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Abstract:



In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN). Experimental results on the banknote image databases of the Korean won (KRW) and the Indian rupee (INR) with three fitness levels, and the Unites States dollar (USD) with two fitness levels, showed that our method gives better classification accuracy than other methods.
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1. Introduction


The functionalities of sorting and classifying paper currency in automated transaction facilities, such as automated teller machines (ATMs) or counting machines consist of the recognition of banknote types, denominations, counterfeit detection, serial recognition, and fitness classification [1]. The fitness classification of banknotes is concerned with the evaluation of the banknotes’ physical conditions, such as staining, tearing, or bleaching. This task helps not only to determine whether a banknote is suitable for recirculation or should be replaced by a new one, but also to enhance the processing speed and sorting accuracy of the counting system.



Fitness of banknotes is normally classified based on the banknotes’ optical characteristics captures by imaging sensors. In general, the presentations of banknotes are different among types of banknotes as well as between front and back sides of the banknote itself. As a result, fitness classification of banknote proposed in most previous studies was performed under the assumption that the input banknote’s type, denomination, and input direction are known [1]. In the next Section, we provide detailed explanations of the related work concerning banknote fitness classification.




2. Related Works


Studies on banknote fitness classification with regard to various paper currencies have been reported. According to the research by the Dutch central bank, De Nederlandsche Bank (DNB), based on the evaluation using color imaging, soiling was the predominant reason that degrades the quality of a banknote, and the mechanical defects appeared after the banknote was stained [2,3,4]. Therefore, several previous studies use the soiling level as the criterion for judging the fitness for further circulation of a banknote [5]. Based on the method of using banknote images captured by single or multiple sensors, these approaches can be divided into two categories: the methods using the whole banknote image and those that use certain regions of interest (ROIs) on the banknote image for the classification of banknote fitness. In the method proposed by Sun and Li [6], they considered that the banknotes with different levels of old and new have different gray histograms. Therefore, they used the characteristics of the banknote images’ histogram as the features, dynamic time warp (DTW) for histogram alignment, and support vector machine (SVM) for classifying the banknotes’ age. Histogram features were also used in the research of He et al. [7], in which they used a neural network (NN) as the classifier. A NN was also used in the Euro banknote recognition system proposed by Aoba et al. [8]. In this study, the whole banknote images captured by visible and infrared (IR) sensors were converted to multiresolutional input values and subsequently fed to the classification part using a three-layered perceptron and the validation part uses the radial basis function (RBF) networks [8]. In this system, the new and dirty Euro banknotes are classified in the RBF network-based validation part. Recently, Lee et al. [9] proposed a soiled banknote determination based on morphological operations and Otsu’s thresholding on contact image sensor (CIS) images of banknotes.



In ROI-based approaches, certain areas on the banknote images where the degradation can be frequently detected or visualized are selected for evaluating the fitness of the banknote. In the studies of Geusebroek et al. [3] and Balke et al. [10], from overlapping rectangular regions on the color images of Euro banknotes, the mean and standard deviation of the channels’ intensity values were calculated and selected as the features for assessing the soiling values of banknotes using the AdaBoost algorithm [3,10]. Mean and standard deviation values of the wavelet-transformed ROIs were also the classification features in the method proposed by Pham el al. [11]. In this study, these features were extracted from the little textures containing areas on the banknote images using discrete wavelet transform (DWT) and selected based on a correlation with the densitometer data and subsequently used for fitness classification by the SVM [11]. The regions with the least amount of textures are also selected for feature extraction in the study proposed by Kwon et al. [12], in which they used both the features extracted from visible-light reflection (VR) and near-infrared light transmission (NIRT) images of the banknotes, and the fuzzy-based classifier for the fitness classification system.



The methods that are based on certain regions on the banknotes for evaluating the fitness of banknotes have advantages of reduced input data size and processing time. However, the selection of ROIs in the previous fitness classification studies is mostly manual, and the degradation and damage of banknote can occur on the unselected areas. The global-feature-based banknote images could help to solve this problem, but since the input features are mostly based on the brightness characteristic of the banknote images, it is much affected by illumination change, wavelength of sensors, and variation in patterns of different banknote types. Moreover, in fitness classifications, most studies assumed that the input banknote’s type, denomination, and input direction are known [1].



