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Abstract: An explosive growth in vehicular wireless applications gives rise to spectrum resource
starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum
starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by
licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive
radio applications. However, spectrum sensing in vehicular environments is a very challenging task
due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel,
thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been
made in order to analyze the fading properties of mobile radio channel in vehicular environments.
Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments
can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy
detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson
criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing
performance under the temporally correlated Rayleigh channel. For local and cooperative sensing,
we derive some alternative expressions for the average probability of misdetection. The pertinent
numerical and simulating results are provided to further validate our theoretical analyses under
a variety of scenarios.

Keywords: cognitive radio; cognitive vehicular networks; spectrum sensing; sensing/reporting
channel; correlated rayleigh fading channel; hard fusion

1. Introduction

Vehicular network (VN) serves as an actual enabling application that is conceived to enhance
road safety and provide in-vehicle infotainment by allowing vehicle-to-vehicle (V2V) as well as
vehicle-to-infrastructure (V2I) communications. It has attracted considerable investigation during the
past few years but still faces a host of challenges before starting the actual implementation. One of
the major challenges is the deficient frequency resources available for wireless communications in
vehicular networks.

Currently, the Federal Communication Commission (FCC) has reserved 75-MHz licensed
spectrum bandwidth (i.e., seven 10-MHz channels) at a center frequency of 5.9-GHz in support
of dedicated short-range communication (DSRC) in vehicular environments. However, a tremendous
increase in wireless applications being developed for vehicular communications, may give rise to
serious congestion of the band, and ultimately reducing the communication efficient for safety
applications. Moreover, not only road safety applications, but also the increasing number of
applications related to infotainment systems will also lead to channel contention and spectrum
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deficiency. In view of the stringent QoS requirements on DSRC spectrum, it is not sufficient for
all applications to depend only on the 5.9-GHz DSRC spectrum. There is a dramatic increase in the
demand for frequency resources to satisfy their communication requirements.

To solve the aforementioned problems, cognitive radio (CR) [1,2] has increasingly been presented
as a potential technique being capable of accessing licensed but unoccupied frequency bands
only without causing any unacceptable interference to licensed users (or primary users, PUs).
Cognitive radio has become one of the most breathtaking technologies to improve the spectrum
efficiency effectively for the past couple of decades. In addition to a better remedy for frequency scarcity
issue, cognitive radio is appropriate for vehicular environments, since their unique characteristics
make it much better to achieve the spatial and temporal reusage of the empty frequency bands of PUs
compared to other traditional cognitive networks [3,4]. To efficiently reutilize the spectrum holes with
minimum interference to PUs, the CR-enabled vehicles, which can be called secondary vehicular users
(SVUs), need to reliably make a decision inferring the presence or absence of the PU. Consequently,
spectrum sensing constitutes the key component of cognitive vehicular networks (CVNs) [5].

Spectrum sensing performed in temporal domain [6] and spatial domain [7,8] is a wealthily
investigated subject. Among them, cooperative sensing [9] has already attracted strong research interest
as it is such an effective way to improve sensing accuracy and efficiency by exploiting multi-user
cooperative spatial diversity. However, these existing sensing techniques are largely concentrated
in the traditional CR networks. They assume that all users just stand in one place. As a result,
they cannot be directly applicable to vehicular networks. In CVNs, we must give an account of the
idiosyncrasies of vehicular networks such as high mobility while designing sensing schemes [3,10].
For instance, rapid movement of vehicles makes the availability of spectrum holes dynamically change
since a vehicle may enter or leave a region interfered by a particular PU at different locations along
the road. In this regard, it is considerable for SVUs to detect PU activities in the fastest possible
way. Additionally, the vehicles’ motion are restricted and predictable due to the fixed road topology.
In consequence, each vehicle may be glad to know in advance the spectrum opportunities to better
utilize them for transmission on its track. Further, high speeds and the environmental clutter can
affect the received signal due to the Doppler effect, fading and shadowing. These factors will have
immediate impacts on spectrum sensing of CVNs.

Spectrum sensing and sharing in dynamic environments have been researched in some
preliminary works [4,11–18]. The authors in [4] proposed a novel adaptive sensing coordinated
mechanism, in which the central nodes merely assist and coordinate the SVUs to better acquire the
availability of spectrum holes instead of completely controlling the sensing and access. The authors
in [11] studied the detection performance of spectrum sensing under the shadowing and multi-path
composite fading channel in vehicular environments. The authors in [12] considered a cognitive
inter-vehicular cooperative network where all channels are modelled by the double Rayleigh fading
distribution. The outage probabilities in cooperative spectrum sharing networks were investigated
under non-identical Rayleigh Fading channels [13,14] and Nakagami-m fading channels [15].
The authors in [16] presented an asynchronous collaborative sensing framework in which the tagged
vehicle collects energy measurements labeled with time and location information from collaborative
SVUs and assigns weights based on their storing time and location. The authors in [17] proposed
a distributed collaborative sensing scheme based on adaptive decision threshold for sensing and
voting scheme for connected vehicles. An integrated overview of spectrum sensing in cognitive
vehicular environments can be discovered in [18]. None of this previous research considered the
effect of temporal correlation due to vehicle motion and multi-path propagation in a mobile vehicular
environment. Moreover, the reporting channels between SVUs and the fusion center (FC) were
assumed to be ideal.

