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Abstract: Tuning the stiffness balance is crucial to full-band common-mode rejection for a
superconducting gravity gradiometer (SGG). A reliable method to do so has been proposed and
experimentally tested. In the tuning scheme, the frequency response functions of the displacement
of individual test mass upon common-mode accelerations were measured and thus determined a
characteristic frequency for each test mass. A reduced difference in characteristic frequencies between
the two test masses was utilized as the criterion for an effective tuning. Since the measurement of the
characteristic frequencies does not depend on the scale factors of displacement detection, stiffness
tuning can be done independently. We have tested this new method on a single-component SGG and
obtained a reduction of two orders of magnitude in stiffness mismatch.

Keywords: superconducting gravity gradiometer; common-mode rejection; stiffness balance;
response function measurement; characteristic frequency

1. Introduction

Over the past few decades, the airborne rotating gravity gradiometer has been proven to be a
powerful tool in geodetic surveys and mineral exploration [1–4]. Spurred by its successful applications,
a number of new technologies have been developed with the motivation to update the resolution in the
future for airborne gravity gradients measurement [5,6]. Among them, the superconducting gravity
gradiometer (SGG) is extensively considered as one of the candidates with the most potential [7].
It should be noted that we only considered the airborne SGG in the following. A number of pioneering
works on SGG have been carried out in Paik’s group in Maryland [8–13]. These works have distinctly
shown its advantages as a next-generation gradiometer. First, the SGG makes use of the Meissner effect
to levitate superconducting test masses, thus forming superconducting spring oscillators. Benefiting
from the cryogenic environment, the oscillators show ignorable thermal noise. Second, the SGG
uses superconducting interference devices to detect the displacements of oscillators, resulting in
extremely low instrumental noise. The above two features jointly enable the SGG to be the most unique
instrument with a fundamental noise floor lower than 1E/

√
Hz (1E = 10−9 s−2) in the laboratory

today [8].
However, lower fundamental noise does not mean better resolution for airborne measurements.

In the notorious aviation environment, the vibration level of the platform is higher than that in the
laboratory by 4–6 orders of magnitude [14]. The platform vibration coupling noise eventually decides
the measurement resolution, as the fundamental noise only acts as an insurmountable physical limit
for the instrument. Therefore, the onboard measurement conditions impose at least two technological
requirements on the development of airborne SGG, i.e., an extremely large common-mode rejection
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ratio and an extremely low cross-coupling coefficients, which guarantee that the measurements
are immune to the vibration of the platform in sensitive and non-sensitive degrees of freedom,
respectively [12]. To depress the vibration coupling noise to an acceptable level, a number of
technological problems need to be solved for SGG [13]. Nevertheless, this article only deals with the
tuning problem concerning common-mode rejection.

To reject the common-mode noise, the rotating accelerometer gravity gradiometer ingeniously
introduces regular common-mode modulation acceleration by rotating the installation disc [15].
With this modulation, the scale factors of the accelerometers are continuously and precisely balanced
during the measurement, and the gravity gradient signals are demodulated out with a large
common-mode rejection ratio [16]. Unfortunately, it is quite difficult to apply the rotation strategy to
the SGG due to its incompatibility with the cryogenic environment. Instead, the SGG adopts an off-line
method to tune common-mode balance [8]. This is to say, the instrument should be finely tuned to
the optimum state before measurement. This method is feasible, as the tuned working state can be
perfectly preserved thanks to the high stability of supercurrents in the SGG [7]. Theoretical analysis has
revealed that, to achieve a full-band common-mode balance, both the stiffness and the scale factor of
displacement detection should be precisely matched. Normally, the SGG tunes the stiffness to balance
by adjusting the supercurrents in levitating coils [12]. These details are illustrated in Appendix A.
More choices exist to tune the scale factor. One can adjust the supercurrents in the detecting coils
in the same way as stiffness tuning, but this method gives rise to one problem. As the coils interact
with the test masses, the tuning of the scale factor and that of the stiffness are entangled and severely
interfere with each other. Another option is to keep the supercurrents in the displacement-detecting
coils constant, tuning the scale factor to balance using an electronic device or via data processing.
For tuning common-mode balance, the stiffness balance is essentially important for two reasons. First,
it is a prerequisite for full-band common-mode balance. Second, as will be clarified in the following
section, badly matched stiffness parameters will result in a high-amplitude output at the oscillator’s
resonance frequencies. These signals cannot be reduced by tuning the scale factors. They are not
only useless for gravity gradient measurement, but also severely compress the dynamic range of
the instrument.

