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Abstract: In this paper, an improved method based on a mixture of Gaussian and quadrilateral
functions is presented to process airborne bathymetric LiDAR waveforms. In the presented method,
the LiDAR waveform is fitted to a combination of three functions: one Gaussian function for the
water surface contribution, another Gaussian function for the water bottom contribution, and a new
quadrilateral function to fit the water column contribution. The proposed method was tested on a
simulated dataset and a real dataset, with the focus being mainly on the performance of retrieving
bottom response and water depths. We also investigated the influence of the parameter settings on
the accuracy of the bathymetry estimates. The results demonstrate that the improved quadrilateral
fitting algorithm shows a superior performance in terms of low RMSE and a high detection rate
in the water depth and magnitude retrieval. What’s more, compared with the use of a triangular
function or the existing quadrilateral function to fit the water column contribution, the presented
method retrieved the least noise and the least number of unidentified waveforms, showed the best
performance in fitting the return waveforms, and had consistent fitting goodness for all different
water depths.
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1. Introduction

Bathymetry is the measurement of underwater terrain, which is very important for a wide range
of applications in hydrology, geomorphology, and meteorology. To date, several techniques for
bathymetry retrieval have been developed for a variety of societal needs. The traditional bathymetry
methods involve dropping a plumb line into the water or using a sonar system such as single-beam
sonar, echo sounders, and multi-beam sounding [1]. However, these methods are labor-consuming,
time-costly, expensive, and are limited to the navigable area. In contrast, rapid and inexpensive
remote sensing methods, including radar, hyperspectral imagery, and photogrammetry, have been
developed to estimate bathymetry [2]. These methods are better options than the in-situ measurement
methods. However, radar and hyperspectral imagery cannot be used to directly retrieve water depth,
and photogrammetry requires very clear water conditions [3]. Meanwhile, their precision is relatively
poor, and they cannot provide a high-resolution distribution (errors in the order of 1 m) [4–6].
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As an alternative, airborne light detection and ranging (LiDAR) bathymetry (ALB) has been
developed as a powerful remote sensing technique that can be used to actively estimate bathymetry.
By applying the ALB technique, the data can be obtained from waveform measurements of the received
LiDAR pulse. This method can provide rapid operation with an acceptable accuracy and a high spatial
density [7–10]. The ALB technique uses a pulsed blue-green laser as a bathymetric sensor that can
penetrate the water to obtain the bathymetric data according to the differential arrival times of the laser
echo signals reflected by the water surface and the sea bottom. In 1969, Hickman and Hogg first tested
the performance of an airborne pulsed blue-green laser for near-shore bathymetric measurements [11].
Subsequently, a lot of ALB systems were built and tested in different areas in the 1970s. An operational
prototype ALB system named LARSEN-500 was developed in Canada in 1985. This system used
a Q-switched dual-band laser, operating simultaneously at 532 nm and 1064 nm [12]. Most of the
early ALB systems were cumbersome to operate, and the costs were much higher than the other
topographic systems. Moreover, a constant fraction discrimination (CFD) unit was used to retrieve the
echo location by the airborne LiDAR scanner systems (ALSs), which only saves part of the time history
of the returned LiDAR waveform.

With the rapid development of LiDAR and computer technologies, ALB systems are becoming
smaller, lower cost, and more powerful. To date (as of December 2016), the latest ALB systems such
as CZMIL-Nova, RIEGL VQ-880-G, Leica Chiroptera-II, and HawkEye-III have been widely applied
for shallow-water surveying [13,14]. All these ALB systems have small-footprint full-waveform
digitizing capabilities, which has resulted in great progress in bathymetry accuracy and target
resolution. In general, a typical sample of a bathymetric LiDAR waveform is composed of surface return,
bottom return, volume backscattering, and background noise. The bathymetry estimates can be retrieved
from the LiDAR waveform by the use of a waveform processing algorithm. To date, several LiDAR
waveform processing algorithms have been developed for the processing of full-waveform airborne
LiDAR. These algorithms can be grouped into three main classes: (1) echo detection [15–17];
(2) mathematical approximation [18–21]; and (3) deconvolution methods [22–26]. In order to compare
the performances of these different methods, Wang et al. [26] selected two algorithms for comparison
in each class for single-wavelength bathymetric waveform processing, including peak detection (PD),
the average square difference function (ASDF), Gaussian decomposition (GD), quadrilateral fitting
(QF), Richardson-Lucy deconvolution (RLD), and Wiener filter deconvolution (WD). The results
showed that the deconvolution methods excel in the accuracy of the water depth and the successful
discovery rate, but their disadvantage is that they require the most time, due to the iterative
step. The echo detection methods can obtain results in the shortest time, but their false discovery
rate is higher than the other methods. The mathematical approximation methods require almost
as much time as the deconvolution methods, and their accuracy is close to that of the echo
detection methods. Based on continuous wavelet transform (CWT), Pan et al. [27] presented a novel
full-waveform processing algorithm which is more stable than the Gaussian or empirical system
response decomposition methods for shallow-river bathymetry [28]. From the comprehensive
comparison of the different methods undertaken by Wang et al. [26], it was found that the mathematical
approximation methods are less cost-efficient than the other methods.

