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Abstract: Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals,
and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have
been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty
measurement of these sensors has become a major concern. In this study, a self-made divided-flow
generator was established to calibrate two types of electrical humidity sensors. The standard reference
humidity was calculated from dew-point temperature and air dry-bulb temperature measured
by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH
measurement results. The uncertainty of the reference standard increased with the increase of RH
values. The combined uncertainty with the adequate calibration equations were ranged from 0.82%
to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors,
respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving,
and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.
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1. Introduction

Humidity measurement is an important technique for various industries. Humidity affects the
air properties and materials that come into contact with air. The processes of manufacturing, storing,
and testing are related to humidity [1]. Accurate humidity measurement is the key technology for
preventing the condensation, corrosion and mold development, and thus, for enhancing the safety
of the food, pharmaceutical, and chemical industries. Humidity measurement also contributes to
how air-conditioners govern the thermal comfort of human beings [2]. Humidity levels affects the
stomata openness of the leaves of plants, which then controls the functions of evaporation and
photosynthesis [3].

Air humidity can be expressed as dew point temperature, absolute humidity and relative humidity.
Relative humidity (RH) is the common term used to express the amount of the vapor contained in
a moist air. Because they offer convenient and real-time measurement, electrical RH sensors have
been widely used in various industries [4]. These sensors must be calibrated to ensure their accuracy.
The uncertainty measurement of these sensors has become a major concern of users [5].

There are four types of humidity standard generator systems: fixed-point humidity systems,
two-pressure humidity generators, two-temperature humidity generators, and two-flow humidity
generators [4].
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The fixed relative humidity point can easily be made with a saturated salt solution [6]. Several
fixed RH points can be maintained with different saturated salt solutions. These then serve as the
secondary standards to calibrate the humidity sensors. This method is easy to produce, convenient,
and inexpensive, and can be used in research laboratories. However, the standard RH ranges are
limited with these salt solutions. The equilibrate time required for the RH environment to reach the
stable state is time-consuming. The uncertainty of humidity sensors calibrated by the saturated salt
solutions have been evaluated in detail [7].

In the two-pressure method, an air stream at higher pressure than atmosphere air is saturated
at a pre-set temperature and then be thermally expanded into a test chamber at that air pressure.
The relative humidity is calculated by the pressure and temperature values of the test chamber.
The uncertainty analysis of this kind of humidity generator has been introduced [8]. Heinonen [9]
reported the measurement uncertainty in the temperature range from−40 ◦C to 77 ◦C, and the expanded
uncertainty is ±0.08 ◦C for dew point temperature. Martins et al. [10] evaluated the uncertainty of the
dew-point temperatures in this kind of two-pressure humidity generator using the GUM method and
the Monte Carlo method and found that the measurement uncertainty ranged from ±0.1◦C to 0.25 ◦C.
The problems of testing and verification for the two-pressure system were discussed by Hardy [11].

The theory of the two-temperature method is to saturate the air with water vapor at a fixed
temperature and then to increase the air temperature to a presetting value. Heinonen [12] discussed
the development of a two-temperature humidity generator where the uncertainty of the dew point
temperature was less than ±0.125 ◦C in the temperature range from −40 ◦C to 60 ◦C. Ahmed et al. [13]
described the main parts of a two-temperature humidity generator to test the uncertainty of
a chilled-mirror hygrometer and a thermos-hygrometer. In the RH range of 13–98%, the measurement
uncertainty ranged from ±0.25% to 0.67% RH. El-Galid ad Ahmed [14] established two types of
two-temperature humidity generators and found the measurement uncertainty of dew-point temperature
in the range from ±0.09 ◦C to ±0.15 ◦C for the air temperature, ranging from −50 ◦C to 0 ◦C.