However, the question of how to precisely tune the stiffness remains unsolved. The difficulty
mainly comes from the lack of a reliable criterion to evaluate the tuning effect. In [8], Moody and his
colleagues proposed a wide-band stiffness-tuning method. In this method, assuming the scale factors
of displacement detection for two oscillators are identical, the supercurrents are finely adjusted to null
the response to the applied common-mode acceleration. However, this method does not work if the
scale factor of displacement-detecting is badly matched. In this case, the disappearance of response
only indicates that the product of the transfer factor from acceleration to displacement and that of
displacement-detecting is well matched. In this way, a common-mode balance can be realized only at
a single frequency point rather than over the full-band, since the balance conditions vary significantly
with frequency. Therefore, the disappearance of response cannot be used as a criterion for stiffness
balance if the scale factor is not precisely matched.

In this paper, a new scheme is proposed to tune the stiffness. In this scheme, the characteristic
frequencies of the SGG oscillators are adopted as the criterion. Since these frequencies do not depend
on the scale factors of displacement-detecting, the criterion works even if the scale factors are badly
matched. Furthermore, once the characteristic frequencies have been measured, one can immediately
know how far away the working state deviated from the ideally matched state. Through simple
calculations, one can easily estimate how much the currents should be adjusted in the next step.
The tuning scheme was successfully applied to a single-component SGG, where the stiffness balance
was improved by about two orders of magnitude.
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2. Theoretical Analysis

The working principles of the SGG have been described in detail in a number of references [8–13].
Here, we provide a brief introduction. Taking a Tzz single-component SGG as an example,
a superconducting vertical spring oscillator is constructed by levitating a test mass in the
superconducting Meissner state using a current-carrying superconducting coil. A pair of oscillators
are installed along the vertical direction at a certain distance. For the convenience of optimizing the
performance, the levitating superconducting coils of two oscillators are incorporated into the same
superconducting circuit. Governed by the flux conservation law of superconducting loops, the motions
of two oscillators are coupled by the superconducting circuit. These two coupled oscillators can be
modeled as a two-degree-of-freedom vibration system. The vibration can be decomposed into two
normal modes: the common mode and the differential mode. The differential-mode displacement
is detected as a gravity gradient signal. By coupling the two oscillators together through the
superconducting circuit, the differential-mode stiffness can be designed to be much smaller than that
of the common mode; consequently, the instrument sensitivity and the ability to reject common-mode
noise can be improved.

The dynamic equations of the oscillators are written as{
m1

..
x1 + c1

.
x1 + K10x1 + K12x2 = m1a1

m2
..
x2 + c2

.
x2 + K21x1 + K20x2 = m2a2

(1)

where m1 and m2 are the masses; x1 and x2 are the displacements of the test masses; a1 and a2

are the input accelerations that act on the test masses; c1 and c2 are the damping coefficient of the
spring oscillators. K10, K20, K12 and K21 are the stiffness coefficients, which are determined by the
parameters of the superconducting circuit and the injected supercurrents. Their expressions are given
in Appendix A. The stiffness coefficients K12 and K21 are always identical because of the exchange
symmetry of the superconducting circuit with respect to the test masses. By defining{

ac =
a1+a2

2
ad = a1 − a2

(2)

