rate of
2Mb/s (802.11b) and assumes a Friis loss model [17]. Different power levels and node velocities are
studied in the paper as shown in Table 4.

The raw data were collected by simulating a network of thirty mobile nodes using the widely
adopted discrete-event network simulator NS-3. A node’s mobility follows the random way point
(RWP) mobility model. Five of the nodes are designated as dedicated sniffers that collect data from the
neighboring nodes promiscuously. They then generate CCIs, which in turn are sent to the supernode
that performs the AMoF algorithm that includes a linear regression of the MoF so that it can detect the
malicious nodes. The first level detection is at the sniffers’ level, where each sniffer generates a CCI at
each Tr. Simple, yet effective, machine-learning algorithms have been adopted; most notably, the C4.5
decision tree or random forest. A supervised learning approach is adopted, which means simulations
for both normal and malicious dataset retrieval are needed.

The number of sniffers was chosen as a tradeoff between the following considerations:

1. The Area covered is 1000 m by 1000 m, which requires a sufficient number of sniffers, especially
when having low connectivity scenarios, e.g., node speed = 15 m/s, and power level 3 dBm
(NS15P3).

2. The variability of data collected from a small number of sniffers will on average be higher than
collected by a larger number of sniffers.
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3. The ability to provide effective intrusion detection for a small number of blackhole malicious
nodes, i.e., the expectation is: the larger the number of black holes, the larger the required number
of sniffers.

For those reasons, the number of sniffers chosen was five, to provide effective area coverage,
moderate variability, and effective operation for up to three black holes.

The first set of simulations was performed to obtain the behavior of the network under
normal conditions (no black holes deployed), by running the experiment for 2000 s each time for
twenty different seeds, to have a better statistical average, for every single scenario. In the second
set of simulations, a malicious condition was obtained by deploying three black holes in the network
and running the simulations as in the normal case for another twenty seeds for each single scenario.
The power levels, the node’s mobility, and other simulation parameters are listed in Table 6.

Table 6. Simulation Parameters.

No. of Nodes 30

Field area 1000 m × 1000 m
Node speed 1 m/s, 5 m/s, 10 m/s 15 m/s

Simulation time 2000 s
Power levels 3 dBm, 7 dBm

MAC layer protocol 802.11 b
Routing protocol AODV
Mobility model RWP

Reporting time (Tr) 50 s, 100 s, 200 s
Sampling time (Ts) 5 s, 10 s, 20 s, 40 s

Nodes Under Test NUTs 13, 19, 21, and 23
Traffic source CBR (UDP)

The extreme case scenarios adopted in this paper are chosen such that they span a diversity of node
velocities and power levels. These scenarios are: NS1P3, NS1P7, NS15P3, and NS15P7. The abbreviation
NS1P3, for example, means node velocity 1m/s and power level of 3dBm. The model of normal and
malicious states is obtained at every reporting time and is used to train the classifiers which, in turn,
generate the CCIs. Different reporting times are used: 50 s, 100 s, and 200 s, and within each reporting
time, different sampling times are used such as 5 s, 10 s, 20 s, and 40 s, depending on the length of the
reporting period. For example, if we have a reporting time of 50 s, the sampling time used is 5 s, or 10 s.
the ratio between Tr and Ts is chosen to have at least five instances in each class (normal or malicious).
A reporting time of 200 s and sampling time of 5 s, will give 40 instances for each class.

A static set of features collected from the MAC and network layers are used for the detection process
using a C4.5 decision tree or random forest, as shown in Table 5. To avoid feature redundancy and for
computational efficiency, a subset of the features is selected using a correlation-based feature selection
technique called a correlation attribute evaluator, where the features are ranked according to their relative
weights; the higher the weight, the more influential is the feature on the decision process. The top six
features were chosen in every scenario for every NUT. The classifiers are validated using a ten-fold cross
validation process. This process divides the labeled data into ten equal folds and uses nine folds for
training and one-fold for testing. The process continues in a circular way, and resulting parameters are
averaged over ten.

At each reporting time (Tr), the sniffers generate a set of TN, TP, FP, FN, which constitutes the
confusion matrix. The CCI which is the sum of the TP and TN, showed via the calculation of its
variation in timely manner, to be a better measure for differentiating between malicious and normal
nodes, this is mainly due to the labeling of the data set that is based on network behavior, by having all
normal nodes for the normal labeling process, and three malicious nodes when obtaining the malicious
labeling. This approach was meant to give higher robustness when having networks with different nodes
functionalities or roles.
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A sample of performance measures were added in Appendix A. Those are related to the scenarios
in Section 6. The results are related to one dedicated sniffer regarding two nodes, node 13 (normal) and
node 21 (malicious). Three instances for each scenario are taken from the beginning, middle, and the end
of the simulation.