In the two-flow method, two streams are mixed in the test chamber to produce the different
humidity levels. One stream is absolute dry gas and the other is saturated with water. The reference
humidity in the test chamber is calculated from the flow rates of the two gas streams. The key
of the technique is to control the ratio of the two flow rates. Takahashi and Kitano [15] proposed
a new calibration of flow meters used in a divided flow humidity generator to enhance the mixing
performance of this generator. Milosevic et al. [16] presented a method to establish a mixed-flow
humidity generator. The uncertainty measurement of dew point temperature ranged from 0.2 ◦C
to 0.5 ◦C. Dias [17] studied the uncertainty of the hygrometers in the lower humidity ranging from
2% to 30% at room temperature. The expanded uncertainties were in the range of 0.2% to 0.7%.
In another report, a home-made divided-flow system was used to test the performance of humidity
sensors [18]. The Hygropalm 2 hygrometer (Rotronic Inc., Bassersdorf, Switzerland) was served as
standard humidity sensor. The standard uncertainty of this device was 0.3174% RH at the fixed RH
value of 60.499% RH [18].

The accuracy of commercial electrical sensors is usually evaluated by the secondary standard
humidity value. The dew-point temperature is the common standard. Recently, the measurement
uncertainty of commercial electrical sensors has become a matter of concern [5]. The definition
and evaluation method has been described in detail [19–21]. Huang [5] presented the uncertainty
determination methods of the relative humidity, dew-point temperature, and mixing ratio in different
humidity standard generators. Hardy [22] calculated the uncertainty of the relative humidity from
dew-point temperature and air temperature, finding that as the air temperature ranged from −15 ◦C
to −40 ◦C, and the accuracy of dew-point and air temperature was ±0.1 ◦C, and the total expanded
uncertainty was in the range of 0.374% to 0.656%. Lin and Hubbard [23] reported the humidity
uncertainties ranging from 0.6% to 6.6% when accuracies of dew-point and air temperature were
±0.3 ◦C and ±0.2 ◦C, respectively. The air temperature was in the range of −40 ◦C to 40 ◦C.
Orlando et al. [24] calculated psychrometer properties of humidity measurements with different
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equations and software and found that the uncertainty of dew-point temperature measurement must
be less than ±2 ◦C in order to ensure that the uncertainty of RH% is below ±1.0% RH. Lu and
Chen [7] reported the measurement uncertainty of the relative humidity for two types of electrical
humidity sensors calibrated by several saturated salt solutions. In the humidity range from 30%
to 90% RH, the uncertainty ranged from 1.1843% to 1.1865%, and from 0.5710% to 0.5815% RH
for resistive and capacitive humidity sensors, respectively. Mathioulakis et al. [25] calculated the
relative standard uncertainties of the humidity ratio for different uncertainties of the air temperature,
dew-point temperature, relative humidity, and pressures. The calculation of measurement uncertainty
of relative humidity by the psychrometer method have also been presented [26]. Recently, novel
devices of humidity sensors have been reported. Next generation capacitance sensing device using
quartz crystals allows for humidity measurements in the uncertainty range below 0.2%. This high
precision measurements using new switching sensing devices compensate temperature drift [27].
The NiO–SnO2 ceramic nanofibers have been fabricated and served as the humidity sensing element
to observe the effect of relative humidity on electrical resistance of sensing element in the humidity
ranged from 0 to 100% RH [28].

The two-flow humidity generator method is widely used in many testing and calibration
laboratories. However, the cost is still expensive and this system is complicated, especially when it
comes to precisely controlling the flow rates of dry and saturated stream. In this study, a self-made
divided-flow humidity generator system was established to calibrate two types of electrical humidity
sensors. A dew-point hygrometer was served as the reference standard. The measurement uncertainties
of these humidity sensors were evaluated with the ISO GUM.

2. Sources of the Uncertainty of Humidity Sensors

2.1. Uncertainty of the Reference Standard

The RH values calculated from the dew point temperature, Td and air temperature, Ta serve as the
standard values to establish the calibration equations for resistive-type and capacitance-type sensors.

RH = Pvs(Td)/Pvs(Ta) (1)

where Pvs(Td) is the saturated vapor pressure of Td and Pvs(Ta) is the air temperature Ta.

Pws = exp[A1/T + A2 + A3T + A4T2 + A5T3 + A6In(T)] (2)

The unit of T is Kelvin temperature
The uncertainty of the reference standard, u(RHref) is calculated as follows:

uref = u(RHref)= (
∂RHref

∂Ta
)

2
u2(Ta) + (

∂RHref
∂Td

)
2
u2(Td) (3)

where u(Ta) and u(Td) are the uncertainly of Ta and Td.

