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Abstract: The miniaturization of spectrometer can broaden the application area of spectrometry,
which has huge academic and industrial value. Among various miniaturization approaches,
filter-based miniaturization is a promising implementation by utilizing broadband filters with
distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled
as solving a system of linear equations. In this paper, we propose an algorithm of spectral
reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the
reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature
spectrometer. The experimental results demonstrate that sparse optimization is well applicable to
spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse
spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach
has a bright application prospect in fabricating a practical miniature spectrometer.

Keywords: filter-based miniature spectrometer; spectral reconstruction; sparse optimization;
dictionary learning

1. Introduction

Spectral analysis is an elementary and indispensable approach to the qualitative and quantitative
analysis of chemical materials. Thus, the spectrometer is widely used in numerous applications such
as environmental monitoring, medical treatment and so on [1,2]. However, due to the equipment
having sophisticated diffractive or interferometric devices such as a grating or prism, the conventional
spectrometer is commonly bulky and expensive. Therefore, miniaturization of the spectrometer
is a burgeoning research hotspot in both industry and academia [1–21]. The current commercial
miniature spectrometer still utilizes a grating as its core dispersive component through the technology
of micro-opto-electro-mechanical-systems (MOEMS) [3,4]. In order to reduce the size and cost of
the spectrometer, various computational miniature spectrometers have been proposed and designed,
in which the novel dispersive elements are employed to replace the grating [5–21]. For instance, photo
crystal [5], linear variable optical filter [6], disordered photonic chip [7], dispersive hole array [8,9],
micro interferometer array [10], liquid crystal phase retarder [11], multimode fiber [12,13], silicon
multimode waveguide [14], broadband filter array [15–20] and so on are developed as the dispersive
elements. Among these various miniaturization technologies, the filter-based approach shows great
potential in reducing the size as well as the cost of a spectrometer, which can consequently enhance
the portability and broaden the application area of spectrometry [15–20].
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In the computational spectrometer, spectral reconstruction is usually modeled as solving a
system of liner equations. As a result, it is necessary to use optimization algorithms to reconstruct
the spectra in the computational spectrometer, which differs from the traditional direct-reading
spectrometer significantly [5–21]. There have been several reconstruction algorithms adopted in
previous studies, mainly including nonnegative least squares [5,17], least mean squares [6], simulated
annealing [7,12], Tikhonov regularization [8,10,18], truncated singular value decomposition [12],
direct-binary-search [21] and sparse optimization [11,13,19,20]. Several studies have demonstrated
that sparse optimization performs better in terms of the reconstruction accuracy and the number of
measurements [11,13,19,20].

Figure 1 presents the schematic of the filter-based miniature spectrometer. After transmitting
through the filters with distinct transmission functions, the incident light is then measured by the array
of photodetectors. Then the spectrum can be reconstructed from the output of the photodetector.
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Figure 1. Schematic of the filter-based spectrometer.

Ideally, the transmission functions are with a very narrow passband or similar to the delta function.
Besides, different filters correspond to the specific and non-overlapping passbands, all of which jointly
cover the entire operating band. In this case, the spectrum can be directly read out from the output of
the photodetector, in the same way as the grating-based spectrometer. This method can be referred
to as narrowband filtering. Nevertheless, it is very impractical to fabricate these ideal narrowband
filters considering the craftsmanship and cost. Instead, most filters actually own the non-ideal optical
filtering characteristics owing to the low-cost fabrication of broadband filters [17–20]. To be specific,
their transmission functions have wide or even multiple passbands. Correspondingly, the non-ideal
approach can be called broadband filtering. Unlike narrowband filtering, the detection value of
broadband filtering is no longer the measured spectrum itself. Therefore, the raw spectrum needs to
be reconstructed by certain signal processing algorithms [17–20].

Mathematically, spectral reconstruction is essentially solving a system of linear equations,
where the number of equations equals that of the filters [17–20]. Given the measurement error
or system noise, the system of linear equations usually needs to be overdetermined, which can be
solved through the classical least squares (LS) algorithm [17,18]. Unfortunately, even when modified
LS algorithms are adopted such as the nonnegative LS or Tikhonov regularized LS, reconstruction
results often deviate from the true spectra owing to the ill-condition of the equations [18]. In addition,
the spectral resolution is limited by the number of filters in this overdetermined setup, which implies
more filters are needed to improve the resolution [17–20]. Hence, it is necessary to use advanced
algorithms to reconstruct the spectra [19,20].