In this paper, our attention is centered on the large-scale fixed PU detection in
an infrastructure-based CVN. Each SVU periodically performs sensing and reports its sensing
information via the dedicated reporting channel to the nearby FC. The FC fuses the received
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information to make a global decision for the current cell. At this moment, some vehicles taking
part in cooperative sensing may have left this cell. Based on mutual benefit, we allow the back vehicles
to utilize the spectrum availability information after the front vehicles sensed. We investigate the
sensing performance using hard fusion [19]. Although soft fusion can gather improved performance
more than hard fusion, the burden of reporting overhead impedes its applicability [20]. The main
contribution of our work is the following:

1. investigate the effect of fading correlation on spectrum sensing performance over temporally
correlated Rayleigh sensing channel;

2. make clear how dramatically the reporting channel conditions could influence the reliability of
a local/global decision, when made by the FC.

For local and cooperative sensing, we evaluate the sensing performances by means of theoretical
calculations or Monte Carlo simulations. Our results show that poor channel condition harms the
detection performance. On the other hand, we will demonstrate that, if utilized properly, the fast
time-varying fading caused by the Doppler spread can be used to enhance the detection performance
by taking advantage of temporal diversity.

The rest of the paper is organized as follows. In Section 2, we build up the system model and
make some of the assumptions about spectrum sensing in vehicular environments. In Section 3,
the local sensing performance over correlated Rayleigh fading is analyzed. In Section 4, we consider
the cooperative sensing performance with the fading reporting channels. This is followed by the
numerical and simulated results in Section 5. Lastly, we summarize the conclusions in Section 6.

2. System Model and Problem Formulation

In this section, we briefly introduce the network model, the channel model, the sensing model,
and the assumptions made in the CVNs under consideration.

2.1. Network Model

We consider a vehicular network in multi-lane highway scenarios in which licensed and cognitive
users coexisting peacefully within the same geospatial region, like the one depicted in Figure 1.
We consider a large-scale fixed licensed user case where the PU accesses channel with probability p.
The cognitive network is an infrastructure-aided network, in which each cell is composed of a cognitive
base station (or fusion center) and a number of associated SVUs. The FC coordinates SVUs collaborative
sensing and their access to a vacant PU channel. Each SVU periodically performs sensing and reports
its sensing information via the dedicated reporting channel to the nearby FC. According to the received
local sensing results, the FC comes up with a global decision for the current cell. At this moment,
some vehicles engaged in cooperative sensing may have left this cell. Hence, the FC diffuses the global
decision to the next passing SVUs. We assume that the SVUs are Poisson distributed and follow the
freeway mobility model. The vehicles move independently from any other, and thus, the sensing
channels between PU and SVUs are all independent of one another.
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Figure 1. An illustrative example of cooperative sensing operation for cognitive vehicular networks.
There is a PU, a cognitive BS and multiple cooperative SVUs over wireless sensing/reporting channels.

2.2. Channel Model

With the far-field assumption, the distances between the PU and SVUs are wide apart in
comparison with the range of CVN. As a result, we can assume that the distances from the PU
to the SVUs are approximately identical. We will consider only the small-scale fading.

A mobile Rayleigh fading channel is usually used to characterize the channel time variations.
We can model the channel vector as a zero-mean, unit-variance, complex Gaussian random vector with
the land-mobile correlation fading model (Table 2.1 in [21]). Let ρ(τ) denote the correlation coefficient
between two samples separating τ time interval, which satisfies

ρ(τ) = J0(2πFdTsτ), (1)

where Jv(·) is defined by the vth-order Bessel function of the first kind, and FdTs represents the
normalized Doppler shift, FdTs =

fcv
c Ts, which may relate to a vehicle speed v, a carrier frequency fc

and the sampling interval Ts. Note that ρ = 1 means a time-invariant channel, ρ = 0 means a completely
random time-variant channel.

In general, the channel correlation characteristic is mainly dependent on FdTs. Based on
the different FdTs, we can employ a suitable model, which is convenient to analyze the fading
characteristic of sensing channel. For instance, three different models,M1,M2 andM3, are given as
follows, respectively

M1: When FdTs is relatively smaller (<0.001), the channel process is nearly time-invariant.
M2: When FdTs is small (<0.03), the channel process is correlated (“slow” fading).
M3: For larger values of FdTs (>0.03), the channel process are almost independent time-varying

(“fast” fading).
It should be pointed out thatM1 andM3 are two extreme cases of temporally correlated Rayleigh

fading channel.