However, by using the mathematical approximation methods, the LiDAR bathymetric waveform
can be fitted as a combination of mathematical functions. These mathematical functions can represent
the surface return, bottom return, and the water column response. In particular, the water column
contribution records the relationship between amplitude and time, and based on this relationship,
we can estimate the diffuse attenuation coefficient (Kd) and the chlorophyll concentration profile, and it
is also possible to classify the ocean water type [7,29]. Therefore, it is important to develop suitable
algorithms to fit the water column contribution in LiDAR waveforms, which can not only improve
the accuracy of bathymetry retrieval, but also obtain the optical properties and ecological parameters
of water [30,31]. To date, several mathematical approximation methods have been used to fit LiDAR
bathymetry full waveforms. In Long et al. [32], the water surface, water column, and water bottom
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contributions were approximated as a mixture of Gaussians. Abdallah et al. [19] separately fitted the water
surface, the water column, and the bottom contributions as a Gaussian function, a triangular function,
and a Weibull function, respectively. Abady et al. [20] developed a quadrilateral fitting algorithm,
where two Gaussian functions were used to fit the surface and bottom contributions, and a quadrilateral
function was used to fit the water column contribution. To sum up these mathematical approximation
algorithms, it is relatively easy to fit the water surface and bottom returns, and the Gaussian function
or Weibull function can show a satisfactory fit to the shape of the water surface or bottom contribution.
However, the water column contribution is comparatively complicated, which is due to the fact that
the water column contribution exhibits an asymmetric shape, physically corresponding to an infinite
sum of successive translated Gaussian functions with an exponentially decaying amplitude along with
water depth. Therefore, despite the fact that the above mathematical approximation algorithms are
efficient, the fitting approaches cannot completely capture the physics of the interaction of the laser
beam with the water column.

In this paper, we propose a new quadrilateral fitting algorithm to process bathymetric LiDAR
waveforms and obtain bathymetry where: (1) Gaussian functions are used to fit both the surface and
bottom components, and a new quadrilateral function is used to fit the water column contribution;
(2) the new quadrilateral function is more in line with the fact that the water column response decreases
exponentially with the increasing water depth; (3) the fittings are performed using a nonlinear
least squares fitting approach according to the Levenberg-Marquardt algorithm [33]; and (4) we
used a simulated dataset and a real dataset to test the presented waveform processing algorithm.
The advantage of the new quadrilateral fitting algorithm we present was evaluated on sets of airborne
simulated LiDAR waveforms and actual observed LiDAR waveform. In the following, for the
simulated dataset, we compare the results of the bathymetry estimates (bias and standard deviation
(STD)) obtained from the new quadrilateral function fitting method with those computed using a
triangular function and the existing quadrilateral function initially presented by Abdallah et al. [19]
and Abady et al. [19,20], and we discuss the sources of bias and deviation. What’s more, we investigate
the influence of the parameter settings on the accuracy of the bathymetry estimates. For the real
dataset, we compare the number of points with two returns recognized and the noise from all the
algorithms. In addition, we assess the fitting results of return waveforms and compute the root mean
squared error (RMSE) between the fitting and true values of the amplitude of return waveforms by
using different algorithms.

2. Description of Datasets

2.1. Simulated Dataset

Due to the high cost of real data experiments, it is relatively expensive to collect ALB data.
However, we can also validate the waveform processing algorithms using a simulated dataset based
on the ALB laser propagation models. In general, the laser propagation models assume that the
water column is homogeneous, with the same optical properties for the water column. These models
can simulate full waveforms for different laser wavelengths in the optical spectrum from 300 nm
to 1500 nm [26,34–37]. According to the existing laser propagation models, the return power can be
expressed as:

WR(t) = Ws(t) + Wc(t) + Wb(t) + Wn(t) (1)

where t is the time scale; WR(t) is the received waveform power; Ws(t) is the power returned by surface
reflection; Wc(t) is the power returned by water column scatter; Wb(t) is the power returned by bottom
reflection; and Wn(t) is the power of the noise, including the external noise from the air column and
the internal noise from the detector.
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The transmitted laser signal WT(t) is considered to be a time-delayed Gaussian distribution:

WT(t) =
2
T0

√
ln 2
π

exp

(
−4(t− τ)2 ln 2

T02

)
(2)

where T0 is the full width at half maximum (FWHM) of the transmitted pulse, and τ is the delay of the
laser group center with respect to the zero time.

The returned power from the water surface takes the form of:

Ws(t) =
PTηρ cos2 θ

πH2 ×WT

(
t− 2H

v cos θ

)
(3)

where PT is the emitted power; η is the attenuation factor from the optical efficiency, atmosphere and
receiver area; ρ is the interface reflectance; θ is the angle of incidence; H is the height of aircraft; υ is the
speed of light in air. The interface reflectance ρ is defined by a Cook-Torrance geometric model with
roughness of water surface (r), diffuse attenuation coefficient (Kd), and angle of incidence (θ) as the
input parameters [37,38].