According to several recent studies, sparse optimization can improve reconstruction accuracy and
at the same time decrease the number of needed filters [19,20]. As for the specific problem of spectral
reconstruction, sparse optimization refers in particular to settling the l1-norm minimization problem,
which is commonly used to solve the underdetermined system of equations [22–25]. In other words,
the number of filters can be smaller than the dimensionality of the measured spectrum, which results in



Sensors 2018, 18, 644 3 of 16

reducing the size and cost of the spectrometer further. However, sparse optimization highly demands
the sparsity of reconstructed spectra. In general, the sparsity means that there are only a small
number of nonzero components in the signal [22–24]. While there exist some kinds of directly sparse
spectra, the vast majority of spectra are non-directly sparse and need to be represented in another
transform domain.

Many natural signals are sparse in a certain transform domain [19,20], which is referred to as the
dictionary in this paper. For example, an image signal has sparse representation coefficients in wavelet
transformation [24,26]. Likewise, the spectra may be sparse in a certain dictionary, which needs to be
discovered. Some researchers have used Gaussian kernels, Lorentzian and Secant Hyperbolic as the
spectral dictionary, whose performances need to be further improved [19,20]. In the image processing,
dictionary learning is an emerging method to train out the transform domain [27–30]. Inspired by this
methodology, we adopt dictionary learning in this work to obtain the dictionary specific to the spectra.

In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization
and dictionary learning. To verify the effectiveness of the reconstruction algorithm, we design
and implement a simple prototype of filter-based miniature spectrometer. The experimental results
demonstrate that the l1-norm minimization is not only valid for the directly sparse spectra, but also
effective for the general spectra that need transforming in the dictionary, indicating that dictionary
learning can largely enhance the sparsity of general spectra.

The rest of this paper is organized as follows. Section 2 presents the prototype of the filter-based
miniature spectrometer, including the mathematical model and the experimental implementation.
Section 3 details the proposed spectral reconstruction algorithm. Section 4 demonstrates experimental
results for the algorithm verification. Finally, discussions and conclusions are provided in Section 5.

2. Modeling and Implementation of the Prototype

In this section, we aim at modeling the prototype of the filter-based miniature spectrometer and
then introduce the implementation of it.

2.1. System Model and Problem Formulation

As shown in Figure 1, we denote the spectrum of incident light as f (λ), a continuous function with
respect to the wavelength λ. Then let φi(λ) (i = 1, 2, . . . , m) represent the transmittance of the ith filter,
which is measured by the standard commercial spectrometer, and m stands for the number of filters.
Moreover, h(λ) means the response function of the photodetector. According to the schematic, the light
spectrum f (λ) is modulated respectively by different transmission functions φi(λ) at first and then is
measured by the photodetector, the output of which is denoted as the intensity bi ∈ R (i = 1, 2, . . . , m).
Based on this principle, the intensity bi is given by

bi =
∫

f (λ)φi(λ)h(λ)dλ + ei (i = 1, 2, . . . , m) (1)

where ei ∈ R represents the measurement error [17–20]. For convenience, the spectrum to be measured
can be compactly denoted as the product x(λ) = f (λ)h(λ) hereafter. Therefore, the intensity bi is the
projection of x(λ) onto the transmittance φi(λ) (i = 1, 2, . . . , m).

Since the transmittance φi(λ) (i = 1, 2, . . . , m) obtained by the spectrometer can only be in the
discrete form, we can approximately convert the above integral to a system of linear equations:

b = Φx + e (2)

where the intensity vector b = [b1, b2, . . . , bm]
T ∈ Rm is the output of the photodetector; the sensing

matrix is denoted as Φ = [φ1, φ2, . . . , φm]
T ∈ Rm×n, where φi = [φi(λ1), φi(λ2), . . . , φi(λn)]

T ∈ Rn

is the uniform sampling of φi(λ) and n is the dimensionality of the measured spectrum; x =

[x(λ1), x(λ2), . . . , x(λn)]
T ∈ Rn is the discrete form of x(λ); e = [e1, e2, . . . , em]

T ∈ Rm is the
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error vector corresponding to the measurement of different filters. Equation (2) is a classic inverse
problem [12], and can be expanded into a more specific form:

b1

b2
...

bm

 =


φ1(λ1) φ1(λ2) · · · φ1(λn)

φ2(λ1) φ2(λ2) . . . φ2(λn)
...