∂RHref
∂Ta

= −Pvs(Td)

Pvs(Ta)
∗ [−A1/T2

a + A3 + 2A4Ta + 3A5T2
a −A6/Ta] (4)

∂RHref
∂Td

=
Pvs(Td)

Pvs(Ta)
∗ [−A1/T2

d + A3 + 2A4Td + 3A5T2
d −A6/Td] (5)

2.2. Uncertainty Due to Nonlinearity and Repeatability

The uncertainty Unon due to nonlinearity and repeatability is illustrated by manufacturers and
is assumed to have a rectangular distribution. The numeric value for the capacitance-type sensor is
a function of reading values of RH. The uncertainty unon is calculated as follows:
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unon = ±Unon/2
√

3 (6)

2.3. Uncertainty Due to Resolution

For the uncertainty due to resolution of the sensor’s reading value, Ures is assumed to have
a rectangular distribution. The uncertainty value due to resolution is estimated as follows:

ures = ±Ures/2
√

3 (6)

2.4. Uncertainty Due to Temperature Variation and Hysteresis

The uncertainty measurement due to temperature variation and hysteresis is not mentioned by
these sensors’ manufacturers. The effect of hysteresis for several humidity sensors was found to be
insignificant [29]. The uncertainty measurement due to temperature variation and hysteresis was not
considered in this study.

2.5. Uncertainty Due to Calibration Equation

The inverse method of calibration was used in this studied. The uncertainty of RHcal is calculated
by the following Equation (7):

u(RHcal) = s

√√√√√1 +
1
n
+

(Xi − X)2

∑ (X2
i)−∑ (Xi)

2/n
(7)

where s is the stand deviation of the calibration equation, n is the number of measurements for the
calibration equation, Xi is the RH values used to establish the calibration equation.

2.6. The Combined Standard Uncertainty

In this study, the uncertainty sources included reference standard, nonlinearity and repeatability,
resolution and the calibration equation.

The combine standard uncertainty (uc) can be estimated by the following:

uc
2 = u2

ref + u2
non + u2

res + u2
cal (8)

3. Materials and Method

3.1. The Divided-Flow System

The schematic of a self-made divided-flow humidity generator is shown in Figure 1. The entering
dry gas was divided with mass flow controllers. The dry air and saturated air were mixed and
then entered into a calibrated chamber. The total flow-rate was 3 L/min. Two types of electrical
hygrometers were placed in the calibrated chamber for calibrating. The air flowed into a chill mirror
dew temperature monitor. The relative humidity was calculated by the dew-point temperature and
dry-bulb temperature measured by a chill mirror dew temperature monitor and served as the reference
standard. The required humidity of mixed gas could be produced by adjusting the mass flow controller
to change the ratios of dry and saturated air. A water bath was used as the temperature controller to
ensure the isotherm state of testing.

Because the reference standard humidity values were measured by dew-point mirror monitor and
were not computed by the flow-rates of saturated and dry air, no precise and expensive flow controllers
were required. The cost of this system is acceptable for many industries and research institutes.
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Figure 1. The schematic of a self-made divided-flow humidity generator.

3.2. Sensors

The M4 chilled mirror monitor (General Eastern Instrument Inc., Wilmington, MA, USA) was
used as the RH standard reference for calibration. The air temperature sensor used a platinum
resistive thermometer. The accuracy of this thermometer was 0.1 ◦C after calibration. Two types of
hygrometers, a THT-B11 resistive hygrometer (Shinyei Kaisha Co., Kobe, Japan) and a H51P-143A
capacitive humidity transmitter (Vaisala Cor. Helsinki, Finland), were used to establish its calibration
equations and calculate their measurement uncertainties. The specifications of these sensors are listed
in Table 1.

Table 1. Specification of the humidity sensors.