To overcome these shortcomings, we considered a method for classification of banknote fitness based on the convolutional neural network (CNN). This NN structure was first introduced by LeCun et al. in their studies about handwritten character recognition [13,14], and have recently been emerging and attracting research interest [15], especially for the image classification of the ImageNet large-scale visual recognition challenge (ILSVRC) contest [16,17,18,19]. However, little research has been conducted on the automatic sorting of banknotes using CNNs. Ke et al. proposed a banknote image defect detection method using a CNN [20]; however, this study had only focused on the recognition of ink dots in banknote image defects, and did not specify the type of experimental banknote image dataset or judge the fitness for recirculation of the examined banknotes. Another recent CNN-based method proposed by Pham et al. [21] aiming to classify banknote type, denomination, and input direction showed good performance even with the mixed dataset from multiple national currencies. On the evaluation of a state-of-the-art method, we proposed a deep learning-based banknote fitness-classification method using a CNN on the gray-scale banknote images captured by visible-light one-dimensional line image sensor. Our proposed system is designed to classify the fitness of banknote into two or three levels including: (i) fit and unfit, and (ii) fit, normal and unfit for recirculation, depending on the banknote’s country of origin, and regardless of the denomination and input direction of the banknote. Compared to previous studies, our proposed method is novel in the following aspects:

	(1)

	
This is the first CNN-based approach for banknote fitness classification. We performed training and testing of a CNN on banknote image databases of three national currencies that consist of 12 denominations, by which the performance of our proposed method is confirmed to be robust to a variety of banknote types.




	(2)

	
Our study carried out fitness determination on the United States dollar (USD), the Korean won (KRW), and the Indian rupee (INR), in which three levels of fitness of banknote, namely fit, normal, and unfit cases for recirculation, are considered with the KRW and INR, whereas two levels of fit and unfit cases are considered with the USD.




	(3)

	
Our fitness recognition system can classify the fitness of banknote regardless of the denomination and direction of the input banknote. As a result, the pre-classification of banknote image in the denomination and input direction is not required, and there is only one trained fitness-classification model for each national currency.




	(4)

	
We made our trained CNN model with databases publicly available by other researchers for the fair comparisons with our method and databases.









Table 1 gives a comparison between our research and previous studies. The details of the proposed banknote fitness-classification method are presented in Section 3. Experimental results and conclusions are given in Section 4 and Section 5 of this paper, respectively.



Table 1. Comparison of the proposed method and previous works on the fitness classification of banknotes.







	
Category

	
Method

	
Advantage

	
Disadvantage






	
Using certain regions on banknote image

	

	
Using features extracted from various color channels of overlapping regions on banknote images [3,10].



	
Using DWT for feature extraction from ROIs on visible-light images of banknotes and classifying fitness by SVM [11].



	
Using fuzzy system for fitness determination based on ROIs on VR and NIRT images of banknotes [12].






	
Less resource requirement owing to the small sizes of processing areas and features.

	
Defects and damages can occur on the non-selected regions of the banknote.




	
Using the whole banknote image

	

	
Using the gray-scale histogram of banknote images and classify fitnessusing DTW and SVM [6] or using an NN [7].



	
Using multiresolutional features of visible and IR images of banknote for recognition [8].



	
Soiling evaluation based on using image morphological operations and Otsu’s thresholding on banknote images [9].






	
Make use of all the available characteristics of banknote images for fitness classification.

	

	-

	
Possible data redundancy at the input stage.




	-

	
Histogram-based methods are affected by imaging conditions and variations in banknote patterns




	-

	
Pre-classification of banknote’s denomination and input direction is required.










	
Fitness classification using a CNN (Proposed method)

	
Pre-classification of banknote’s denomination and input direction is not required.

	
Intensive training of the CNN is required.











3. Proposed Method


3.1. Overview of the Proposed Method


The overall flowchart of the proposed method is shown in Figure 1. The input banknote image is captured and pre-processed. In this pre-processing step, the banknote region in the captured image by visible-light one-dimensional line image sensor is segmented from the background and resized to achieve the same size of 115 × 51 pixels, because the size of the input image to the CNN should be the same. The size-normalized image of the banknote is fed into the pre-trained CNN, and the level of fitness is determined at the output of the network.