...
. . .

...
φm(λ1) φm(λ2) · · · φm(λn)




x(λ1)

x(λ2)
...

x(λn)

+


e1

e2
...

em

 (3)

As mentioned earlier, in narrowband filtering, the output of the photodetector is just the discrete
sampling of the spectrum x(λ), i.e., b = x + e. Namely, Φ is the identity matrix or diagonal matrix with
m = n. In this case, the number of filters is a key factor of limiting the spectral resolution, which implies
more filters are needed to improve the resolution.

In broadband filtering, it is necessary to adopt the optimization algorithms to solve the inverse
problem (2). More precisely, there exist two situations whether m is larger than n or not. Under the
condition of m > n, the LS algorithm is commonly used to solve the overdetermined system [17,18].
It is yet regrettable that reconstruction results of LS are usually unsatisfactory even though m is much
greater than n. Thus, what we are actually concerned about in this paper is the underdetermined case of
m < n. In this underdetermined setup, sparse optimization works very well, and will be introduced in
Section 3. Furthermore, since the number of filters can be smaller than the dimensionality of spectrum,
the spectral resolution will not be limited by the number of filters any more. In this way, the size and
cost of the filter-based spectrometer can be reduced further.

2.2. Design and Implementation of the Prototype

According to Figure 1, we can design a two-dimensional filter array with distinct transmittance
in different places, and then couple it to the planar photodetector array such as the charge-coupled
device (CCD). With this snapshot method, we can simultaneously measure all the intensities of
photodetector array, which is an efficient implementation of the filter-based spectrometer [17–20].
However, this methodology requires that the incident light should uniformly distribute on the filter
array. Worse still, combining the filter array together with the photodetector will easily damage the
latter during the phase of experimental verification.

To circumvent the above issues, we simplify the experimental method. Instead of fabricating
the filter array, we put the filters one by one in front of the photodetector to obtain the light intensity
values. The prototype demonstrated in this work is simple but effective enough to show the validity of
proposed algorithm.

As for the specific experimental procedure, we first preheat the light source and the photodetector
to stabilize the illumination intensity and the background noise. Then we put a filter φi(λ) in front of
the photodetector and measure the intensity many times to obtain the average value bi (i = 1, 2, . . . , m).
Afterwards, put another filter and repeat the above procedure. After obtaining the intensity vector
b, we can implement the proposed algorithm to reconstruct the spectrum. The experimental optical
system is shown in Figure 2.

In this work, 210 filters with various colors are used during the experiments. In addition the
transmission functions of them, which are all depicted in Appendix A, are measured by the commercial
spectrometer with the sampling interval of 0.5 nm. Besides, in the experimental optical system we use
a cut-off filter to acquire our concerned visible band. The transmission functions of some filters and
the cut-off filter are displayed in Figure 3.

Moreover, it is a potential realization of hyperspectral imaging that we combine the methods
of Figures 1 and 2 together. To be specific, we can just put a rotational filter array in front of the
photodetector of a camera and then take snapshots of a stationary object with the rotation of the filter
array. Using the reconstruction algorithm proposed in this work, we may design a practical imaging
spectrometer with small size and low cost in our future work.
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3. Proposed Algorithm of Spectral Reconstruction

The above contents have comprehensively introduced the mathematical model and
implementation details of the prototype. In this section, we elaborate on the specific algorithm
of spectral reconstruction based on sparse optimization and dictionary learning.

3.1. Sparse Optimization

The advanced sparse optimization is well suitable for solving the noise-corrupted
underdetermined system of linear equations [22,23,31]. In order to solve (2), we can simply optimize
the following l0-norm minimization problem on condition that the spectrum x is sparse:

min
x
‖x‖0

s.t. ‖Φx− b‖2 ≤ ε
(4)

where l0-norm ‖x‖0 is the number of nonzero elements of x, and l2-norm is the Euclidean norm.
Besides ε is a positive constant representing the noise level.