Dew Point Temperature Resistive Humidity Sensor Capacitive Humidity Sensor

Sensing element Chilled mirror sensors Macro-molecular
Resistive element Hamicap Capacitive-type

Measuring range
−80~85 ◦C

0.003~100% RH
(Relative humidity)

0~99% RH Thin-film polymer element
0~100% RH

Nonlinearity and repeatability ±0.05 ◦C 1.0% RH (1.0 + 0.008* Reading value)% RH
Resolution 0.1 ◦C 0.1% RH 0.1% RH

Accuracy

Dew point temperature
±0.2 ◦C

Air temperature
±0.1 ◦C (After calibration)

±2.0%, 20~90% RH ±1% RH, 0~90% RH

3.3. Calibration to Standard Humidity System

The calibration of two types of electrical hygrometers at the temperatures ranging from 20 ◦C
to 25 ◦C was carried out. The mass flow controllers were manually adjusted. As the humidity
environment in the calibrated chamber was stable, the reading values of the resistive RH sensor,
capacitive RH sensor, and dew-point temperature of a chilled mirror monitor were recorded. Then two
mass flow controllers were adjusted to the next RH level. It took three to four hours to finish the whole
calibration process from low to high RH level. Three repetitions were performed for the calibration.

3.4. Establishment of the Calibration Equation

The establishment of the calibration equation builds the relationship between the standard
humidity values and the reading values of sensors. There are two statistical ways to establish the
calibration equations: the classical method and inverse method. Because the predicted uncertainty of



Sensors 2018, 18, 637 6 of 14

the inverse method is significantly lower than that of the classical method [7], the inverse method was
used in this study.

yi = f(xi) (9)

where yi is the standard RH values and xi is the reading values of sensors.
If yi and xi have a linear relationship, then

y = b0 + b1 × x (10)

where b0 and b1 are constants.
If yi and xi have a polynomial relationship, then

y = c0 + c1 × x + c2 × x2 + . . . + cn × xn (11)

where c0, c1, . . . ,cn are constants.
The calibration equation was analyzed by using of SigmaPlot v12.2 (SPSS Inc., Chicago, IL,

USA). The quantitative criteria to compare the fitting performance of calibration equations were
the coefficient of determination R2 and standard of the estimated value s. The suitable order of the
polynomial equation was tested by the t-value of the parameter values of each equation. The qualitative
criteria are the residual plots. For a suitable equation, the data distribution of residual values should
be a horizontal band centered on zero.

4. Results

4.1. Calibration Equations of the Resistive Humidity Sensor

The relationship between reading values of resistive humidity sensors and the standard reference
values calculated from the dew-point temperature and air temperature measured by chilled mirror
monitor are presented in Figure 2. The consistency of the data distribution of resistive humidity
sensors showed the usefulness and reasonableness of this self-made divided-flow generator.
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Figure 2. The relationship between reading values of resistive humidity sensor and the standard
reference values calculated from the dew-point temperature and air temperature measured by a chilled
mirror monitor.

The calibration equation is established by regression analysis.
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a. Linear equation
y = 2.315065 + 1.00223× x

R2 = 0.9992, s = 0.8177
(12)

The residual plots of this linear equation are presented in Figure 3. A clear pattern is found.
Although a high R2 was found, the residual plots indicated that the linear calibration equation was not
a suitable equation.
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Figure 3. The residual plot of the linear calibration equation for resistive humidity sensor.

b. 3rd order polynomial equation

y = 4.276599 + 0.812626x + 0.0045962x2 − 0.000031528x3

R2 = 0.9995, s = 0.5565
(13)

The result for the second order polynomial equation presented a systematic pattern (not presented
in the figure). The residual plot for the 3rd order polynomial equation is shown in Figure 4. By the
t-tests of parameters and residual plots, this equation was adequate.
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Figure 4. The residual plot of the 3rd order polynomial calibration equation for resistive
humidity sensor.
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4.2. Calibration Equation of the Capacitive Humidity Sensor

The relationship between the reading values of capacitive humidity sensors and the standard
reference values is shown in Figure 5. The consistency of the data distribution of this capacitive
humidity sensor also revealed the usefulness of this self-made divided-flow generator.
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Figure 5. The relationship between reading values of capacitive humidity sensor and the standard
reference values calculated from the dew-point temperature and the air, as temperature measured by a
chilled mirror monitor.