Equation (1) can be solved to produce

x1(ω) =

(
−ω2+

jωc2
m2

+
K20
m2

+
K12
m1

)
ad(ω)+

(
−ω2+

jωc2
m2

+
K20
m2
− K12

m1

)
ac(ω)(

−ω2+
jωc1
m1

+
K10
m1

)(
−ω2+

jωc2
m2

+
K20
m2

)
− K12

2
m1m1

x2(ω) =
−
(
−ω2+

jωc1
m1

+
K10
m1

+
K12
m2

)
ad(ω)+

(
−ω2+

jωc1
m1

+
K10
m1
− K12

m2

)
ac(ω)(

−ω2+
jωc1
m1

+
K10
m1

)(
−ω2+

jωc2
m2

+
K20
m2

)
− K12

2
m1m1

. (3)

Here, ac is the motion acceleration of the platform, and ad is the differential acceleration resulting
from the gravity gradient. From Equation (3), the differential displacement of the test masses can be
expressed as

x1(ω)− x2(ω) =(
−2ω2+

jωc1
m1

+
jωc2
m2

K20
m2

+
K10
m1

+
K12
m2

+
K12
m1

)
ad(ω)+

(
K20
m2
− K12

m1
+

jωc2
m2
− K10

m1
+

K12
m2
− jωc1

m1

)
ac(ω)(

−ω2+jω c1
m1

+
K10
m1

)(
−ω2+jω c2

m2
+

K20
m2

)
− K12

2
m1m1

. (4)

In the SGG, the differential displacement is detected as a gravity gradient signal.
It can be clearly seen that, if the parameters of the oscillators are not matched, the platform

acceleration will enter into the expression of the differential displacement. To achieve an excellent
full-band common-mode balance, the correlated parameters should be elaborately adjusted to minimize
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the dependence of differential displacement on the platform acceleration. It is easy to derive two
conditions from Equation (4) for an ideal balance, which are

K20

m2
− K10

m1
+

K12

m2
− K12

m1
= 0, (5a)

c2

m2
− c1

m1
= 0. (5b)

Equations (5a) and (5b) tell us that the balance tuning actually includes stiffness tuning and
damping coefficient tuning. Since the mass of the test masses can be easily matched to 1 ppm, we can
neglect the minute difference in mass tentatively, and the balance conditions are simplified as K10 = K20

and c1 = c2. In the SGGs, stiffness coefficients are determined by parameters of the levitating coils,
the supercurrents in the coils and the parameters of the superconducting circuit (refer to the attached
Appendix A). Typically, they are at the order of magnitude of 103 N/m. Limited by the state of the
art of the fabrication techniques, it is difficult to reduce the difference in the parameters of the paired
coils to less than 1%. On the other hand, the residual gas collision is the only damping mechanism
for superconducting oscillators in a vacuum chamber. The damping coefficient is generally small.
The typical value is at the order of magnitude of 10−3 N/(m/s). This sets an upper limit for the
mismatch of the damping coefficients. Even at the upper limit, the mismatch of ωc can be estimated to
be smaller than that of the stiffness coefficients by about two orders of magnitude within the concerning
frequency band (0.001–50 Hz). In fact, the paired oscillators are designed to be the same in geometric
shape and are installed in the same vacuum chamber, so the mismatch of damping coefficient can
be expected to be small. Keeping the above facts in mind, one can immediately realize that stiffness
tuning dominates damping tuning, at least in the rough tuning stage.

As mentioned previously, the stiffness coefficients can be tuned by injecting an adjusting current
into the superconducting circuit that is associated with the levitating coils. The tuning principle is
illustrated in Appendix A. The key point in stiffness tuning is to find a reliable criterion to guide
the tuning operation. For an SGG, it is impossible to directly measure K10, K20, or the difference
between them, but the displacements of two test masses can be easily monitored. Keeping this in mind,
one would naturally think of whether an analysis of the motion of the test masses would provide a
useful guide to the tuning. Indeed, Equation (3) implies a positive answer to the question.