However, the l0-norm minimization (4) is a NP-hard problem [22,23,31], which is typically
replaced by the following convex form,

min
x
‖x‖1

s.t. ‖Φx− b‖2 ≤ ε
(5)



Sensors 2018, 18, 644 6 of 16

where l1-norm is defined as ‖x‖1 = ∑n
j=1
∣∣x(λj

)∣∣. Some other versions of the l1-norm minimization
to solve (2) are given in Appendix B. Herein, only if the spectrum x is sparse can we get a good
approximate solution of (2) by solving (5). For example, the narrowband spectra are directly sparse.

In practice, however, numerous spectra are not directly sparse in nature. Therefore, we need to
transform the non-directly sparse spectrum x into another domain Ψ to have its sparse representation
s, i.e., x = Ψs where s is a sparse vector [22,23,31]. Consequently, the original optimization problem of
(5) is converted to the following form,

min
s
‖s‖1

s.t. ‖ΦΨs− b‖2 ≤ ε
(6)

After obtaining the optimal solution s∗ of (6), we can calculate the measured spectrum by x̂ = Ψs∗

where x̂ is the reconstruction of the raw spectrum x by sparse optimization.

3.2. Dictionary Learning

As for the non-directly sparse spectra, how to find or design a proper transform domain Ψ is still
a problem to be solved. Some studies have used Gaussian kernels, Lorentzian and Secant Hyperbolic
as the transform domain, which can preserve the smooth property of spectra [19,20]. Nevertheless,
these approaches are tentative and not generally applicable.

In the image processing, the dictionary learning is an emerging method to train out the
transform domain [27–30], which is referred to as the dictionary in this paper. Inspired by this
methodology, we adopt dictionary learning in this work to obtain the spectral dictionary, which can
enhance the sparsity of general spectra and then reinforce the robustness to noise. Several related
studies have detailed the training process [26–30]. To be specific, we collect lots of spectra as
the training set T =

[
t1, t2, . . . , tp

]
∈ Rn×p, in which ti ∈ Rn (i = 1, 2, . . . , p) is a spectrum.

Then we use dictionary learning to train out the dictionary Ψ = [ψ1, ψ2, . . . , ψk] ∈ Rn×k such
that T ≈ ΨD, where D =

[
d1, d2, . . . , dp

]
∈ Rk×p is the sparse representation matrix. Each column

ψj ∈ Rn (j = 1, 2, . . . , k) of Ψ is called an atom, and each column di ∈ Rk (i = 1, 2, . . . , p) of D is the
sparse vector representing the corresponding column ti ∈∈ Rn (i = 1, 2, . . . , p) of T in the dictionary
Ψ. Herein n is the dimensionality of the spectrum, p is the total number of the spectra to be trained and
k is the number of atoms.

Mathematically, dictionary learning can be formulated as the following optimization problem,

min
Ψ,D
‖T−ΨD‖2

F

s.t. ‖di‖0 ≤ τ (i = 1, 2, . . . , p)
(7)

where the square of Frobenius norm is defined as ‖A‖2
F = trace

(
ATA

)
for the matrix A, and τ

is the sparse constraint on di (i = 1, 2, . . . , p) of the representation matrix D. There are several
well-studied dictionary learning algorithms including K-SVD [27], ILS-DLA [28], RLS-DLA [29],
etc. Typically, dictionary learning needs to iteratively solve the two following problems, namely the
sparse approximation and dictionary update.

• Sparse Approximation Stage: keep the dictionary Ψ fixed, and then use sparse optimization above
to calculate the sparse representation di of ti (i = 1, 2, . . . , p) in the dictionary Ψ. That is to say,
solve the inverse problem ti = Ψdi (i = 1, 2, . . . , p) by sparse optimization;

• Dictionary Update Stage: update the dictionary Ψ after obtaining a new sparse representation
matrix D. There are several methods of updating the dictionary Ψ, and one can refer to the related
papers for more details [26–30].

In our work, to obtain the training set T, we collect the transmittance of many variant chemicals
in [32]. Besides, it is necessary to preprocess these spectra to make their sampling interval the same as
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the transmittance of the filters, i.e., 0.5 nm. In addition, the transmission functions of 210 filters are used
as a part of the training set. To further increase the number of spectra to be trained, we multiply two
arbitrary spectra of filters to have a new one. The physical meaning of the product is the transmittance
obtained when we overlap the two filters together. At the last, the total number of the spectra to be
trained is 3000, i.e., p = 3000.