Figure 1. Overall flowchart of the proposed method.
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3.2. Acquisition and Pre-Processing of Banknote Image


For banknote image acquisition in this study, we used a commercial banknote counting machine with a visible-light one-dimensional line image sensor that has a resolution of 1584 pixels [12,22]. A line sensor was used instead of the conventional two-dimensional (area) image sensors because of the size limitation and the cost of the counting machine. When a banknote is input to the system, it will be passed through the rollers inside the machine and illuminated by visible-light light-emitting diode (LED), and the line sensor is triggered successively at a high speed to capture the line images of the input banknote. The number of trigger times when the input banknote is a KRW or INR is 464, meanwhile that in the case of the USD it is 350. By concatenating the captured line images, the resulting acquired banknote image has a resolution of 1584 × 464 pixels or 1584 × 350 pixels in the case of the KRW-INR banknote or the USD banknote, respectively.



Four input directions of the banknotes when being inserted into the counting machine are labeled as A, B, C, and D, which are the front side in the forward direction, front side in the backward direction, back side in the forward direction, and back side in the backward direction, respectively. Examples of banknote images in the A to D directions in the case of the KRW are shown in Figure 2. The original banknote image captured by the counting machine includes both the banknote region and surrounding background. By using the corner detection algorithm built into the counting machine, we segment the banknote region from the background to address the area that contains meaningful information of the banknote image, as well as fix the displacement and rotation of the input banknote, as shown in Figure 2. The detail explanations of the corner detection algorithm are as follows. Within the fixed ROI of the captured banknote image of Figure 2a–d, the upper boundary of banknote is detected by scanning a one-dimensional mask for edge detection based on the 1st order derivative [23] from upper to lower position per each horizontal position of the ROI. From this, the candidate points of upper boundary are detected, and accurate boundary line is determined by line fitting algorithm [23] with these points. Same procedure is iterated for detecting lower, left, and right boundaries of banknote. Left boundary is detected by scanning the same mask from left to right position per each vertical position of ROI for detecting left boundary whereas right one is detected by scanning same mask from right to left position per each vertical position of ROI for detecting right boundary. Then, four boundary lines are located, and the four intersected points by these lines are determined as the corner points of banknote. The segmented banknote images are then resized equally to achieve the same size of 115 × 51 pixels to be inputted to the CNN in the next step.


Figure 2. Example of input banknote images in four directions: Original captured banknote image in (a) A direction; (b) B direction; (c) C direction; (d) D direction; (e–h) Corresponding banknote region segmented from the images in (a–d), respectively.
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3.3. The CNN Architecture


The CNN architecture used in our proposed method is shown in Figure 3 and Table 2. This network structure consists of five convolutional layers, denoted as C1 to C5, followed by three fully connected layers, denoted as F1 to F3, which are similar to those in the AlexNet architecture [16,21]. For faster training time with gradient descent, rectified linear unit (ReLU) layers are presented at all of the convolutional layers and fully connected layers of the network [16]. Using the ReLU activation function, whose formula is shown in Equation (1), instead of the standard non-linear function of the sigmoid or hyperbolic tangent, as shown in (2) and (3), respectively, can help to avoid the gradient-vanishing effect [24]:


[image: ]



(1)
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(2)
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(3)






Figure 3. Convolutional neural network (CNN) architecture used in our proposed method.
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Table 2. Structure of CNN used in our proposed method (unit: pixel).







	
Layer Type

	
Size of Kernel

	
Number of Stride

	
Padding

	
Number of Filters

	
Size of Feature Map






	
Image Input Layer

	

	

	

	

	
115 × 51 × 1




	
C1

	
Convolutional Layer

	
7 × 7 × 1

	
2

	
0

	
96

	
55 × 23 × 96




	
ReLU Layer

	

	

	

	

	




	
CCN Layer

	

	

	

	

	




	
Max Pooling Layer

	
3 × 3 × 96

	
2

	
0

	
1

	
27 × 11 × 96




	
C2

	
Convolutional Layer

	
5 × 5 × 96

	
1

	
2

	
128

	
27 × 11 × 128




	
ReLU Layer

	

	

	

	

	




	
CCN Layer

	

	

	

	

	




	
Max Pooling Layer

	
3 × 3 × 128

	
2

	
0

	
1

	
13 × 5 × 128




	
C3

	
Convolutional Layer

	
3 × 3 × 128

	
1

	
1

	
256

	
13 × 5 × 256




	
ReLU Layer

	

	

	

	

	




	
C4

	
Convolutional Layer

	
3 × 3 × 256

	
1

	
1

	
256

	
13 × 5 × 256




	
ReLU Layer

	

	

	

	

	




	
C5

	
Convolutional Layer

	
3 × 3 × 256

	
1

	
1

	
128

	
13 × 5 × 128




	
ReLU Layer

	

	

	

	

	