When acceleration is applied to the instrument, the amplitude–frequency response functions of
the displacement of two test masses, which are denoted by Hc

1(ω) and Hc
2(ω), respectively, can be

derived from Equation (3):

∣∣Hc
1(ω)

∣∣ = ∣∣∣ x1(ω)
ac(ω)

∣∣∣ =
√(

ω2− K20
m2
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K12
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)2
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(

ω
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)2

√(
ω4−
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K10
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)
ω2+
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(
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, (6a)

∣∣Hc
2(ω)

∣∣ = ∣∣∣ x2(ω)
ac(ω)

∣∣∣ =
√(
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K12
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(

ω
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)2

√(
ω4−
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(
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(
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+
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c1K20
m1m2
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))2
. (6b)

These functions are plotted in Figure 1 with typical parameters. In the case that all the parameters
are ideally matched, the motion of the system can be decomposed into two normal modes: the common
mode and the differential mode. The amplitude–frequency response functions of these two motion
modes are given with a set of generalized coordinates xd = x1 − x2 and xc = (x1 + x2)/2:

|Hc
c (ω)| =

∣∣∣∣ xc(ω)

ac(ω)

∣∣∣∣ = 1

2

√(
ω2 −

(
K10
m1

+ K12
m1

))2
+
(

ω c1
m1

)2
(7a)
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∣∣∣Hd
d (ω)

∣∣∣ = ∣∣∣∣ xd(ω)

ad(ω)

∣∣∣∣ = 1√(
ω2 −

(
K10
m1
− K12

m1

))2
+
(

ω c1
m1

)2
. (7b)

To make things clearer, these two functions are also plotted in Figure 1.
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Figure 1. Four calculated frequency response functions: the displacements of individual test mass
upon platform acceleration

∣∣Hc
1(ω)

∣∣ and
∣∣Hc

2(ω)
∣∣ when the damping coefficient is assumed to be

0.001 N/(m/s) and the mismatch of stiffness is 5%, the common-mode displacement |Hc
c (ω)| and

differential-mode displacement
∣∣∣Hd

d (ω)
∣∣∣ when all of the parameters are ideally matched. Characteristic

frequencies fc1 and fc2 will appear in
∣∣Hc

1(ω)
∣∣ and

∣∣Hc
2(ω)

∣∣ when stiffness is mismatched.

One can find a number of interesting things in Figure 1. When the stiffness parameters of the
oscillators are ideally matched, Hc

1(ω), Hc
2(ω), and Hc

c (ω) share the same function, and present only
one resonance frequency f c

c on the high-frequency side. f c
c is called the common-mode resonance

frequency. However, in cases where the stiffness parameters are not matched, Hc
1(ω) and Hc

2(ω)

split into different forms, and additional resonance peaks appear at the differential-mode resonance
frequency (refer to the curve of Hd

d (ω) in Figure 1). Accompanying this resonance peak is a nearby
valley. The emergence of the valleys allows us to define two characteristic frequencies, fc1 and fc2,
at which Hc

1(ω) and Hc
2(ω) show the minimum response to platform acceleration respectively. fc1 is

always different from fc2 if the stiffness parameters are not ideally matched. When the stiffness
parameters become better matched, both the difference between fc1 and fc2 and the depth of the valley
is reduced, as shown in Figure 2. The above findings clearly indicate (i) that the appearance of the
features around the differential-mode resonance frequency can be used itself as the criterion to check if
the stiffness parameters are matched and (ii) that the difference between the characteristic frequencies
can be used to estimate the amount of mismatch and guide the tuning operation.
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Consequently, a scheme to tune the stiffness parameters emerges. In the scheme, the displacement
responses of the two test masses to common-mode acceleration are measured simultaneously as
functions of frequency. The characteristic frequencies fc1 and fc2 are determined by the measurement
for each test mass. By comparing the characteristic frequency with the differential-mode resonance
frequency, one can make a judgment as to whether the stiffness parameter associated with this test mass
should be adjusted to become larger or smaller. Furthermore, using the designed parameters of the
superconducting circuit, the magnitude of the adjusting current can be roughly calculated according
to the measured value of fc1