a. Linear equation
y = 1.19978 + 1.008537x
R2 = 0.9996, s = 0.6320

(14)

b. 3rd order polynomial equation

y = 0.991850 + 1.476546x− 0.0012782x2 + 0.0000102204x3

R2 = 0.9998, s = 0.3961
(15)

The residual plots of the linear equation for the capacitive humidity sensor shown in Figure 6.
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Figure 6. The residual plot of the linear calibration equation for capacitive humidity sensor.
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The clear pattern indicates that the linear equation was not a suitable equation. By the t-tests
of parameters and residual plots (Figure 7), the 3rd order polynomial equation was shown to be
an adequate calibration equation.
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humidity sensor.

4.3. The Uncertainty of Reference Standard

The reference standard humidity is calculated by the dew-point temperature and air temperature.
The uncertainty of reference standard humidity, uref is computed by Equations. (3) and (4). The uref
values at different temperatures have the relationships with relative humidity (Figure 8). The uref is
increased with the increase of RH values.
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4.4. The Combine Standard Uncertainty of the Resistive Humidity Sensor

The uncertainty of the resistive humidity sensor for calibration equations, ures was calculated by
Equation (8):

ures(x) = s
√

1.0133 + (xres − 52.115)2/46403.4 (16)

where s is the standard deviation of the calibration equation, and xres is the reading RH values of the
resistive sensor.

The type B uncertainty analysis for resistive humidity sensor is computed by Equations (6) and (7).

a. Uncertainty from nonlinearity and repeatability

unon = ±Unon/2
√

3 = 0.2886% (17)

b. Uncertainty from resolution

ures = ±Ures/2
√

3 = 0.02886% (18)

The combined standard uncertainty of the resistive humidity sensor, uc-res, is calculated by
Equation (9). The uc-res value for the restive humidity sensors used two calibration equations are
presented in Figure 9. At the 20%, 55%, and 90% levels of the observed humidity, the uncertainty
values were 1.022%, 1.176%, and 1.583%, respectively, when using the linear calibration equation and
0.79%, 1.027%, and 1.437% when using the 3rd order polynomial calibration equation, respectively.
The results indicated that a suitable calibration equation can decrease the uncertainty significantly.
Because the reference standard uncertainty, uref, reaches higher values in high RH ranges (Figure 8),
the uc-res was > 1.2% when the RH > 70%.Sensors 2018, 18, 637 11 of 15 
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Figure 9. The combine uncertainty values for the resistive humidity sensors used two calibration equations.

4.5. The Combined Standard Uncertainty of the Capacitive Humidity Sensor

The uncertainty of the capacitive humidity sensor, ucap for calibration equation was calculated by
Equation (8):

ucap(x) = s
√

1.0133 +
(
xcap − 52.79067

)2/45661.5 (19)

where s is the standard deration of the calibration equation, and xcap is the reading RH values of the
capacitive sensor.

The type B uncertainty analysis for the capacitive humidity sensor is computed as follows:
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a. Uncertainty from nonlinearity and repeatability

unon = ±Unon/2
√

3 = 1/3.4641(1.0 + 0.008RH) (20)

b. Uncertainty from resolution

unon = ±Unon/2
√

3 = 0.02886%. (21)

The combined standard uncertainty of the capacitive humidity sensor, uc-cap, as calculated by
Equation (9), is shown in Figure 10. At the relative humidity values of 20%, 55%, and 90% levels of
the observed humidity, the combined standard uncertainty values are 0.873%, 1.105%, and 1.530%
using the linear calibration equation and 0.656%, 0.983%, and 1.413% for the 3rd order polynomial
equation, respectively. The combined uncertainty obtained from the 3rd order polynomial equation is
significantly lower than that of the linear equation.Sensors 2018, 18, 637 12 of 15 
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Figure 10. The combine uncertainty values for the capacitive humidity sensors used two
calibration equations.