	
Max Pooling Layer

	
3 × 3 × 128

	
2

	
0

	
1

	
6 × 2 × 128




	
F1

	
Fully Connected Layer

	

	

	

	

	
4096




	
ReLU Layer

	

	

	

	

	




	
F2

	
Fully Connected Layer

	

	

	

	

	
2048




	
ReLU Layer

	

	

	

	

	




	
Dropout Layer

	

	

	

	

	




	
F3

	
Fully Connected Layer

	

	

	

	

	
2 or 3 (Number of Fitness Levels)




	
Softmax Layer

	

	

	

	

	










Local response normalization is considered at the first two layers of Conv1 and Conv2 with cross-channel normalization (CCN) layers [16,21], whose equation is presented follows:
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(4)




where [image: ] is the neuron activity computed by applying the kernel ith at position (x, y). With the normalization executed for the adjacent n kernel maps at the same spatial position, the obtained normalized activity value is [image: ]. In Equation (4), N is the total number of kernels in the layer. We choose a window channel size n of 5; k, α, and β are hyper-parameters and are set to 1, 0.0001, and 0.75, respectively. In Equation (4), the term of summation of [image: ] multiplied by α can be zero in case that all the [image: ] are zero. Therefore, the off-set value of k is used in order to make the denominator of Equation (4) non-zero. α is the kind of control parameter. For example, if the term of summation of [image: ] multiplied by α is much larger than k, [image: ] of Equation (4) approximates [image: ]/(the term of summation of [image: ] multiplied by α) by ignoring k. On the contrary, if the term of summation of [image: ] multiplied by α is much smaller than k, [image: ] of Equation (4) approximates [image: ]/k by ignoring the term of summation of [image: ] multiplied by α. β is also the kind of control parameter. With larger β, the [image: ] becomes smaller whereas the [image: ] becomes larger with smaller β. The k, α, and β are also called as hyper-parameters based on previous researches [16]. The optimal values (1, 0.0001, and 0.75) of these parameters were experimentally determined with training data.



Following each CNN layer in the first and second convolutional layer is the max pooling layer. The max pooling is also adopted in the last convolutional layer (C5) before connecting to the fully connected layer part of the network structure. The gray-scale banknote images in our proposed method are resized equally to 115 × 51 pixels using linear interpolation before being fed into the CNN. Through each layer of the network structure, feature map size changes are as shown in Table 2 according to the following equations [21,25]:
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(5)
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(6)
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(7)




where wi, hi, and ci, denoting the width, height, and number of channels, respectively, are the sizes of the feature map in the ith convolutional layer in pixels; those of its preceding (i − 1)th layer are denoted as wi−1, hi−1, and ci−1; the ith layer has k filters with the number of weights per filter is (wF × hF × ci), the filtering stride is s pixels, and the zero-padding amount is p pixels. The resulting banknote feature map after five convolutional layers has the size of 6 × 2 × 128 = 1536, as shown in Table 2, and these features are fed into the fully connected layers of the network.



To prevent the overfitting problem, we inserted a dropout layer between the 2nd and 3rd fully connected layers, as shown in Table 2. This is the regularization method that randomly disconnects the neuron unit from the network during training [16,26]. p is the probability of maintaining the connections. For example, if there are 100 connections of the neuron unit from the network, 35 connections are randomly disconnected with the p of 0.65 (the connections of 65% are maintained). In this research, we chose p equal to 0.65. The optimal value (0.65) of p was experimentally determined with training data. In order to do so, the input vector y to the network node is element-wise multiplied with a vector r consisting of the independent Bernoulli random variables, each of which can be 0 or 1 with the probability p [26]. Therefore, r ~ Bernoulli(p) [26]. For example, if y of Equation (8) has the 100 components of (y1, y2, …, y100), the r has the 100 components of (r1, r2, …, r100), also, for the element-wise multiplication of y and r (“•” of Equation (8)). If the probability p is 0.65, 65 components of (r1, r2, …, r100) are 1 and the remained 35 ones are 0. z of Equation (8) stands for the output of feed-forward operation of the neuron unit with dropout, activation function f(·), weights of w, and bias b:
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(8)







As mentioned above, banknote features are completely extracted at the output of the final 5th convolutional layer. The fully connected layers that follow can be considered as the classifier part of the CNN structure. The number of network nodes in the three fully connected layers (F1 to F3) in our study is shown in Table 2. In this research, we classified banknote fitness to three levels in the case of the KRW and INR, and two levels for the USD banknotes. As a result, the number of nodes in the last fully connected layer may vary according to the national currency selected.