2 − fc2
2. Guided by the above information, the stiffness parameters are

tuned for the first turn. The procedure can be repeated until the measurement of response function
cannot provide any further useful information. The tuning limit is thereby approached.

The underlying theoretic basis for the tuning scheme will be more intuitive if the damping effect
is neglected. In this case, Equations (6a) and (6b) become

|Hc
1(ω)| =

∣∣∣∣ x1(ω)

ac(ω)

∣∣∣∣ = ω2 − K20
m2

+ K12
m1

ω4 −
(

K10
m1

+ K20
m2

)
ω2 + K10K20

m1m2
− K12

2

m1m1

(8a)

|Hc
2(ω)| =

∣∣∣∣ x2(ω)

ac(ω)

∣∣∣∣ = ω2 − K10
m1

+ K12
m2

ω4 −
(

K10
m1

+ K20
m2

)
ω2 + K10K20

m1m2
− K12

2

m1m1

. (8b)

Assuming the test masses are reasonably identical, the displacement response now vanishes at the
frequency of fci (i = 1 and 2). The fc1

2 − fc2
2 will be a direct measurement of the mismatch of stiffness.

For a real SGG, damping, albeit slight, inevitably exists. The damping effect on the tuning accuracy
should be evaluated. Noticing that the depth of the valley around fci on the curve of the response
function will diminish with the improved matching state, the final accuracy can be determined by
finding the mismatch under which the valley depth is comparable with the measurement resolution
of the response functions. In this way, the damping effect on the tuning accuracy was investigated,
and a typical result is plotted in Figure 3. Obviously, the tuning accuracy was high when the damping
coefficient was small. In [8], the damping coefficient of the SGG was as low as 10−4 N/(m/s), and the
tuning accuracy could reach 10−4 with this scheme.
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Figure 4. (a) Cross sectional illustration showing the layout of different types of coils; (b) the 
assembled superconducting gravity gradiometer (SGG) sensor. 

Figure 3. Relationship of the damping coefficient and the limit of stiffness balance. The amplitude of
the response function at differential-mode frequency was 2 × 10−5 (m/m/s2), and the measurement
resolution was set as 1 × 10−6 (m/m/s2) artificially. For each damping coefficient, the depth of the
valley around fci of the response function was calculated at different mismatches of stiffness to find the
limit of stiffness balance.
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3. Experimental Test

The stiffness tuning scheme was tested on a Tzz single-component SGG, which is under
development in our group. Figure 4a illustrates the sensor structure. The niobium test masses
were designed as a cylinder with a division plate inside following the Arkex design [7]. The mass of
two test masses was balanced to 1 ppm. The levitating coils were placed under the division plate and
the displacement detecting coils over them. Furthermore, four pairs of coils were installed adjacent to
the outside wall of each test mass, which were used to hold the test-mass attitude.
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superconducting gravity gradiometer (SGG) sensor.