2.3. Sensing Model

Spectrum sensing is a binary hypothesis detection issue, with the null (H0) and alternative (H0)
hypotheses associated to the absence and presence of PU in a given frequency band, respectively.
We consider a cognitive vehicular network consisting of N collaborative SVUs. Assume L sampling
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observations can be used within a sensing interval. Under both hypotheses, the received observations
by the i-th SVU can then be expressed as, respectively

xi(k) =

{
ni(k) H0

hi(k)s(k) + ni(k) H1
, (2)

where s(k) is the signal from the PU, xi(k) is the received signal by the i-th SVU, hi(k) is the channel
gain between the PU and the i-th SVU with E[|hi(k)|2] = 1, and ni(k) is the complex additive white
Gaussian noise (AWGN) with mean zero and variance σ2

n , i.e., ni(k) ∼ CN (0, σ2
n). And, s(k), hi(k) and

ni(k) are assumed to be independent of each other, which is reasonable for a practical situation.
To reduce the complexity and reporting channel overhead, each SVU employs a mapping rule

to its observations, to produce a quantized information denoted by q(xi). In this paper, we suppose
each SVU makes a binary decision ui = q(xi) ∈ {+1,−1} with probabilities of false-alarm and
mis-detection Pf i and Pmi. These decisions are then reported to the FC via a fading reporting channel
or link, bit error may happen, which further affects the sensing performance at the FC. We will model
the reporting channel as a Rayleigh fading channel [22]. The received observation at the FC from the
i-th SVU can be described as

zi = giui + wi, (3)

where gi is the fading gain of reporting channel and wi is a zero-mean Gaussian random variable
with variance δ2

i , i.e., wi ∼ N (0, δ2
i ). Once the noisy observation {zi; i = 1, 2, · · · , N} is received and

decoded, the FC makes a global decision on which hypothesis is more likely to be true.
In the ordinary sense, an optimal fusion rule for hard combination behaves in the form of a

counting rule [23]. This argument proves to be true even when those decisions are received via
unreliable communication channels, provided that the channels are also independent and identical
distribution (IID). Later in this paper, we focus on energy detection for spectrum sensing and look at
the detection performance of the counting rule in Rayleigh fading channels.

3. Local Sensing with Energy Detection

The spectrum sensing techniques often employed for local sensing are energy detection,
cyclostationary detection and matched filter. The matched filter (also referred to as coherent detector)
is widely regarded as the optimum approach but it relies heavily on the accurate priori knowledge
about the PU signal, which is hard to be obtained. Cyclostationary detection can distinguish the PU
signal from noise at very low signal-to-noise ratio (SNR) but still needs some priori knowledge about
the PU signal. Energy detection [24,25] is the most practical method because it merely estimates the
signal energy on the considered band and produces good performance without any priori information
about the PU signal, as illustrated in Figure 2. Furthermore, energy detection is a viable choice for
vehicular networks on account of its high mobile environment and low latency tolerance.

Figure 2. Digital energy detector model.

When digital energy detector is adopted, the corresponding energy statistic at the i-th SVU,
denoted by ei, is expressed as

ei =
L−1

∑
k=0
|xi(k)|2. (4)
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where L corresponds to the number of samples within a sensing interval.
Let λ denote the decision threshold for energy detector and ui denote the local decision,

the decision rule at each SVU is represented as

ui =

{
+1 i f ei ≥ λ

−1 i f ei < λ
. (5)

This means that when ei ≥ λ, SVU i makes its individual decision ui = +1 which tells the PU
signal is detected (H1); otherwise, it makes a decision ui = −1 which declares that the PU signal is not
detected (H0).

When L is sufficiently large, based on the Central Limit Theorem (CLT), the energy
statistic ei in (4) can be described by a Gaussian distribution under both hypotheses H0 and
H1 [24]. Let Es = ∑L−1

k=0 |s(k)|
2 denote the transmitted signal energy by the PU. The corresponding

mean and variance are given by{
H0

H1

µ0 = Lσ2
n

µ1 = (L + ηi) σ2
n

σ2
0 = Lσ4

n
σ2

1 = (L + 2ηi) σ4
n

, (6)

where

ηi =
1
L

L−1

∑
k=0
|hi(k)|2

Es

σ2
n
=

1
L

L−1

∑
k=0
|hi(k)|2ηs, (7)

In the above equation, the term ηi denotes the instantaneous SNR experienced by the i-th SVU.
It is straightforward to see that ηi is very different from (sensing) period to period, since it relies heavily
on the fading characteristics of the wireless channel. In addition, the term ηs =