5. Discussion

The main sources of the combined uncertainty were the standard reference and calibration
equations. In this study, the reading values of a commercial chilled-mirror monitor were used as
the standard reference. The accuracy of this dew-point temperature was ±0.2 ◦C, according to the
specifications of the manufacture. For a dew-point temperature monitor with±0.1 ◦C accuracy, the uref
calculated by Equations (3)–(5) are shown in Figure 11. The uref value was < 0.7% when the RH value
< 80% and less than 1.0% in the RH range higher than 80%. In this condition, the combined standard
uncertainty for the two calibration equations and for two types of electrical humidity sensors are
presented in Figure 12. The uc-ref could be < 1.2% and uc-cap < 1.05% at 90% RH. At 70% RH, uc-ref
could be < 1.0% and uc-cap < 0.8%.

A previous study reported the uncertainty of humidity sensors at 60% RH, as evaluated by
a home-made divided-flow generator [18]. The estimated uncertainty was 0.3174% RH. The standard
uncertainty of the standard hygrometer was 0.22%, based on the reports of manufacturers. However,
the combined uncertainty of their standard hygrometer that calibrated by the humidity standard
generator systems was not reported.
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Figure 11. The relationship between relative humidity and reference humidity uncertainty at different
temperatures within ±0.1 ◦C accuracy of dew-point temperature.
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Figure 12. The combine uncertainty value for two types of humidity sensors used two calibration
equations. The accuracy of dew-point temperature was within ±0.1 ◦C.

In another works, two types of electrical humidity sensors were calibrated by several saturated
salt solutions [7]. The combined uncertainty with adequate calibration equations at observed humidity
levels of 30%, 60%, and 90% were 1.200, 1.208, and 1.202%, with a resistive sensor and 0.603, 0.605,
and 0.613% with a capacitive sensors, respectively. The resistive electrical sensors results of this study
were better than those of a previous study [7]. However, the combined uncertainty of the capacitive
humidity sensors in this study were higher than those of the previous study [7]. The results could be
explained by the different manufacturers and reference standard values.

Orlando et al. [24] mentioned that if the uncertainty of the dew-point temperature was less
than ±2 °C, then the RH uncertainty was below ±1.0%. This was confirmed by the results of this
study. The measurement uncertainty of two types of electrical hygrometers was < 1.5% RH. When the
cover factor equaled to 2, the expanded measurement uncertainty was < 3% RH. Thus, the proposed
approach could meet the performance requirements for application in most of the industries [1].

In this study, the uncertainty of the reference standard increased with the increase of RH
value. Therefore, the combined measurement uncertainty of the two types of electrical hygrometers
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was > 1.0% RH when the RH reading values > 70%. The uncertainty of the humidity environment
produced by saturated salt solutions were < 0.55% [30]. However, the equilibrate times for the
saturated salt solutions are in the range of 8 h to 12 h [6]. It takes several days to finish the several
points’ calibration by a fixed-point humidity system. In this study, this calibration works was finish
within several hours. It is a time-save work. The self-made calibration system in this study can be
easily established in most of laboratories. The cost of this system is inexpensive. The key technique
decreasing the measurement uncertainty is to use a more accurate dew-point temperature monitor.
The calibration system and the establishment of the calibration equation developed in this study could
be easily applied in industry laboratories.

6. Conclusions

In this study, a self-made divided-flow generator was established to produce a humidity
environment for the calibration of two types of electrical humidity sensors. The dew-point
temperature and air dry-bulb temperature of a chilled mirror monitor was measured to calculate
the relative humidity value. This value then served as the standard reference humidity for calibration.
The uncertainties of two types of electrical humidity sensors were evaluated and compared.

The consistency of the data distribution between the reading values of resistive and capacitive
humidity sensors and standard reference values showed the usefulness of this divided-flow generator.
The uncertainty of the reference standard increased with the increase of RH values. The combined
uncertainty of the adequate calibration equations were ranged from 0.82% to 1.45 % RH for the resistive
humidity sensor and 0.63% to 1.4% for the capacitive humidity sensor, respectively. When we used
a more accurate dew-point temperature monitor, the combined uncertainty of the two types of electrical
humidity sensors could be reduced to 1.0% RH. Because the self-made divided-flow generator and
calibration method are cheap, time-saving, and easy to be used, therefore, the proposed approach can
easily be established and applied in a research laboratories.
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