6. Results and Discussion

Extensive simulations for different scenarios having different power levels and node velocities
were conducted. The scenarios presented here are representative of the performance for the maximum
and minimum cases both in power and velocity. The results of the AMoF and detection threshold
for scenario NS1P7 with Tr = 50 s and Ts = 5 s are shown in Figure 6. The results of the AMoF and
detection threshold for scenario NS1P7 with Tr = 100 s and Ts = 10 s are shown in Figure 7. Both cases
exhibit good detection behavior in which the threshold permits discrimination between normal and
malicious nodes starting from the sixth iteration which corresponds to 300 s of simulation time for the
first case. The detection threshold criterion, which represents the difference between consecutive fitted
slopes, is chosen after a certain number of iterations that achieve small fluctuation in the consecutive
fitted slopes, showing stable behavior; |∆| = 10−3 was picked for this purpose.
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Similarly, in the second case, the detection threshold gives good results at the fifth iteration, which
corresponds to 500 s of simulation. The abbreviations in part b in each set of Figures refer to the fitted
slope (FS), upper bound (UB), and lower bound (LB) intervals for each NUT.
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The last scenario shown is NS15P3 with Tr = 100 s and Ts = 5 s in Figure 8. The performance in
this case shows a major decline, as the detection threshold lies very close to the margins of normal and
malicious nodes, making the detection process very difficult. The ability of the dedicated sniffers to
capture firsthand packets related to the TNs is highly affected by having those nodes within their sense
range. This is reflected on building detection models that generates low variability in the CCIs leading
to tight detection margins as shown in Figure 8b. According to [18], the nodes with low velocity
and high power would have higher connectivity. Analytical simulation results for the probability of
detection vs. sensing range of nodes in a wireless sensor network was presented in [19] and shows
a higher detection probability as the sensing range increases. This will impact the amount of data
collected by the dedicated sniffers; the higher the connectivity, the more packets collected. This helps
to build more accurate models that will then allow the generation of more accurate decisions.
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Figure 8. The AMoF for different nodes and the fitted slope for those nodes for scenario NS15P3
(Tr = 100 s, Ts = 5 s): (a) The AMoF for different NUTs; (b) The fitted slope, and its confidence for
different NUTs.

It is important to mention that the detection performance for the whole IDS is determined at the
supernode level. The detection rate reaches 100% once the detection criterion is achieved. This would
require more time to reach in some challenging scenarios, as shown in Figure 8 where the connectivity
of the nodes is at its lowest.

7. Related Work

In this section, we present a brief review about the use of decision trees, random forest, and linear
regression in IDS design. The lack of a standard dataset in the field of IDS design for MANETs
makes an accurate comparison process between different systems difficult. This situation is not
present in legacy networks, where datasets such as the KDD99 have been used extensively. One of
the earliest efforts in the field of IDS design in MANET using C4.5 decision trees is the work of
Huang and Lee [20]. They used a set of statistical features which can be derived from routing tables
and then applied C4.5 to detect normal versus abnormal behavior. Huang et al. [21] proposed a
“cross-feature analysis” method to capture the inter-feature correlation patterns in normal traffic.
An intrusion detection and adaptive response mechanism (IDAR) was proposed by Nadeem and
Howarth [22]. All nodes in the network operate as one of the three roles of manager node (MN),
cluster heads (CH), and cluster nodes (CNs). A decision tree in the MN with the calculated confidence
on attack detected (COA) and network performance degradation (NPD) values are used to identify
the intrusion response action. A distributed combined authentication and intrusion detection with
data fusion in MANET was proposed by Bu et al. [23], who used a decision tree to organize the attack
signatures into a tree structure. Silva et al. [24] used Linear Regression and Variance Analysis (LRVA),
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a multi-step-ahead prediction where the fake parameters broadcasted in the network were detected,
with the malicious/misbehaving nodes identified.

8. Conclusions and Future Work

A new IDS design based on a two-stage detection process is proposed in this paper. The use of the
AMoF as a novel feature showed promising results especially for small size datasets; this is inherent to
MANET operation, particularly in demanding environments where rapid decisions must be made.
The inaccuracies of detection in stage one are compensated for in stage two, by taking advantage
of the variability of the CCIs for normal and malicious nodes. The idea is based on the variance of
two distinct sizes of random variable populations, i.e., the normal and malicious node populations,
where the variance is higher for the larger normal node population (in our case, 90% of the total nodes).
This scheme, as all others we are aware of, will face higher challenges when exposed to comparably
sized populations. The results show that for low-node velocity and high power transmitted, e.g., node
velocity of 1 m/s and power level of 7dBm (NS1P7), different ratios of reporting time to sampling time,
Tr/Ts, reveal well-separated regions that facilitate the detection process. This is related to a high-node
connectivity. The scenario of high-node velocity and low-transmitted power, e.g., NS15P3, shows less
detection capability. This is related to low node connectivity, a regime in which MANET performance
always degrades. Our solution is rather robust across a range of node speed and transmit power
regimes, and the goal of future work is to further improve on this.