Es
σ2

n
denotes the local

average SNR. To be emphasized, the SNR (ηs) is L times more than the average SNR measured at the
energy detector output, which can be expressed as η0 = Es

Lσ2
n

[26].
Subsequently, the probabilities of false alarm, detection and miss detection for a given threshold

(λ) at the i-th SVU can be deduced as follows, respectively

Pf i(λ) = P (ei ≥ λ|H0) = Q
(

λ− Lσ2
n√

Lσ2
n

)
, (8)

Pdi(λ) = P (ei ≥ λ|H1) = Q
(

λ− (L + ηi)σ
2
n√

L + 2ηiσ2
n

)
, (9)

Pmi(λ) = 1− Pdi(λ) = Q
(
(L + ηi)σ

2
n − λ√

L + 2ηiσ2
n

)
, (10)

where Q(x) stands for the standard Q-function, i.e., Q(x) = 1√
2π

∫ ∞
x exp(− t2

2 )dt.
It is worthwhile mentioning that, Pf i in (8) is independent of received SNR because Pf i is

considered for the hypothesis of no PU signal transmission. On the other hand, Pmi in (10) is a
conditional probability depending on instantaneous received SNR ηi. In this circumstance, the average
Pm can be calculated by integrating the conditional Pmi in the AWGN case over the SNR fading
distribution [24].
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From (8) and (10), we also see that, λ can be analytically set to maintain the desired Pf if Pf is
designated as the constraint of the detection problem. Then, we can obtain Pmi related to the desired
Pf as follows:

Pmi(ηi) = Q
(

ηi −
√

LQ−1(Pf )√
L + 2ηi

)
, (11)

where Q−1(x) stands for the inverse of the Gaussian Q-function.
In the following, let us begin by considering the case of M1 where the channel gain hi(k) is

time-invariant during the sensing interval, i.e., hi(k) = hi for k = 1, 2, · · · , L. Then, ηi in (7) can be
rewritten as

ηi = |hi|2
Es

σ2
n

= |hi|2 ηs. (12)

Under Rayleigh fading, the received instantaneous SNR ηi can be viewed as exponentially distributed

fηi (ηi) =
1
ηs

e−ηi/ηs . (13)

Under the assumptions of E[|hi|2] = 1, for the convenience of computing, we can make the
following approximation for Equation (11) as

Pmi(ηi) ≈ Q
(

ηi −
√

LQ−1(Pf )√
L + 2ηs

)
. (14)

For brevity of the presentation, in the following sections we will define

A =
1√

L + 2ηs
, B =

√
LQ−1(Pf )√

L + 2ηs
,

then
Pmi(ηi) ≈ Q (Aηi − B) . (15)

The average Pm in the case ofM1, Pm, can be evaluated by averaging (15) over (13) with the
change of variable x = Aη − B. Consequently, this yields

Pm =
∫ ∞

0
Pm(ηi) fηi (ηi)dηi

≈ 1
ηs

∫ ∞

0
Q (Aηi − B)e−ηi/ηs dηi (16)

=
1

Aηs

∫ ∞

−B
Q (x)e−

x+B
Aηs dx.

With the aid of the integrating properties of Q-function [27], and after some mathematical
manipulations, we can deduce the approximate closed-form expression for Pm,

Pm ≈ Q(−B)− e−
B

Aηs e
1

2A2η2
s Q

(
1

Aηs
− B

)
. (17)

In the case of M2, in order to obtain the analytic expression for Pm based on using the
PDF approach, it is desirable to obtain the PDF of ηi given in (7). However, to the best of our
knowledge, there is no analytic expression available for such a distribution. Therefore, it makes
things computationally very difficult to find an analytic expression for Pm with the existence of time
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correlation. Instead of deriving an analytic expression for Pm, we estimate Pm by means of Monte
Carlo simulations.

In the case of M3, the sampling observations of the fading channel {hi(k)} are completely
independent of each other. hi(k) can be modeled as a complex Gaussian random variable with
mean zero and variance σ2

h = 1, i.e., hi(k) ∼ CN (0, σ2
h ). Thus, ηi given by (7) can be reduced to the

following equation

ηi=
σ2

h Es

σ2
n

= σ2
h ηs. (18)

It is plain to see that ηi is independent of instantaneous fading statistics. Thus, the Pm in the case
ofM3 can be computed directly by (11) and (18).

4. Cooperative Sensing with Counting Rule

The concept of cooperative spectrum sensing is to utilize multiple SVUs at different locations and
fuse their independent sensing messages into one unified decision about the existence of the PU. In this
section, we ponder this approach based on hard fusion, and also look at the impact of the reporting
channel fading to the global detection performance.