The returned power from the water bottom is modeled as:

Wb(t) =
PTηRbF exp(−2KdD

cos θw
)(1− ρ)2 cos2 θ

π(nH + D)2 ×WT

(
t− 2H

v cos θ
− 2nD

v cos θw

)
(4)

where Rb is the reflectance of bottom; F denotes the loss coefficient based on the field of view effects;
θw denotes the angle of refraction; D denotes the water depth; and n denotes the refraction index.

The returned power from the water column is given by:

Wc(t) = Rc(t)×WT(t) (5)

where Rc(t) is the water column response function, which is expressed as:

Rc(t) =


PTηβF exp(

−2Kd D
cos θw )(1−ρ)2 cos2 θ

(nH+d(t))2 0 ≤ d(t) ≤ D

0 other
(6)

where β denotes the volume scattering function; d(t) denotes the column layer; and Kd denotes the
diffuse attenuation coefficient.

The noise is defined as Gaussian white noise with a constant STD σn and zero mean. The noise is
determined by the peak signal-to-noise ratio (PSNR) [39]:

σN =
Max(Ws(t) + Wc(t) + Wb(t))

PSNR
(7)

In the simulated dataset, we set both the fixed parameters and the floating parameters. For the
fixed parameters, we used the usual green wavelength (λ: 532 nm) common to ALB systems,
the FWHM of the transmitted pulse (T0: 7 ns), the transmitted power (PT: 0.5 mW), the aircraft
altitude (H: 200 m), the backscattering coefficient (β: 4 × 10−4 m−1sr−1), the loss coefficient due to the
field of view effect (F: 1), the two-way time delay (τ: 0 ns), and the light velocity in air (v: 3 × 108 m/s),
and the attenuation factor from the optical efficiency (η: 0.01). For the floating parameters, we set
the diffuse attenuation coefficient (Kd), the bottom reflectance (Rb), the roughness of water surface (r),
the incidence angle (θ), the depth of water (D), and the PSNR to be varying, so that we could test the
algorithm performance in a variety of conditions. These parameters were set as listed in Table 1.
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Table 1. Main parameter settings for the simulated dataset.

Fixed Parameters Values Floating Parameters Values

λ(nm) 532 Kd (m−1) 0.01–0.1
T0 (ns) 7 Rb 0.01–0.2
PT (W) 5.0 × 10−4 r 0.1–0.5
H (m) 200 θ (◦) 0–25

B (m−1sr−1) 4.0 × 10−4 D (m) 0–15
F 1 PSNR 10–110

T (ns) 0
v (m/s) 3.0 × 108

η 0.01

Based on the settings in Table 1, the simulated waveforms were generated with random water
properties and sensor parameters at a given water depth. An example of a simulated waveform is
depicted in Figure 1:
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Figure 1. An example of a simulated return waveform using airborne sensor parameters: (a) a return
waveform with noise; and (b) the return waveform without noise, which is decomposed into surface
return, column return, and bottom return.

2.2. Real Dataset

The real airborne LiDAR bathymetric data was collected from Aquarius Airborne Laser Terrain
Mapper (ALTM) system. It is a single wavelength shallow water bathymetry sensor developed by
Teledyne Optech Inc. (Toronto, ON, Canada) and operated by the National Center for Airborne Laser
Mapping (Houston, TX, USA). The Aquarius system is a new single-wavelength airborne LiDAR
bathymetry system developed in 2011 for shallow-water bathymetry with high-resolution and light
weight units. This system is capable to take measurements of simultaneous land and shallow water
depth. It employs a frequency-doubled ND: YAG laser with a single-wavelength of 532 nm (green),
a half-swath angle 20◦, a 33 KHz pulse repetition frequency, and 1 mrad beam divergence that yields
a laser footprint one 1000th of the laser optical range, the main technical characteristics of Aquarius
system in shallow water mode was shown in Table 2 [40].

The experimental dataset was captured at an altitude of 300 m by the Aquarius system at
Wuzhizhou Island, Sanya, Hainan, Southern China, on 19 December 2012. In this paper, a part of the
dataset over a coastal area (about 240 × 80 m) was used to assess the proposed waveform processing
algorithm. The dataset consisted of waveform data, discrete data, and image data. The waveform was
recorded with waveform digitizer and the CFD is applied on the analog signal to detect the effective
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returns. The received full waveform data for each shot and the corresponding GPS times are recorded
by a 12 bit Intelligent Waveform Digitizer (IWD-2). The discrete data were retrieved by the Aquarius
CFD, and processed into las format by use of Optech software. The image data were optical photos
taken by a DiMAC ULTRA-LIGHT+ aerial camera system (DiMAC, Charleroi, Belgium).

The Aquarius waveform data consists of time-series amplitude data of numerous laser shots.
For each laser shot, both the transmitted and returned amplitude waveform are recorded. To organize
the large number of laser shots, a certain amount of sequential shots are grouped into a frame.
Each frame has a unique frame number and a GPS time. The GPS time is defined as the acquired time
for the first shot in the frame. With the GPS time of frames and the number of shots in each frame,
the interval time between two neighboring laser shots can be calculated. Correspondingly, the GPS
time of each shot in the frame can be determined. The GPS time for the shots are then used to
synchronize with positioning data collected by the ALTM.