The superconducting circuit for levitating is shown in Figure 5a. Superconducting coupled mutual
inductions are added to the outer loop. Through the mutual inductions, a sinusoidal current can
be introduced and superposed upon the levitating supercurrent to produce modulation acceleration
for both test masses (refer to Appendix A). As the coil parameters are not matched, there is a small
difference in the amplitude of the modulation acceleration between the two test masses. However,
this difference only modifies the features of the response functions on the high-frequency side,
as indicated by Equation (3). These features are not used in the tuning scheme. The method to
use a superconducting circuit instead of a shaker to produce common-mode acceleration is favorable
for incorporating a self-checking function in the instrument. The displacement of the individual test
mass is detected using a typical superconducting circuit as shown in Figure 5b.
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Figure 5. Superconducting circuits for the sensitive degree of freedom. (a) The levitating circuit and (b) the
test mass displacement detecting circuit. The heat-switches R1 and R2 and the current injecting ports A,
B, and C are used to inject and adjust the levitating currents; mutual inductions M1c and M2c and the
injecting ports D and E are used to apply a sinusoidal current to produce the modulation acceleration.
The heat-switch R3 and the current injecting ports A’ and B’ are used to inject the detecting current.
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The SGG sensor was installed in a vacuum chamber with a residual helium pressure of about 10 Pa.
After the system was cooled to 4.2 K, a persistent current of 6.8 A was injected into the levitating coils.
The current of the sensing coils was set to 10 mA. The displacement of the test masses was transferred to
the Superconducting Quantum Interference Device (SQUID)’s output by the sensing circuit. To obtain
a common-mode agitating acceleration, a sinusoidal current with a constant amplitude of 20 mA was
applied to the second winding of the mutual inductance by a current source meter. The produced
modulation acceleration was roughly estimated to be 0.01 m/s2 in amplitude. The sinusoidal motion
of the test mass could be immediately monitored as shown in Figure 6a. By fitting the data with a
sine function, the displacement amplitude was determined for each test mass at the given frequency.
Since the scale factors for displacement sensing were not calibrated, the displacement amplitude
was simply denoted by the SQUID output. Keeping the amplitude of the agitating current constant,
the displacement amplitude of each test mass was measured at varied frequencies. The collected data
was fitted with the formula presented in Equation (6), and the characteristic frequencies ( fci) were
subsequently obtained (Figure 6b).Sensors 2018, 18, x FOR PEER REVIEW  9 of 13 
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Figure 6. (a) The Superconducting Quantum Interference Device output of one test mass under 1 Hz
modulation acceleration. The output signal is fitted with a sine function to determine the amplitude.
(b) The measured and fitted transfer function. The common and differential-modes natural frequencies
and the characteristic frequency were all detected, and the characteristic frequency was obtained by
the fitted transfer function.

In the experiment, the first turn of the measurement of the response functions yielded
fc1 = 16.0 Hz and fc2 = 16.8 Hz, and the mismatch of stiffness, defined as

(
fc1

2 − fc2
2)/ fc1

2,
was calculated to be 0.1 for the initial state. In the first turn of tuning, a test current of 0.1 A was
injected into the levitating circuit so that the currents in the levitating coils were adjusted to 6.85 A
and 6.75 A, respectively. This turn of tuning provided a pair of new characteristic frequencies, which
were fc1 = 16.2 Hz and fc2 = 16.6 Hz. The mismatch of stiffness was now reduced to 0.05. With the
obtained results, an adjusting current of 0.21 A was calculated and applied in the second turn of
tuning, resulting in a pair of much closer characteristic frequencies ( fc1 = 16.47 Hz and fc2 = 16.53 Hz).
The mismatch was further reduced to 5 × 10−3. Furthermore, the adjusting current was set to 0.25 A
deliberately to see the over-tuning results. In this case, the appearance sequence with increasing
frequency of the valley and the peak on the curves changed for each test mass, and the absolute value
of the difference between the two characteristic frequencies increased. The measured displacement
response functions under different adjusting currents are shown in Figure 7. To explore the balance
limit of the scheme, a total of five turns of tuning were carried out. The experimental results showed
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that the stiffness parameters could be balanced quite close to the limit by the first two turns of tuning.
The mismatch of stiffness was finally reduced to 10−3.
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4. Conclusions