4.1. Equivalent Local Probability of False Alarm and Misdetection

In consideration of the unreliable characteristic of the reporting channels, let us determine its
effect on the reliability of the local decision made by the FC. Let vi denote the decoded version of zi for
the i-th SVU at the FC, the decoded rule can be expressed as

vi =

{
1 i f zi ≥ 0
0 i f zi < 0

. (19)

And, more remarkable, under the hypothesisHj (j = 0, 1)

E[vi
∣∣Hj ] = P(vi = 1

∣∣Hj )× 1 + P(vi = 0
∣∣Hj )× 0

= P(zi ≥ 0
∣∣Hj ),

(20)

D[vi
∣∣Hj ] = E[v2

i

∣∣Hj ]− E[vi
∣∣Hj ]

2

= P(zi ≥ 0
∣∣Hj )−

(
P(zi ≥ 0

∣∣Hj )
)2,

(21)

where E[x], D[x] denotes the expectation and variance operator with respect to x, respectively.
As can be seen from (20) and (21), the expectation and variance of the received decision vi are

directly dependent on the probability P(zi ≥ 0
∣∣Hj ), which can also be referred to the equivalent

probabilities of false-alarm and misdetection of local sensing. For notational convenience, let us denote
these probabilities as PFi and PDi under both hypotheses. In order to capture the statistical properties
of vi, we first need to obtain the probabilities PFi = f (zi ≥ 0|H0) and PDi = f (zi ≥ 0|H1).

Clearly, under the hypothesis H0 (H1), ui obeys the following distribution with the parameter
of Pf i (Pdi).

P(ui |H0 ) =

{
Pf i ui = +1

1− Pf i ui = −1
,

P(ui |H1 ) =

{
Pdi ui = +1

1− Pdi ui = −1
.



Sensors 2018, 18, 475 9 of 19

Then, under hypothesesH0 andH1, the equivalent probability of false alarm and misdetection
can be written as:

PFi = f (zi ≥ 0 |H0 ) = ∑
ui∈{+1,−1}

f (zi ≥ 0 |ui )P(ui |H0 )

= f (zi ≥ 0 |ui = +1 )Pf i + f (zi ≥ 0 |ui = −1 )(1− Pf i),
(22)

PDi = f (zi ≥ 0 |H1 ) = ∑
ui∈{+1,−1}

f (zi ≥ 0 |ui )P(ui |H1 )

= f (zi ≥ 0 |ui = +1 )Pdi + f (zi ≥ 0 |ui = −1 )(1− Pdi).
(23)

Without loss of generality, suppose that the reporting channels between SVUs and FC is also
Rayleigh fading channel draw from CSCG distribution CN (0, 2). In other words, the PDF of the
channel gain gi can be represented as

f (gi) =

 gi exp
(
− g2

i
2

)
gi ≥ 0

0 gi < 0
. (24)

On the basis of the fact that yi = giui, zi = yi + wi and wi is a Gaussian random variable with
mean zero and variance δ2

i , we can easily get

f (zi |yi ) =
1√

2πδi
exp

(
− (zi − yi)

2

2δ2
i

)
, (25)

f (yi |ui ) = uiyi exp

(
−

y2
i

2

)
I(uiyi), (26)

where I(·) denotes the indicator function given by

I(t) =

{
1 i f t ≥ 0
0 i f t < 0

.

Further still, according to this fact that f (zi |yi, ui ) = f (zi |yi ), which stemmed from the fact that
(gi, ui)→ yi → zi is a Markov chain, we can safely come to the following result

f (zi |ui ) = f (zi ,ui)
p(ui)

=
∫

f (zi |yi ,ui ) f (yi |ui )p(ui)dyi
p(ui)

=
∫

f (zi |yi ) f (yi |ui )dyi.
(27)

Then, substituting (25) and (26) into (27), we can obtain the conditional PDF of the received
observation zi, given the local decision ui = +1, as

f (zi |ui = +1 ) =
∫ ∞

0
1√

2πδi
exp

(
− (zi−yi)

2

2δ2
i

)
yi exp

(
− y2

i
2

)
dyi

= 1√
2πδi

exp
(
− zi

2

2(1+δ2
i )

) ∫ ∞
0 yi exp

− (yi−
zi

1+δ2
i
)

2

2δ2
i

1+δ2
i

 dyi.
(28)

More specifically, performing a change of variable t = yi − zi
1+δ2

i
and making the best of the

integral properties of Q-function, we can obtain

f (zi |ui = +1 ) =
C2δ3

i√
2π

exp

(
−

z2
i

2δ2
i

)[
1 +
√

2πCzi exp

(
C2z2

i
2

)
Q (−Czi)

]
, (29)
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where C = 1
δi
√

1+δ2
i
, Q (−x) = 1−Q (x).