Table 2. Main technical characteristics of Aquarius in shallow water mode.

Parameter Specification

Flight height (AGL, m) 300–600
Laser wavelength (nm) 532

Power 28 V; 900 W; 35 A (peak)
Pulse width (FWHM in ns) 8.3

Digitization frequency (GHz) 1
Resolution of full waveform (bits) 12

Beam divergence (mrad) 1
Pulse repetition rate (KHz) 33, 50, 70

Scan rate (Hz) 0~70
Scan half-angle 0~±25◦

Point density (pts/m2) 4
Footprint on water surface (cm) 30~60

Depth range (m) 0~> 10 (for Kd < 0.1 m−1)

3. Methods

3.1. Mathematical Approximation Method

As a widely used strategy in the processing of LiDAR waveforms, mathematical approximation
algorithms are commonly used to fit the received waveform by the use of a combination of
mathematical functions, such as a Gaussian function, lognormal function, and Weibull function [18].
The most commonly used algorithms are the triangular fitting algorithm and the quadrilateral
fitting algorithm.

3.1.1. Triangular Fitting Algorithm

The triangular fitting algorithm (TF) is normally used to decompose a laser altimeter return
waveform into a series of functions: Gaussian functions for both the water surface and water bottom
components, and a triangular function to fit the water column component.

The Gaussian function is as follows:

f (t) =
N

∑
i=1

αie
− (t−µi)

2

2δi
2 (8)

where N is the number of Gaussian components, which can be selected through an iterative
process [41,42]. αi, µi and δi are the amplitude, location, and half-width of the ith Gaussian component.
However, since a bathymetric LiDAR waveform is mainly composed of a water surface return,
a bottom return, and a water column return, we adopt the approach used in a previous study of
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using two Gaussian functions (N = 2) to fit the received waveform [43]. A triangular function is used
to fit the water column contribution, and the function ( fT(t)) is expressed as:

fT(t) =


0 t ≤ a
d×

(
t−a
b−a

)
a < t ≤ b

d×
(

t−c
b−c

)
b < t ≤ c

0 t > c

 (9)

where a, b, and c are the locations of three edge points (A, B and C) of the triangle, and d is the
magnitude for the second point (B). An example of triangular fitting is shown in Figure 2a.

The parameters for the two Gaussian functions and the triangular function can be retrieved by
minimizing the following cost function:

fc(t) =
1
N
‖WR(t)−

2

∑
i=1

αie
− (t−µi)

2

2δi
2 − fT(t)‖ (10)

We use nonlinear least squares fitting according to the Levenberg-Marquardt algorithm to
optimize the cost function [33]. In addition, we set the initial parameters for the Gaussian functions
so as to get rid of the meaningless results based on the detected target responses by the use of a PD
method [27]. The following algorithms also follow these steps.

3.1.2. Quadrilateral Fitting Algorithm

The quadrilateral fitting algorithm (QF) uses a quadrilateral function to fit the water column
contribution. The cost function is defined as shown in Equation (11), and the quadrilateral function
can be expressed as shown in Equation (12):

fc(t) =
1
N
‖WR(t)−

2

∑
i=1

αie
− (t−µi)

2

2δi
2 − fq(t)‖ (11)

fq(t) =



0 t ≤ a
e×

(
t−a
b−a

)
a < t ≤ b

ec−bg+t(g−e)
c−b b < t ≤ c

g×
(

t−d
c−d

)
c < t ≤ d

0 t > d


(12)

where, as shown in Figure 2b, A(a, 0), B(b, e), C(c, g), and D(d, 0) are, respectively, the four edge
points of the quadrilateral; a, b, c, and d are the locations of the four edge points; and e and g are the
magnitudes for points B and C.

3.1.3. Improved Quadrilateral Fitting Algorithm

Based on the above-described quadrilateral fitting algorithm, we propose a new quadrilateral
function to fit the water column contribution. Firstly, according to the relationship between the laser
amplitude and time in the water column, we construct an exponential function f (t), which is given by:

f (t) = m× αt (13)

where m and α are undetermined coefficients, and we first assume that the curve f (t) passes through
two points B(b, e) and C(c, g): {

e = m× αb

g = m× αc (14)



Sensors 2018, 18, 552 8 of 21

g
e
= αc−b (15)

Secondly, we take the natural logarithm of both sides of Equation (15):

ln
g
e
= (c− b) ln α (16)

We then rearrange the equation and obtain:

α = exp(
ln g− ln e

c− b
) (17)

Substituting Equation (17) into Equation (14), we obtain:

m = exp(
c ln e− b ln g

c− b
) (18)

Next, substituting Equations (17) and (18) into Equation (13), we obtain the following equation
after rearranging:

f (t) = exp(
(ln g− ln e)t + c ln e− b ln g

c− b
) (19)

Finally, the new quadrilateral fitting function can be expressed as:

fq(t) =



0 t ≤ a
e×

(
t−a
b−a

)
a < t ≤ b

exp( (ln g−ln e)t+c ln e−b ln g
c−b ) b < t ≤ c

g×
(

d−t
d−c

)
c < t ≤ d

0 t > d


(20)

An example of the improved quadrilateral function to fit the water column contribution is shown
in Figure 2c.