Since much of the underlying probability distribution is a priori incompletely known, the
classifier must continually adapt when pattern class structures change [25]. Therefore, MANET
systems require continuous training to obtain reasonable detection results. However, the ratio between
sample size to feature size in this case is close to three, which according to [26] demonstrates that
the design-set error rate is an extremely biased estimate of either the Bayes or test-set error rate.
Computationally demanding techniques can be used to reduce the effect of finite sample size, such as
Monte-Carlo resampling, cross validation, etc., which may have problems when dealing with correlated
features resulting in inaccurate decisions.

Our approach deals with the stringent requirements facing WSN and MANET deployment,
such as the limited size of training datasets and computational power availability. A new scheme
based on the CCI, which includes information on both the true positive (TP) and the true negative (TN),
is used due to the fact of having very limited training instances. Such a finite sample size generally
limits the accuracy of classifiers as compared to situations where training instances are much larger,
for example, in legacy or fixed networks. It is the variation of the CCI values that is of main interest,
since the values of the CCIs, including its corresponding TP and TN at any single reporting time (Tr),
generates inaccurate decisions.

In addition, a new scheme will be examined in future work that is based on incremental data
acquisition for decision-making to alleviate the need of the second stage. Specifically, a more adaptive
feature selection scheme will be tested, which fits the dynamic nature of the MANET. Testing the
proposed IDS on different type(s) of malicious activity, such as denial of service, is needed to verify
its robustness under wider range of attacks. Moreover, a wider range of classifiers will be utilized as
well. These changes are expected to improve the decision accuracy associated with the nodes under
test. The results presented here also apply to wireless sensor networks (WSN) and represent a novel
intrusion detection scheme for such networks.
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Appendix A

In this appendix, a sample of results for the random forest classifier corresponding to the scenarios
in Section 6 are presented. The results are related to one dedicated sniffer regarding two nodes, node
13 (Normal) and node 21 (malicious). Three instances for each scenario are taken from the beginning,
middle, and the end of the simulation.

The results in Table A1a, NUT 13, Tr = 50 s, Ts = 5 s at the beginning of the simulation period in
scenario NS1P7. The CCI value is 65%.

The results in Table A1b, NUT 21, Tr = 50 s, Ts = 5 s at the beginning of the simulation period in
scenario NS1P7. The CCI value is 100%.

Table A1. (a) Detailed Accuracy by Class for NUT 13; (b) Detailed Accuracy by Class for NUT 21.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.7 0.4 0.636 0.7 0.667 0.302 0.725 0.726 Normal
0.6 0.3 0.667 0.6 0.632 0.302 0.725 0.794 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

1 0 1 1 1 1 1 1 Normal
1 0 1 1 1 1 1 1 Malicious

The results in Table A2a corresponds to NUT 13, Tr = 50, Ts = 5 s at the middle simulation period
in scenario NS1P7. The CCI value is 90%.

The results in Table A2b corresponds to NUT 21, Tr = 50 s, Ts = 5 s at the middle simulation period
in scenario NS1P7. The CCI value is 100%.

Table A2. (a) Detailed Accuracy by Class, for NUT 13; (b) Detailed Accuracy by Class for NUT 21.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.9 0.1 0.9 0.9 0.9 0.8 0.945 0.927 Normal
0.9 0.1 0.9 0.9 0.9 0.8 0.945 0.963 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

1 0 1 1 1 1 1 1 Normal
1 0 1 1 1 1 1 1 Malicious

The results in Table A3a corresponds to NUT 13 Tr = 50 s, Ts = 5 s at the end of the simulation
period in scenario NS1P7. The CCI value is 100%.

The results in Table A3b corresponds to NUT 21, Tr = 50 s, Ts = 5 s at the end of the simulation
period in scenario NS1P7. The CCI value is 75%.
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Table A3. (a) Detailed Accuracy by Class, for NUT 13; (b) Detailed Accuracy by Class, for NUT 21.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

1 0 1 1 1 1 1 1 Normal
1 0 1 1 1 1 1 1 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.8 0.3 0.727 0.8 0.762 0.503 0.72 0.672 Normal
0.7 0.2 0.778 0.7 0.737 0.503 0.72 0.766 Malicious

The results in Table A4a corresponds to NUT 13, Tr = 100 s, Ts = 10 s at the beginning of the
simulation period in scenario NS1P7. The CCI value is 75%.