Based on a systematic theoretical analysis, a new tuning scheme was experimentally tested for
the stiffness balance of an SGG. In this scheme, characteristic frequencies are adopted as the tuning
criterion. The criterion did not depend on the mismatch of the scale factors for displacement detection,
so stiffness tuning could be conducted independently. This was of great advantage in terms of
tuning the full-band common-mode balance. However, the criterion would only work if the damping
coefficient was relatively small and the mass of the oscillators had already been balanced at a relatively
high accuracy. Otherwise, the tuning accuracy was limited by the effects induced by these two factors
rather than the measurement resolution of the characteristic frequencies.
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Appendix Analysis of the Superconducting Circuits

Appendix A.1 Stiffness Parameters and Their Adjustments

The superconducting circuits of the sensitive degree of freedom are illustrated in Figure 5.
The interaction between the current-carrying coil and the test mass in the Meissner state can be
described by the test mass’s displacement dependence of the coil induction [9]. This relationship can
be approximated by {

LL1(x1) = LL10(1 + λL10x1)

LL2(x2) = LL20(1 + λL20x2)
(A1)

where LLi0 (i = 1, 2) is the inductance of the coils when test masses stay at equilibrium position; λLi0 (i = 1,
2) is the linear coefficient of each coil.
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For the levitating circuit, the conservation law of flux for superconducting loop requires [10]{
(LL1(x1) + Lc1)IL1(x1, x2) + La(IL1(x1, x2)− IL2(x1, x2)) = (LL10 + Lc1)IL10 + La(IL10 − IL20)

(LL2(x1) + Lc2)IL2(x1, x2)− La(IL1(x1, x2)− IL2(x1, x2)) = (LL20 + Lc2)IL20 − La(IL10 − IL20)
(A2)

where IL1(x1,x2) and IL2(x1,x2) are the supercurrents in the levitating coils. Lc1 and Lc2 are the
inductances of primary windings of the modulation acceleration agitating transformers.

Solving Equation (A2) for IL1(x1,x2) and IL2(x1,x2) yields IL1(x1, x2) =
(LL10+Lc1)IL10((LL2(x2)+Lc2)+La)+(LL20+Lc2)IL20La

((LL1(x1)+Lc1)(LL2(x2)+Lc2)+La((LL1(x1)+Lc1)+(LL2(x2)+Lc2)))

IL2(x1, x2) =
(LL20+Lc1)IL20((LL1(x1)+Lc1)+La)+(LL10+Lc1)IL10La

((LL1(x1)+Lc1)(LL2(x2)+Lc2)+La((LL1(x1)+Lc1)+(LL2(x2)+Lc2)))

. (A3)

The magnetic force terms arising from the levitating circuits are derived to first order as [12](
FL1

FL2

)
=

(
1
2

∂LL1
x1

IL1
2

1
2

∂LL2
x2

IL2
2

)
=

(
FL10

FL20

)
−
(

KL10KL12

KL21KL20

)(
x1

x2

)
(A4)

where {
FL10 = 1

2 LL10λL10 IL10
2

FL20 = 1
2 LL20λL20 IL20

2 (A5)

are the DC forces, which counterbalance the gravity of the test masses, and
KL10 = LL10

2λL10
2(La+LL20+Lc2)IL10

2

((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

KL20 = LL20
2λL20

2(La+LL10+Lc1)IL20
2

((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

KL12 = LL10λL10LL20λL20La IL10 IL20
((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

KL21 = LL10λL10LL20λL20La IL10 IL20
((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

(A6)

are the stiffness coefficients associated with the levitating circuits.
The stiffness coefficients are directly determined by parameters of the levitating coils, the levitating

currents in the coils, and the parameters of the superconducting circuit.
For the stiffness balancing, KL10 and KL20 must be identical, which yields

LL10
2λL10

2(La + LL20 + Lc2)IL10
2 = LL20

2λL20
2(La + LL10 + Lc1)IL20

2. (A7)

This condition can be satisfied by adjusting IL10 and IL20 to

IL10
2

IL20
2 =

LL20
2λL20

2(La + LL10 + Lc1)