Figure 2 demonstrates that the three fittings are applied to the same simulated waveform without
noise, using the airborne sensor parameters, which shows the efficient fitting in this schematic case.
Comparing Figure 2a–c, we can see that the quadrilateral function performs a better fitting to the shape
of the water column component than the triangular function. Furthermore, the improved quadrilateral
function shows a better fitting to the shape of the water column than the existing quadrilateral
function. What are the causes of the different fitting results and performances? Can the improved
quadrilateral algorithm improve the performance in extracting the water depth over the existing
quadrilateral algorithm? How do the water conditions and parameter settings of the ALB system affect
the bathymetry accuracy? To answer these questions, a simulated dataset obtained by the use of the
laser propagation model (Section 2.1) was used to validate the improved quadrilateral fitting algorithm
(IQF). The metrics used in the algorithm evaluation and comparison are given in the next section.
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3.2. Methodology for the Comparison

To verify the superiority of the proposed algorithm, a comparative experiment was designed
as follows:

Firstly, we compared the results of the water depths retrieved by the use of each algorithm.
Because we knew the true values of the water depths from the simulated waveform dataset,
the estimated values could be compared with the true values using the metrics, which are defined
as follows:

(1) The success rate, which is defined as the percentage of successfully detected points (points with
≥2 returns detected and errors of less than 1 m):

Sr =
#of successfully detected points

of all the points
(21)

(2) The false discovery rate, which is defined as the percentage of wrongly detected points (points with
≥2 returns detected and errors larger than 1 m):

Fr =
#of wrongly detected points

of all the points
(22)

(3) The bias, which is defined as the difference between an estimated expected value and the true
value of the parameter being estimated, where D′ i and Di are the estimated and true water depths
for the ith case, and N is the number of forward modeling cases:

Bias = ∑N
i (D′ i − Di)

N
(23)
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(4) The STD is used to quantify the amount of variation or dispersion of a set of data values,

where D′ is the mean of the estimated water depths (D′):

STD =

√
∑N

i (D′ i − D′)
2

N
(24)

(5) The root-mean-square error (RMSE) between the true and estimated values of the depth of water
under different parameter settings:

RMSE =

√
∑N

i (D′ i − Di)
2

N
(25)

(6) R-squared (R2), to estimate the fitness of the true depths of the successfully detected points,
where NS is the number of successfully detected points, and D is the mean of the true water
depths (D):

R2 = 1− ∑NS
i (D′ i − Di)

2

∑NS
i
(

Di − D
)2 (26)

(7) The time cost (T), to evaluate the efficiency of the algorithm. We adopted parallel computing
(eight CPU cores used simultaneously) to accelerate the computations in this paper.

Secondly, the robustness of each algorithm was tested by the use of a Monte Carlo method.
We then examined the influence of the parameter settings on all the algorithms. The six floating
parameters shown in Table 1 were tested: PSNR, bottom reflectance (Rb), surface roughness (r),
diffuse attenuation coefficient (Kd), water depth (D), and scan angle (θ). The range for each parameter
was divided equally into 50 bins. The depth RMSEs for the full waveforms inside each bin were
computed. The RMSEs for the function of each parameter were plotted to study the influence of the
parameter settings.

4. Results and Discussion

4.1. Simulated Dataset

4.1.1. Performance Assessments

Firstly, we ran the above-mentioned laser propagation model to acquire one million simulated
waveforms. The parameters for each waveform were defined in Table 1.

Secondly, the three algorithms were used to process these waveforms, respectively. The performances
of the three algorithms with the simulated dataset are shown in Table 3.

Table 3. Performance assessments of the three mathematical approximation algorithms for waveform
processing.

Algorithm Sr (%) Fr (%) RMSED (m) Bias (m) STD (m) R2 Tc (s)

TF 73.25 8.6362 2.6377 −0.8299 2.5037 0.9733 1804.1613
QF 75.17 6.1840 2.4337 −0.6530 2.3444 0.9786 2350.6966
IQF 75.68 5.6471 2.2910 −0.5607 2.2213 0.9837 4627.2592

The above table demonstrates that the improved quadrilateral fitting algorithm shows a higher
success rate than the other two algorithms. The false discovery rate for the improved quadrilateral
fitting algorithm is lower than that of the other two algorithms. The improved quadrilateral fitting
algorithm shows the best performance (the lowest RMSED) in water depth retrieval. The bias
of the improved quadrilateral fitting algorithm is improved by 0.269 m and 0.092 m compared
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with the triangular fitting algorithm and the previous quadrilateral fitting algorithm, respectively.
When comparing the STD, it can be seen that the improved quadrilateral fitting algorithm performs
the best, and the second-best algorithm is the existing quadrilateral fitting algorithm. The R-squared
values show that the improved quadrilateral fitting algorithm is best able to fit the true depths of the
successfully detected points, and they also suggest that the test algorithms do not differ too much in
their ability to process the successfully detected points. The time cost for the improved quadrilateral
fitting algorithm is much higher than for the other methods. Conversely, the triangular fitting algorithm
shows the best computational efficiency.