It is noteworthy that all aforementioned spectra of the training set are the transmission functions,
which do not contain the spectral information of the light source at all. Conventionally, the spectrometer
has a fixed light source with the energy spectrum of a particular shape, such as the halogen lamp.
The spectral information of light source will be embedded into the detection value of the spectrometer
during the measurement. In other words, the spectrum to be measured is just a modulation of the
source spectrum. Hence, we need to multiply the training set of transmission functions by the spectrum
of the used light source, which can be measured by the spectrometer in advance.

What is more, it should be noted that the natural optical spectra are inherently non-negative.
Thus, we use the non-negative dictionary learning algorithm, which means each atom of the dictionary
Ψ is a non-negative vector. Herein, the solver of non-negative K-SVD is a good option to train the
non-negative dictionary [33]. Likewise, in order to reconstruct the spectra successfully, the non-negative
constraint should be also added to the above formulation of sparse optimization, namely (5) and (6).

In conclusion, for the directly sparse spectra, we optimize the following problem,

min
x
‖x‖1

s.t. ‖Φx− b‖2 ≤ ε

x ≥ 0
(8)

Moreover, for the non-directly sparse spectra, we turn to solve the problem below,

min
s
‖s‖1

s.t. ‖ΦΨs− b‖2 ≤ ε

s ≥ 0
(9)

where Ψ is a non-negative dictionary. There are many off-the-shelf solvers for the non-negative l1-norm
minimization such as CVX [34], l1-LS [35] and TFOCS [36,37].

4. Results

All of the experimental results demonstrated in this section are mainly to show the feasibility
and potential practicality of the prototype qualitatively. Based on these results, it can be concluded
that not only does sparse optimization work well for the directly sparse spectra, but it also achieves
the impressive performance when used to reconstruct the non-directly sparse spectra with dictionary
learning. Furthermore, dictionary learning performs better than Gaussian kernels, which are used as
the transform domain in several previous studies [19,20].

The main experimental instruments used in this work include a CCD camera (acA1600-20 um,
Basler ace, Ahrensburg, Germany), a scientific grade spectrometer (PG2000 pro, Ideaoptics, Shanghai,
China), an ultraviolet spectrophotometer (UV-2450, SHIMADZU, Kyoto, Japan), a halogen light source
(HL-2000, Ocean Optics, Largo, FL, USA) and a light-emitting diode (LED) lamp.

4.1. Directly Sparse Spectra

In this subsection, we aim to evaluate reconstruction quality of the continuous narrowband
spectra, which are directly sparse spectra. For reconstruction of directly sparse spectra, we need to
solve the l1-norm minimization problem (8).

In this part of the experiment, we use four kinds of narrowband filters with the crest centering
at 466.5 nm, 501.5 nm, 558.5 nm and 668.5 nm. Besides, their full width at half maximum (FWHM)



Sensors 2018, 18, 644 8 of 16

is respectively 9 nm, 14 nm, 8 nm and 9 nm. As depicted in Figure 4, reconstruction results of the
narrowband spectra are very satisfactory. It is noteworthy that there exist some slight perturbations in
the neighborhood of the passband. Despite the reconstructed waveforms not completely coinciding
with the ground truth spectra owing to the measurement error, the locations of the passband and crest
can be accurately determined.Sensors 2018, 18, x FOR PEER REVIEW  8 of 15 
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Figure 4. The ground truth spectra (red) and the reconstructed narrowband spectra (blue) with the
crest centering at (a) 466.5 nm, (b) 501.5 nm, (c) 558.5 nm and (d) 668.5 nm. The passband and the crest
of the reconstructed spectra can be accurately determined.

4.2. Non-Directly Sparse Spectra

Reconstruction results of non-directly sparse spectra are demonstrated in this subsection.
For reconstruction of non-directly sparse spectra, we need to first adopt dictionary learning to train out
the dictionary and then use the existing sparse optimization solver to solve the l1-norm minimization
problem (9).