The results in Table A4b corresponds to NUT 21, Tr = 100 s, Ts = 10 s at the beginning of the
simulation period in scenario NS1P7. The CCI value is 100%.

Table A4. (a) Detailed Accuracy by Class, for NUT 13; (b) Detailed Accuracy by Class, for NUT 21.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.8 0.3 0.727 0.8 0.762 0.503 0.72 0.672 Normal
0.7 0.2 0.778 0.7 0.737 0.503 0.72 0.766 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

1 0 1 1 1 1 1 1 Normal
1 0 1 1 1 1 1 1 Malicious

The results in Table A5a corresponds to NUT 13, Tr = 100, Ts = 10 s at the middle of the simulation
period in scenario NS1P7. The CCI value is 65%.

The results in Table A5b corresponds to NUT 21, Tr = 100 s, Ts = 10 s at the middle of the simulation
period in scenario NS1P7. The CCI value is 80%.

Table A5. (a) Detailed Accuracy by Class, for NUT 13; (b) Detailed Accuracy by Class for NUT 21.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.7 0.4 0.636 0.7 0.667 0.302 0.785 0.837 Normal
0.6 0.3 0.667 0.6 0.632 0.302 0.785 0.778 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.7 0.1 0.875 0.7 0.778 0.612 0.97 0.97 Normal
0.9 0.3 0.75 0.9 0.818 0.612 0.97 0.977 Malicious

The results in Table A6a corresponds to NUT 13 Tr = 100 s, Ts = 10 s at the end of the simulation
period in scenario NS1P7. The CCI value is 100%.

The results in Table A6b corresponds to NUT 21, Tr = 100 s, Ts = 10 s at the end of the simulation
period in scenario NS1P7. The CCI value is 90%.
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Table A6. (a) Detailed Accuracy by Class, for NUT 13; (b) Detailed Accuracy by Class, for NUT 21.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

1 0 1 1 1 1 1 1 Normal
1 0 1 1 1 1 1 1 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.8 0 1 0.8 0.889 0.816 0.885 0.932 Normal
1 0.2 0.833 1 0.909 0.816 0.885 0.786 Malicious

The results in Table A7a corresponds to NUT 13, Tr = 100 s, Ts = 5 s at the beginning of the
simulation period in scenario NS15P3. The CCI value is 67.5%.

The results in Table A7b corresponds to NUT 21, Tr = 100 s, Ts = 5 s at the beginning of the
simulation period in scenario NS15P3. The CCI value is 95%.

Table A7. (a) Detailed Accuracy by Class, for NUT 13; (b) Detailed Accuracy by Class, for NUT 21.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.7 0.35 0.667 0.7 0.683 0.35 0.77 0.789 Normal
0.65 0.3 0.684 0.65 0.667 0.35 0.77 0.778 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

1 0.1 0.909 1 0.952 0.905 0.99 0.99 Normal
0.9 0 1 0.9 0.947 0.905 0.99 0.992 Malicious

The results in Table A8a corresponds to NUT 13, Tr = 100 s, Ts = 5 s at the middle of the simulation
period in scenario NS15P3. The CCI value is 77.5%.

The results in Table A8b corresponds to NUT 21, Tr = 100 s, Ts = 5 s at the middle of the simulation
period in scenario NS15P3. The CCI value is 100%.

Table A8. (a) Detailed Accuracy by Class for NUT 13; (b) Detailed Accuracy by Class, for NUT 13.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.7 0.15 0.824 0.7 0.757 0.556 0.785 0.85 Normal
0.85 0.3 0.739 0.85 0.791 0.556 0.785 0.705 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

1 0 1 1 1 1 1 1 Normal
1 0 1 1 1 1 1 1 Malicious

The results in Table A9a corresponds to NUT 13 Tr = 100 s, Ts = 5 s at the end of the simulation
period in scenario NS1P7. The CCI value is 77.5%.

The results in Table A9b corresponds to NUT 13 Tr = 100 s, Ts = 5 s at the end of the simulation
period in scenario NS1P7. The CCI value is 90%.
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Table A9. (a) Detailed Accuracy by Class, for NUT 13; (b) Detailed Accuracy by Class, for NUT 13.

(a)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.75 0.2 0.789 0.75 0.769 0.551 0.794 0.79 Normal
0.8 0.25 0.762 0.8 0.78 0.551 0.794 0.749 Malicious

(b)

TPR FPR Precision Recall F-Measure MCC ROC Area PRC Area Class

0.9 0.1 0.9 0.9 0.9 0.8 0.97 0.973 Normal
0.9 0.1 0.9 0.9 0.9 0.8 0.97 0.971 Malicious
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