4.1.2. Accuracy Calculations

In this paper, as a metric, the RMSE is combined with the bias and STD. Therefore, the two
elements for different water depths (1–15 m) were further calculated by Equations 23,24, respectively.
The relationship between RMSE, STD, and bias is described as follows:

RMSE2= STD2+ Bias2 (27)

The STD and bias make a similar contribution to the RMSE. Comparing Figures 3 and 4, we can
see that the trends of STD and bias are in agreement with the RMSE. Apart from the very shallow
depths, all the metrics increase with the increasing water depth. In very shallow water, the detection
error is larger than when the surface and bottom returns are intermingled. The overall bias and STD
for all the water depths are shown in Table 4.
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As depicted in Figure 3, the bias at each water depth for the simulated dataset shows an obvious
growth with the increasing water depth, ranging from −0.046 m at a water depth of 1 m to −2.679 m
at a water depth of 15 m for the improved quadrilateral fitting algorithm, which is better than
the −0.0819 m at a water depth of 1 m to −2.923 m at a water depth of 15 m for the existing
quadrilateral fitting algorithm, and −0.068 m at a water depth of 1 m to −3.174 m at a water depth
of 15 m for the triangular fitting algorithm. Moreover, the overall bias shows an improvement of
approximately 0.087 m and 0.284 m in magnitude (See Table 4) when using the improved quadrilateral
fitting procedure compared with the existing quadrilateral fitting algorithm and the triangular fitting
algorithm. The bias increases as the water depth increases, which is due to the bottom response
decreasing as the water depth increases.
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Similarly, the STD also greatly increases as the water depth increases, ranging from 0.139 m to
4.989 m when using the improved quadrilateral fitting algorithm, 0.186 m to 5.140 m when using
the existing quadrilateral fitting algorithm, and 0.186 m to 5.286 m when using the triangular fitting
algorithm. The overall STD for all the water depths is shown in Table 4, which clearly displays the
improvement in reducing the STD by 0.064 m and 0.248 m in magnitude when using the improved
quadrilateral fitting algorithm compared with the existing quadrilateral fitting algorithm and the
triangular fitting algorithm, respectively.

As depicted in Equation 4, the bottom return decreases with the increasing water depth.
Therefore, it can also be seen that the bias shows an exponential increase with the water depth
(see Figure 3). The capability of the different algorithms, as revealed by the RMSE, is consistent
with the results using the STD and bias. Compared with the other two algorithms, the improved
quadrilateral fitting algorithm obtains the smallest STD and bias values. However, the difference in the
bias between algorithms is more distinct than the STD, implying that the main way we could improve
the performance of the quadrilateral fitting algorithm is by reducing the bias. According to recent
research, the bias mainly comes from the overlaps of the water column component on the water surface
and bottom returns, and the bottom geometry can also generate a bottom peak shift; however, we did
not model the bottom geometry, so the shift could not be explained. The STD mainly comes from the
variability of the water column parameters and random noise [20,26,44]. Therefore, the experimental
results suggest that a better algorithm to fit the water column component could play an important role
in improving the accuracy of bathymetry estimation.

Table 4. Overall bathymetry accuracy (bias and STD) using the simulated dataset.