4.2.1. Halogen Lamp as the Source

Since the halogen lamp has excellent stability and strong illumination, it is commonly used as the
light source of the visible-light spectrometer in spite of its high price. To obtain the dictionary specific
to the halogen lamp, we need to multiply the training set of transmission functions by the spectrum
of the lamp at first and then train out the dictionary using dictionary learning. In the experiments,
we first reconstruct the spectrum of the halogen lamp. Afterwards, we combine three different filters
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respectively together with the halogen lamp as testing samples, which are measured one after another.
In this part the number of filters m is 210 and the operating band is from 350 nm to 700 nm with a
sampling interval of 0.5 nm, i.e., n = 701.

The results of the aforementioned experiments are listed in Figure 5. Although reconstructed
spectra are somewhat discrepant from the ground truth, they share the consistent variation tendency
and are similar shape as shown in Figure 5. To be specific, the crests and troughs are mostly located at
the same wavelengths.Sensors 2018, 18, x FOR PEER REVIEW  9 of 15 
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the dictionary learning to reconstruct the spectra.

4.2.2. Light-Emitting Diode as the Source

In this part of the experiment, we use a light-emitting diode (LED) as the light source. The number
of used filters m is 210 and the operating band is from 410 nm to 670 nm with the sampling interval
of 0.5 nm, i.e., n = 521. In general, compared to the halogen lamp, the LED is less frequently used
as the light source of the commercial spectrometer. Its energy distribution along the wavelength is
non-uniform. However, in our filter-based spectrometer what we need to measure is not the individual
intensity at a particular wavelength but the total intensity over the spectral band. The experiments
herein, whose results are displayed in Figure 6, are performed just through the same procedures as
stated in the previous part.
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Likewise, the conclusions of the LED resemble those of the halogen lamp. In short, the minor
deviation and the similar variation tendency coexist in the results. According to the satisfactory results,
the LED may substitute the frequently used halogen lamp as the light source of the spectrometer.
Consequently, the cost of the spectrometer can be further reduced by the use of inexpensive LED.Sensors 2018, 18, x FOR PEER REVIEW  10 of 15 
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Figure 6. The ground truth spectra (red) and the reconstructed spectra (blue) of (a) LED, (b–d) LED
with different additional filters. We combine the l1-norm minimization with the dictionary learning to
reconstruct the spectra.

4.3. Comparison between Dictionary Learning and Gaussian Kernels

In this paper, we demonstrate a prototype combining sparse optimization with dictionary learning
to reconstruct the spectra. Several previous studies have used Gaussian kernels as the transform
domain of spectra [19,20]. Therefore, in this subsection we compare the performance of dictionary
learning and Gaussian kernels in spectral reconstruction.

We carry out the experiments respectively on spectral reconstruction of the halogen lamp and
the LED. There are two main parameters that can be adjusted in the method of Gaussian kernels,
namely the mean value and standard deviation. In this comparison, we let the mean value traverse in
the whole operating band with the interval of 0.5 nm. Besides, we set the standard deviation of the
halogen lamp and the LED to 42 and 18 respectively. These parameters have been optimized by the
brute-force search. To compare reconstruction quantitatively, we calculate the relative reconstruction
error re as follows [13],
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re =
‖x− x̂‖2
‖x‖2

× 100% (10)

where x is the raw spectrum and x̂ is the reconstructed spectrum of x.
Relative reconstruction errors of dictionary learning and Gaussian kernels are respectively 5.92%

and 21.09% in Figure 7a. Besides, for reconstruction of LED, the relative errors are 10.25% and 57.53%
in Figure 7b. Based on these relative errors, dictionary learning performs better than Gaussian kernels.
As depicted in Figure 7, the results of Gaussian kernels severely deviate from the ground truth. Worse
still, it is so hard and tentative to adjust the parameters that Gaussian kernels cannot be applied in the
actual spectral reconstruction. Even though we increase the number of kernels with multiple variances,
there is no further improvement of reconstruction quality. While the method of Gaussian kernels
can preserve the smooth feature of the spectra, it cannot capture the variation details and has little
robustness to the measurement error in the experiments. According to these results, we can conclude
that dictionary learning indeed contributes to finding the sparse representation of the spectra, and is
beneficial for obtaining better reconstruction results when combined with sparse optimization.
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4.4. Further Exploration

As previously mentioned, the l1-norm minimization is adopted to solve the underdetermined
system of linear equations, in which the number of filters is far smaller than the dimensionality
of spectrum. The fewer the filters are, the more simply the miniature spectrometer is fabricated.
Besides, the total cost will be lowered further. Herein we explore the effect of the number of filters
on reconstruction quality. As shown in Figure 8, reconstruction results are even slightly improved
when we bring the number of filters down from 210 to 20, which is seemingly unaccountable but in
fact reasonable.