Integrating both sides of (29) with respect to zi, we can obtain

P(zi ≥ 0 |ui = +1 ) =
∫ ∞

0 f (zi |ui = +1 )dzi

=
C2δ3

i√
2π

∫ ∞
0

[
exp

(
− z2

i
2δ2

i

)
+

√
2π

δi
√

1+δ2
i

zi exp
(
− zi

2

2(1+δ2
i )

)
Q
(
− zi

δi
√

1+δ2
i

)]
dzi

= δi√
2π(1+δ2

i )

[√
2πδi
2 +

√
2π
√

1+δ2
i

2δi
+
√

2π
2δi

]
= 1

2 + 1
2
√

1+δ2
i
= 1

2

(
1 +

√
γi

2+γi

)
,

(30)

where γi denotes the SNR of the Rayleigh fading reporting channel.
A similar analysis can be conducted for the case of ui = −1, we have

f (zi |ui = −1 ) =
C2δ3

i√
2π

exp

(
−

z2
i

2δ2
i

)[
1−
√

2πCzi exp

(
C2z2

i
2

)
Q (Czi)

]
, (31)

P(zi ≥ 0 |ui = −1 ) =
∫ ∞

0
f (zi |ui = −1 )dzi =

1
2

(
1−

√
γi

2 + γi

)
. (32)

By substituting (30) and (32) in (22) and (23), and after some calculations, we can obtain the
equivalent local probability of false alarm, detection and miss detection as

PFi = P(zi ≥ 0 |H0 ) =
1
2
+

(
Pf i −

1
2

)√
γi

2 + γi
, (33)

PDi = P(zi ≥ 0 |H1 ) =
1
2
+

(
Pdi −

1
2

)√
γi

2 + γi
, (34)

and

PMi = 1− PDi =
1
2
+

(
Pmi −

1
2

)√
γi

2 + γi
. (35)

From (33) and (34), we can see that, if Pdi >
1
2 , then PDi < Pdi. Only when Pdi <

1
2 , then PDi > Pdi.

In other words, the equivalent local probability of detection at the FC is high above the local probability
of detection at each SVU. In the same manner, when Pf i >

1
2 , PFi < Pf i. Only when Pf i <

1
2 , the channel

error "increases" PFi to be higher than Pf i. Without doubt, this is achieved with an accompanied rise in
the probability of detection.

Besides, we also see that, as the reporting channel becomes more unreliable (low SNR situation,
i.e., SNR γi in dB→ −∞ ), the equivalent probability PDi (PFi) is close to 1

2 . As SNR γi in dB→ ∞,
PDi (PFi) comes near to Pdi (Pf i), that is to say, this is a perfect reporting channel.

4.2. Global Probability of False Alarm and Misdetection

Assume that the reporting channels do not interfere with each other, and the delay is negligible.
Once the fusion center decodes {zi = giui + wi; i = 1, 2, · · · , N} and gets {vi; i = 1, 2, · · · , N}, a global
test statistic based on the counting rule is calculated linearly as follows:

Λ =
N

∑
i=1

vi. (36)
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And, the decision rule at the FC is represented as

v0 =

{
1 i f Λ ≥ T
0 i f Λ < T

. (37)

where T is the global decision threshold of counting rule, which can be in the form of T = dαNe
(0 < α ≤ 1). This means that T or more SVUs decide the hypothesisH1, then the global decision isH1.

From the preceding analysis, we can see that vi is a stochastic variable from a Bernoulli distribution
with its winning probability PFi (PDi) under the hypothesis H0 (H1). It is noteworthy that the pairs
(PFi, PDi) of different SVUs are not really the same because the pairs (Pf i, Pdi) or γi are different.
So {vi, i = 1, 2, · · · , N} is a set of independent and non-identically distributed random variables.
In consequence, their sum Λ = ∑N

i=1 vi may be not conformed to a Binomial distribution. This makes
it difficult to derive the exact distribution of Λ. For this reason, instead of relying on the exact
distribution of Λ, we exploit a computationally inexpensive gaussian approximation for the sum of
independent but not identically distributed random variables, known as the Lindberg-Feller CLT [28].

Theorem 1. Lindberg-Feller Central Limit Theorem (LF-CLT)
Assume that {Xi, i = 1, 2, · · · , N} is a set of independently and non-identically distributed random

variables with mean E[Xi] = µi and variance D[Xi] = δ2
i . Further, assume that the two following regularity

conditions are satisfied
D[Xi] > β1, (38)

and
E
[
|Xi − E[Xi]|3

]
< β2, (39)

where β1 and β2 are two positive values. Then, for sufficiently big N,
N
∑

i=1
Xi converges asymptotically to

a Gaussian distribution characterized by

N

∑
i=1

Xi → N
(

N
∑

i=1
µi,

N
∑

i=1
δ2

i

)
. (40)

For the applicability of LF-CLT, we will show how the above-mentioned Lindberg-Feller
conditions are satisfied in the Appendix A. Consequently, in a large cognitive vehicular network,
the LF-CLT can be used to approximately describe the distribution of the global statistic (Λ) under
both hypothesesH0 andH1.