TF QF IQF

Bias (m) −0.970 −0.773 −0.686
STD (m) 2.107 1.924 1.859

4.1.3. RMSE Changes in the Function of One Parameter

To understand the capabilities of the improved quadrilateral fitting algorithm, which shows a
better performance than the existing quadrilateral fitting algorithm and the triangular fitting algorithm
in retrieving both the water magnitude and depth, we further studied the influence of the parameter
settings on the three algorithms and tested the robustness of each algorithm by using a Monte Carlo
method. We plotted the RMSEs in the function of each parameter (see Figure 4). We can see that all the
parameters clearly affect the RMSE [45]. It can be seen that the RMSE displays an exponential decay
with the increasing PSNR, implying that the accuracy of the water depth extraction is greatly affected
by the noise. However, when the PSNR reaches 50, the downward trend is slow. This illustrates that
a PSNR of 50 would be enough to retrieve the water depth from a LiDAR waveform. And we can
find that the proposed algorithm has the least averaged RMSE values for different PSNR distribution
(0–40, 40–80 and 80–120), as shown in Table 5. It can also be seen that the water depth greatly affects
the accuracy of the water depth retrieval. When the water depth varies from 0 to 15 m, the RMSE
shows an exponential increase with the increasing water depth. Such a result is reasonable because the
water depth plays an important role in obtaining the bottom return power. According to Equation (4),
the laser power displays an exponential decay with the increase of water depth. Therefore, a strong
bottom return will decrease the difficulty in retrieving water depths. However, it can be seen that
the RMSE is affected when the water depth is too small (<1 m), which implies that the surface and
bottom returns are mixed together at a very shallow water depth, so it is very difficult to distinguish
the two peaks from the returns. A weak bottom reflectance can produce a weak bottom signal;
therefore, the RMSE exhibits an exponential decrease with the increasing bottom reflectance. A large
diffuse attenuation coefficient can result in a weak bottom signal, which brings about a large RMSE.
The scan angle and roughness mainly affect the surface return, which can be easily detected by
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the ALB system; therefore, the two parameters have less of an influence than the other parameters.
Nevertheless, the surface reflection is still associated with the bottom response, which is due to the
fact that if less laser power is reflected by the water surface, more laser power will penetrate the water.
Based on the Cook-Torrance geometric optics model, the surface reflection is affected by the scan
angle and roughness in a nonmonotonic method [38]. However, as shown in Figure 4, it can also
be seen that the RMSE indicates a decreasing trend with the increasing scan angle and roughness.
Such a result can be explained by the fact that the surface reflection decreases with the increasing scan
angle and roughness, which leads to the larger bottom response. The curves of the diffuse attenuation
coefficient and bottom reflectance for the three algorithms show a similar form; therefore, we can
choose the bathymetric LiDAR waveform processing algorithm without considering the values of
these parameters.
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Table 5. The PSNR distribution of the averaged RMSE values for the three algorithms.

PSNR
RMSE (m) RMSE (m) RMSE (m)

TF QF IQF

0–40 5.601 5.551 5.545
40–80 3.358 3.225 3.213

80–120 2.684 2.509 2.483

4.2. Real Dataset

To further verify the superiority of the proposed algorithm, a real dataset (introduced in
Section 2.2) was used to assess the algorithms. Figure 5 shows the bathymetry derived from the
three algorithms and the CFD from the Optech Aquarius data. The points with two returns recognized
are displayed (depth > 0). It can be seen that all the three algorithms obtained more points than the
CFD, indicating that the more detailed information can be retrieved by use of the waveform processing
algorithm. The triangular fitting algorithm gave the second lowest number of points, in contrast,
the improved quadrilateral fitting algorithm gave the most number of points. In addition, it can be
found that some salt-and-pepper noise distributed in the bottom-left, bottom-middle and top-left
of the bathymetry maps (see Figure 5a–c). Because the underwater bottom topography is spatially
smooth, we can conclude that the noise should be the errors from the algorithms. Comparing the three
bathymetry maps carefully (Figure 5a–c), we can find that the results from the improved quadrilateral
fitting algorithm is relatively less noisy than for the other two algorithms.
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To further compare the algorithms, the water depths distribution of the recognized waveform
number was computed, as shown in Figure 6. It was found that the improved quadrilateral fitting
algorithm retrieved the least number of unidentified waveforms (depths = 0). And in the very shallow
water (0 < depths < 3 m), higher detection rates were also found in the improved quadrilateral fitting
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algorithm than the other two algorithms. Over the shallow-medium water depth (3 < depths < 11 m),
the two quadrilateral fitting algorithms retrieved similar detection numbers, where the improved
quadrilateral fitting algorithm performed slightly higher detection rates than the existing quadrilateral
fitting algorithm. In the deep water depth (depths > 11 m), it can be seen obviously that the improved
quadrilateral fitting algorithm obtained a much greater number of detected points than the other
waveform processing algorithms. The results mean that the improved quadrilateral fitting algorithm
performed better performance in the very shallow water and deep water. The simulated experiment
in Section 4.1 also showed that the improved quadrilateral fitting algorithm had a high successful
rate from which we can deduce that the bathymetry detected by the improved algorithm is reliable.
Next, we randomly selected some waveforms detected by the existing quadrilateral fitting algorithm
or the improved quadrilateral fitting algorithm, separately.Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 
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The waveforms and their detected surface and bottom locations were displayed in Figure 7.
It can be found that the improved quadrilateral fitting shows a better fitting to the waveforms than the
existing quadrilateral fitting. Especially when the change of the amplitude along with water depth
is significant in the water column return, the water column and bottom return cannot be fitted well,
which results in an obvious error in the bottom location (see Figure 7c,e). In contrast, the water column
and bottom return can be fitted well, therefore their detected bottom locations can be retrieved easily
(see Figure 7d,f). It can also be seen that the water column component cannot be obtained by using
the existing quadrilateral fitting algorithm in some cases (see Figure 7g), however, when using the
improved quadrilateral fitting algorithm, we can obtain the water column component (see Figure 7h).
In general, we can find that when the shape of return waveforms is fat, which could be produced by a
combination of two adjacent returning pulses, only a location can be detected by using the existing
quadrilateral fitting algorithm (see Figure 7i,k), in contrast, the waveforms can be recognized by using
the improved quadrilateral fitting algorithm (see Figure 7j,l).
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To quantitatively compare the fitting results, we calculated the root mean squared error (RMSE)
between the fitting and true values of the amplitude of return waveforms by using different algorithms.