LL10
2λL10

2(La + LL20 + Lc2)
. (A8)

To adjust the levitating currents, an adjusting current ia is injected into the middle arm using the
heat-switch R2. Then, the levitating currents in the coils will change to{

IL10 = IL0 +
ia
2

IL20 = IL0 − ia
2

. (A9)

Appendix A.2 Test Mass Displacement Detection

In the displacement detecting circuit, the relationship between the inductance of the detecting coil
and the test mass displacement is

Ld1(x1) = Ld10(1− λd10x1). (A10)
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Then, the conservation of flux in the detecting circuit yields

(Ld1(x1) + LB)Id1(x1) = (Ld10 + LB)Id10 (A11)

where Id10 is the initial detecting current stored in the circuit, and LB is the effective inductance of the
transformer coupled to the SQUID, which is given by

LB = LB1 −
MB

2

LB2 + Li
(A12)

where LB1 and LB2 are the primary and secondary inductance of the transformer, MB is the mutual
inductance, and Li is the inductance of the SQUID input coil.

Combining Equations (A10) and (A11), Id1(x1) can be solved to first order as

Id1(x1) = Id10 +
Ld10λd10 Id10

Ld10 + LB
x1. (A13)

This current is proportional to the test mass displacement and will be amplified and transformed
into voltage signal by the SQUID.

Appendix A.3 Modulation Acceleration Produced by Levitating Circuit

When a small current is injected by the modulation acceleration agitating transformers, the flux
coupled by the mutual inductions enters the levitating circuit and the currents, which are denoted as
IL1
′(x1,x2) and IL2

′(x1,x2), in the levitating coils will be changed. Now, the equation of flux conservation
in the circuit changes to


(LL1(x1) + Lc1)IL1′(x1, x2) + La(IL1′(x1, x2)− IL2′(x1, x2)) = (LL10 + Lc1)IL10 + La(IL10 − IL20) + Mc1ic

(LL2(x1) + Lc2)IL2′(x1, x2)− La(IL1′(x1, x2)− IL2′(x1, x2)) = (LL20 + Lc2)IL20 − La(IL10 − IL20) + Mc2ic
(LL1(x1) + Lc1)IL1′(x1, x2) + (LL2(x1) + Lc2)IL2′(x1, x2) = (LL10 + Lc1)IL10 + (LL20 + Lc2)IL20 + Mc1ic + Mc2ic

(A14)

where ic is the injected current, and Mc1 and Mc2 are the mutual inductance of the two
transformers respectively.

IL1’(x1,x2) and IL2’(x1,x2) can be solved as IL1′(x1, x2) = IL1(x1, x2) +
((LL20+La+Lc2)Mc1+La Mc2)ic

((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

IL2′(x1, x2) = IL2(x1, x2) +
((LL10+La+Lc1)Mc2+La Mc1)ic

((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

. (A15)

The applied current introduces a new current item that is proportional to ic and not related to the
test mass displacement. The total magnetic forces produced by the levitating coils are recalculated to
first order as(

FL1

FL2

)
=

(
1
2

∂LL1
x1

IL1′2
1
2

∂LL2
x2

IL2′2

)
=

(
FL10

FL20

)
−
(

KL10KL12

KL12KL20

)(
x1

x2

)
+

(
Fc1

Fc2

)
(A16)

where (
Fc1

Fc2

)
=

 LL10λL10 IL10((LL20+La+Lc2)Mc1+La Mc2)ic
((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

LL20λL20 IL20((LL10+La+Lc1)Mc2+La Mc1)ic
((LL10+Lc1)(LL20+Lc2)+La((LL10+Lc1)+(LL20+Lc2)))

 (A17)

are the modulation forces introduced by the applied current ic. The accelerations applied to each test
mass are {

a1 = Fc1
m1

a2 = Fc2
m2

. (A18)
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