Because {vi, i = 1, 2, · · · , N} are all independent of each other, for a large number of SVUs, N,
on the basis of the LF-CLT [28], Λ is asymptotically Gaussian distributed with mean

µ = E [Λ] =
N

∑
i=1

E [vi] =


N
∑

i=1
PFi H0

N
∑

i=1
PDi H1

, (41)

and variance

σ2 = D [Λ] =
N

∑
i=1

D [vi] =


N
∑

i=1
PFi(1− PFi) H0

N
∑

i=1
PDi(1− PDi) H1

. (42)
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Consequently, the global probability of false alarm and misdetection at the FC can be described by

Q f = Q
(

T − µ√
σ2

)
= Q

 T −∑N
i=1 PFi√

∑N
i=1 PFi (1− PFi)

 , (43)

Qm = Q
(

µ− T√
σ2

)
= Q

 ∑N
i=1 PDi − T√

∑N
i=1 PDi (1− PDi)

 . (44)

When the prior probabilities of presence and absence of PU are equal, i.e., P(H1) = P(H0) =
1
2 ,

the total probability of error detection can be written as

Qe = Q f +Qm

= Q
(

T−∑N
i=1 PFi

∑N
i=1 PFi(1−PFi)

)
+Q

(
∑N

i=1 PDi−T
∑N

i=1 PDi(1−PDi)

)
.

(45)

5. Numerical and Simulation Results

In this section, both theoretical and simulated results are provided through numerical and Monte
Carlo simulations to illustrate spectrum sensing performance in cognitive vehicular networks. We run
the Monte Carlo simulation results over 104 independent trials to verify the accuracy of the developed
analytical results. Note that the arbitrary parameters, L, N, η0 and γ0 are fit for the developed
analytical results of the local (global) probability of misdetection. Therefore, for all simulation cases,
we choose some simple parameters, L, N, η0 and γ0 to plot the local (global) probability of misdetection,
and observe how they affect the system sensing performance.

Without losing generality, we consider a fixed PU case where the PU accesses channel with
probability p = 0.5. The PU signal is assumed to have unit power and be any kind of modulated
signal with carrier frequency of 900 MHz and bandwidth of 6 MHz. The sampling frequency in
energy detector is equal to the bandwidth of PU signals, at the same time, the number of sampling
observations during a sensing interval is L = 50. We consider a Rayleigh multi-path propagation model.
For all simulation cases, the channel vector can be modeled as a zero-mean, complex Gaussian random
vector with correlation matrix ρ (FdTs = 0.01). In addition, the average SNR of sensing/reporting
channels are assumed to be the same for all SVUs, e.g., η0 = −8 dB (as it is typically assumed in CVNs)
and γ0 = 5.5 dB (as it makes the error probability of reporting channel equal to 0.1). The performances
with respect to the local (global) probability of misdetection is estimated to meet the constraint on the
local (global) probability of false alarm of Pf (Q f ) = 0.1.

First of all, let us consider spectrum sensing with energy detector in non-cooperative scenarios.
In Figure 3, the local Pm is shown as a function of the number of samples for various SNR.
The simulations are performed in the case of M2 with the parameters FdTs = 0.01 and Pf = 0.1.
As expected, the local Pm decreases along with the increasing number of samples. And the decrease of
the local Pm in the case of high SNR is very rapid compared with low SNR.

In Figure 4, the local Pm is shown as a function of Doppler shift FdTs. The simulation parameters
are L = 50/500, N = 1, η0 = −8 dB and Pf = 0.1. With the carrier frequency and the sampling interval
fixed, FdTs value varies at a rate linearly proportional to the speed of the SVU. In addition, a larger
FdTs results in a smaller correlation coefficient (ρ). The results show clearly that, the probability
of misdetection is a decreasing function of the speed of the SVU for all the system configurations.
In addition, the local Pm with 500 samples declines drastically compared with 50 samples. This reason
is that high mobility and a greater number of samples give us an opportunity to achieve more received
signal information, thereby enables SVUs to obtain higher sensing performance.
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Figure 3. The local probability of miss detection as a function of the number of samples for various SNR.
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Figure 4. The local probability of misdetection as a function of FdTs.

In Figure 5, the local Pm is shown as a function of the average SNR of sensing channels for various
values of FdTs. The simulation parameters are L = 50, N = 1 and Pf = 0.1. The capability of energy
detector decreases quickly with the reduction of the average received SNR from 10 dB to −10 dB. It can
be seen that the simulating results show good or very good agreement with the theoretical analysis for
both casesM1 andM3, confirming the validity of the developed theoretical analysis. Figure 5 also
indicates that these asymptotic results (17) and (11) (18) serve as a upper and lower bounds for the
local Pm for spectrum sensing over correlated Rayleigh fading channel.