We used RMSE =

√
n
∑

i=1
(yi−y′ i)2

n to measure the RMSE, where y is the amplitude of true return
waveform, y′ is the amplitude of the fitting return waveform. Finally, we obtained the averaged
RMSE of all the return waveforms, the results are shown in Table 6. We can see that the improved
quadrilateral algorithm showed the best performance (the least RMSE) in fitting the return waveforms.

Table 6. Averaged RMSE of the return waveforms using the Aquarius dataset.

Algorithms TF QF IQF

Averaged RMSE (power) 7.586 5.158 2.775

To further compare the three algorithms, we calculated the RMSE (power) distribution of the
detected waveform number, as shown in Figure 8. It can be found that the improved quadrilateral
fitting algorithm retrieved the most number with low RMSE (RMSE < 4), and the least number with
high RMSE (RMSE > 4). This is similar to the simulated data, where the improved quadrilateral fitting
algorithm obtained the lowest RMSED in water depth retrieval. As seen in Figure 9, we found that the
proposed waveform fitting algorithm has consistent fitting goodness for all different water depths.
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To sum up, as seen in the simulated and real experiments, the quadrilateral fitting algorithm
shows a satisfactory performance when compared with the triangular fitting algorithm. Such a result
is reasonable because the use of the quadrilateral function to fit the water column return can obtain a
much better shape than the triangular function. A previous study also suggested that the quadrilateral
fitting algorithm can bring about a better performance than the triangular fitting algorithm in the
accuracy of the water depth extraction [20]. However, the quadrilateral fitting algorithm requires a
much longer time than the triangular fitting algorithm, because the former has more parameters than
the latter. It can also be seen that the improved quadrilateral fitting algorithm requires a longer time
than the existing quadrilateral fitting algorithm. Such a result is reasonable in that curve fitting requires
much more time than linear fitting. When comparing all the metrics except for the time cost, we can
see that the improved quadrilateral fitting algorithm performs better than the existing quadrilateral
fitting algorithm. Such a result can be explained by the fact that when the laser penetrates the water
surface, the received signal power exhibits an approximately exponential decay with the increase of
water depth. For the improved quadrilateral fitting algorithm, the quadrilateral function follows the
transmitting process of decay; however, for the existing quadrilateral fitting algorithm, the received
signal power exhibits an approximately linear decay with the increase of water depth. In bathymetric
LiDAR, the column contribution is a time-dependent function and cannot be simply modeled as a
linear function. Therefore, we are able to conclude that the improved quadrilateral fitting algorithm is
effective and feasible in practical use.

5. Conclusions

In this study, an improved quadrilateral fitting algorithm to process bathymetric LiDAR
waveforms was tested on a simulated dataset obtained from the laser propagation model and a
real dataset from Optech Aquarius system. The other two common waveform processing algorithms
were adopted for a comparison with the new algorithm for single-waveform bathymetric LiDAR.
The main conclusions are as follows:
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(1) The new fitting algorithm we presented shows an improvement over the water depth
retrieved by the triangular fitting algorithm and the existing quadrilateral fitting algorithm,
however, its disadvantage is that it costs the most time, due to its nonlinear curve fitting.
The triangular fitting algorithm requires the least time, but its disadvantage is that the number
of detected waveforms is less than for the other two algorithms, and it obtains a relatively high
RMSED for the retrieved water depth and a higher false discovery rate. Through experiments
by using simulated dataset and real dataset, we can find that the new quadrilateral function
shows a better fit to the shape of the water column return than the existing quadrilateral function.
Therefore, it’s much easier to get the surface and bottom locations by using the improved
quadrilateral fitting algorithm.

(2) For the simulated dataset, using the improved quadrilateral function, the results show an
improvement of 0.269 m and 0.092 m in bias compared with the triangular fitting algorithm and
the existing quadrilateral fitting algorithm. In addition, the overall STD shows an improvement of
0.282 m and 0.123 m when using the improved quadrilateral fitting procedure compared with the
triangular fitting algorithm and the existing quadrilateral fitting algorithm. For the real dataset,
comparing the other two algorithms, the improved quadrilateral fitting algorithm retrieved
the least noise and the least number of unidentified waveforms, especially performed better
performance in very shallow water (0–3 m) and deep water (>11 m). What’s more, the improved
quadrilateral algorithm showed the best performance (the least RMSE (power)) in fitting the
return waveforms, and had consistent fitting goodness for all different water depths.

(3) The mathematical approximation algorithms mainly depend on the step of cost function
optimization, which may generate abnormal values or run into local minima. Moreover, the diffuse
attenuation coefficient, bottom reflectance, noise level, and water depth play important roles
in the RMSE of the bathymetry estimation. The performance of the algorithms is only slightly
affected by the roughness of the water surface and scan angle, but it is greatly impacted in very
shallow water. Nevertheless, the algorithms perform relatively well under certain conditions
when having smaller diffuse attenuation coefficients, higher bottom reflectance, lower noise levels,
and shallower water. Therefore, the choice of algorithm not only depends on the performance of
the algorithm, but also depends on the actual application.
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