In order to explain the results, the principle component analysis (PCA) is adopted to validate the
sparsity of the spectra [38–41]. Specifically, PCA is carried out on the training set of the halogen lamp.
The dimension of the spectra in the training set is 701, i.e., n = 701. Figure 9a plots all the eigenvalues of
PCA in descending order, and the ten largest eigenvalues are shown in Figure 9b. Based on the theory
of PCA, these rapidly descending eigenvalues visually indicate that the information contained in the
spectra is very sparse, which is the necessary precondition of sparse optimization. Besides, according
to Section 4.3, dictionary learning indeed largely enhances the sparsity of spectra and further makes
the spectral reconstruction more robust to noise. Based on these facts, 20 proper filters actually may
capture the vast majority of the spectral information. In addition, more filters will bring about more
noises in our simplified method. For these reasons, when we bring the number of filters down from
210 to 20, it is possible to obtain better reconstruction results.
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However, it should be clearly stated here that not every twenty filters out of the 210 could succeed
in reconstructing the spectra as in Figure 8. That is to say, one group of 20 filters may get better
reconstruction result, while the result of another group may be worse. Based on these findings, it can
be inferred that fewer filters may put forward more stringent requirements on the property of the
transmittance matrix, which will be further studied in future work.

5. Discussion and Conclusions

Among various miniaturization technologies, the filter-based spectrometer is a promising
implementation, in which the inexpensive broadband filters replace the sophisticated diffractive
or interferometric optical devices used in the traditional spectrometer, such as the grating or prism.
The consequent problem is how to design the proper reconstruction algorithm due to the non-ideal
filters. In this paper, the spectral reconstruction is accomplished by sparse optimization and
dictionary learning, which can minimize the number of filters. The results demonstrate that sparse
optimization applies well to the spectral reconstruction whether the spectra are directly sparse or not.
For the non-directly sparse spectra, their sparse representation is obtained by dictionary learning,
which outperforms the method of Gaussian kernels even with the optimized parameters by brute-force
searching. In addition, according to the reconstruction quality of LED, it may be an alternative source
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in the filter-based spectrometer. In conclusion, everything mentioned above contribute to reducing
the size and cost of the spectrometer. The approach proposed in this paper has a bright application
prospect in fabricating the practical miniature spectrometer.

Our future work is mainly focused on improving the algorithm and designing the compact
hardware. Since the reconstruction results above are still slightly discrepant from the true spectra,
it is quite necessary to modify the algorithm used in this paper. Moreover, it is necessary to find
out the relationship between the number of filters and the needed properties of the transmission
functions. As regards the hardware implementation, we try to design a compact and portable miniature
spectrometer with a proper filter array attached to the photodetector [16–20]. It is undeniable that this
is an applicable and efficient method of miniaturizing the spectrometer. Furthermore, we also attempt
to implement an imaging spectrometer using a rotational filter array.
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Appendix B

Besides the optimization problem (5), there are several other forms of the l1-norm minimization
to solve the inverse problem (2). Herein, we mainly introduce the following three versions briefly.

The first one is the classical Lasso problem [42],

min
x
‖Φx− b‖2

s.t. ‖x‖1 ≤ η
(A1)

where η is the sparse constraint on x.
Based on the Lasso problem, we can use the regularized version of (A1) as follows,

min
x
‖Φx− b‖2

2 + λ‖x‖1 (A2)

where λ is the regularization parameter. Besides, the approach can be called the l1-regularized least
squares [35].

The last is a more complicated one using the smoothing technology, which can be tackled by the
TFOCS solver [36,37],

min
x
‖x‖1 +

1
2 µ‖x− x0‖2

2

s.t. ‖Φx− b‖2 ≤ δ
(A3)

where µ is the regularization parameter and δ is the threshold of the noise energy.
If the parameters of the aforementioned versions are properly adjusted, the results of them will

be consistent with each other. Various solvers such as CVX [34], l1-LS [35] and TFOCS [36,37] are
available to optimize these problems.
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