Secondly, we turn to cooperative scenarios. In Figure 6, we plot the global probability of
misdetection (Qm) as a function of the number of SVUs for hard fusion based on counting rule.
The simulation parameters are L = 50, η0 = −8 dB, γ0 = 5.5 dB, T = N/2 and Q f = 0.1. As expected,
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the global misdetection probability decreases along with the increase of the number of SVUs. When N
is extremely big, the global mis-detection probability approaches 0. For hard fusion, Figure 6 clearly
demonstrates that the derived probability of misdetection based on Lindberg-Feller approximation is
relatively poorer for a smaller number of SVUs. However, along with an increasing number of SVUs,
the approximation asymptotically grows closer and closer to the exact sensing performance.

In Figure 7, we present the ROC curves for different channel models. The simulation parameters
are L = 50, N = 40, η0 = −8 dB and T = N/2. Note that, in the case ofM1 andM3, we obtain the
average misdetection probability for local sensing, allowing for a much smoother global probability
curve than the case ofM2.

In Figure 8, we present the average Qm curves as a function of the average SNR of reporting
channels. The simulation parameters are L = 50, N = 40, η0 = −8 dB, FdTs = 0.01, T = N/2 and
Q f = 0.1. In the condition of poor reporting SNR, large bit error occurs, which severely degrades the
detection performance. We can clearly see that cooperative sensing performance improves quickly
with the increase of the average SNR of reporting channel from −8 dB to 8 dB. Note that the sensing
performance in AWGN channel is always better than in Rayleigh channel.

In Figure 9, we plot the global probability of error detection (Qe) as a function of the local
false-alarm probability. The simulation parameters are L = 50, N = 40, η0 =−8 dB, γ0 = 5.5 dB, FdTs = 0.01
and T = N/2. We can clearly see that, under certain conditions, there is an minimum probability of
error detection, and that can be achieved when the local probabilities of false-alarm and mis-detection
are equal ( Pf = Pm ). In Figure 10, we plot the minimum achievable probability of error detection (Qe)
as a function of the number of SVUs.
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Figure 5. The local probability of misdetection for various average SNR of sensing channels.
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Figure 10. The global probability of error detection as a function of the number of SVUs.

6. Conclusions

In this paper, we have researched the application of cognitive radio technique to vehicular
environments for the purpose of improving the reliability for vehicular communications. For this,
we evaluated the detection performance of spectrum sensing in mobile vehicular environments.
Simulation results demonstrate that temporal correlation cannot be neglected and be one of the
considerable factors that may impact the sensing performance. In particular, high mobility of the
vehicles provides the opportunity to exploit temporal diversity at each vehicle. In spite of the fact that
cooperative sensing has normally been considered as a viable means of producing better detection
performance by making the most of spatial diversity among vehicles, we do believe that due to high
mobility, temporal diversity may be used in preference over vehicles’ cooperation in the future.
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Appendix A

In the following, we make clear how the two sufficient conditions (38) and (39) for the LF-CLT
are satisfied for Λ = ∑N

i=1 vi under hypothesisHj, for j = 0, 1. Notice that in the LF-CLT, essentially,
the objective of the two conditions is to ensure that no single random variable is dominate in its
contribution to the summation operator.

In the first step we shall prove that the first condition (38) is satisfied. As can be seen from (21)
and (34), the variance of vi, for i = 1, 2, · · · , N, under the hypothesesH1, can be represented as
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D[vi |H1 ] = PDi (1− PDi)

=
[

1
2 +

(
Pdi − 1

2

)√
γi

1+γi

] [
1
2 −

(
Pdi − 1

2

)√
γi

1+γi

]
= 1

4 −
(

Pdi − 1
2

)2 ( γi
1+γi

)
.

(A1)

It is sufficient to show that, under the hypothesis H1, the variance of vi is lower bounded by
a positive value, as long as the Pdi are bounded away from 0 and 1. Certainly, the Pdi can’t be equal to
0 and 1 in the practical vehicular networks.

In the next step, we show that the second condition (39) is satisfied. Let us make use of the
fact that vi is a binary random variable which follows a Bernoulli distribution characterized by the
associated PFi and PDi. It is plain enough that under the hypothesesH1,

E
[
|vi − E[vi]|3 |H1

]
= PDi (1− PDi)

(
P2

Di + (1− PDi)
2)

< PDi (1− PDi) .
(A2)

A similar analysis can be conducted, PDi(1− PDi) is upper bounded by a positive value.
In the above analysis, we prove that the two sufficient conditions (38) and (39) in the LF-CLT are

satisfied under the assumption of hypothesisH1 explicitly, but the same proved method can be carried
out to demonstrate the effectiveness under the hypothesisH0.
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