At the output stage of the CNN structure, we apply a normalized exponential function (softmax function) [27] that helps to transform the real values at the outputs of the neuron units in F3 to the values in the range of (0, 1). These resulting values of the softmax function can be considered as the probability that the input banknote belongs to the fitness classes corresponding to the network outputs. The softmax layer can also help to highlight the largest values and suppress the smaller values among the set [21]. The formula of the softmax function applied on the node output values denoted as zi is shown in the following Equation (9):
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(9)







Among N fitness levels, the one corresponding to the maximum value of pi (i = 1, …, N) is considered as the fitness level of the input banknote image. In this research, the training process for the filter parameters of convolutional layers and the network weights of fully connected layers are conducted separately for each national currency of KRW, INR, and USD, in combination of all the denominations and input directions of the banknote images. By conducting this training on the CNN model, our proposed fitness-classification method does not require the pre-classification of the denomination type and direction of the banknote. The completely trained CNN models are stored in the memory for use in the testing experiments.





4. Experimental Results


We used banknote fitness databases from three national currencies, which are the KRW, INR, and USD, for the experiments using our proposed method. The KRW banknote image database is composed of banknotes in two denominations, 1000 and 5000 wons. The denominations of banknotes in the INR database are 10, 20, 50,100, 500, and 1000 rupees. Those for the case of the USD are 5, 10, 50, and 100 dollars. Three levels of fitness, which are fit, normal, and unfit for recirculation, are assigned for the banknotes of each denomination in the cases of the KRW and INR, and two levels including fit and unfit are defined for the USD banknotes in the experimental dataset. Examples of banknotes assigned to each fitness level are shown in Figure 4, Figure 5 and Figure 6.


Figure 4. Example of banknote images in the KRW database with fitness levels of (a) Fit, (b) Normal, and (c) Unfit.
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Figure 5. Example of banknote images in the INR database with fitness levels of (a) Fit, (b) Normal, and (c) Unfit.
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Figure 6. Example of banknote images in the USD database with fitness levels of (a) Fit and (b) Unfit.
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The number of banknotes in each fitness level of three national currency databases is given in Table 3. We made our trained CNN model with databases publicly available by other researchers through [28] for the fair comparisons with our method and databases.



Table 3. Number of banknote images in each national currency database.







	
Fitness Levels

	
KRW

	
INR

	
USD






	
Fit

	
Number of Images

	
10,084

	
11,909

	
2907




	
Number of Images after Data Augmentation

	
30,252

	
71,454

	
61,047




	
Normal

	
Number of Images

	
12,430

	
7952

	
N/A




	
Number of Images after Data Augmentation

	
37,290

	
47,712

	
N/A




	
Unfit

	
Number of Images

	
11,274

	
2203

	
642




	
Number of Images after Data Augmentation

	
33,822

	
13,218

	
45,582










We conducted the experiments using the two-fold cross-validation method. Therefore, the dataset of banknote images from each national currency was randomly divided into two parts. In the first trial, one of the two parts was used for training, and the other was used for testing. The process was repeated with these parts of the dataset swapped in the second trial. With the obtained results from two trials, we calculated the overall performance by averaging two accuracies.



In this research, we trained the network models separately for each national currency dataset without pre-classifying the denomination and input direction of the banknote images in the dataset. In each dataset, we performed data augmentation for expanding the number or image for training. This process helps to generalize the training data and reduce overfitting [21]. For data augmentation, we randomly cropped the boundaries of the original image in the dataset in the range of 1 to 7 pixels. The number of images in the datasets of the KRW and INR were increased by multiplication factors of 3 and 6 times, respectively. In the case of the USD, the numbers of fit and unfit banknote images were multiplied by 21 and 71 times. Consequently, the total number of images for training in each national currency dataset was approximately 100,000 images. We also listed the number of images in each dataset and each class after augmentation in Table 3.



In the first experiments of the CNN training, we trained three network models for fitness classification in each of the national currency dataset, and repeated it twice for two-fold cross-validation. Training and testing experiments were performed using the MATLAB implementation of the CNN [29] on a desktop computer equipped with an Intel® Core™ i7-3770K CPU @ 3.50 GHz [30], 16-GB memory, and an NVIDIA GeForce GTX 1070 graphics card with 1920 CUDA cores, and 8-GB GDDR5 memory [31]. The training method is stochastic gradient descent (SGD), also known as sequential gradient descent, in which the network parameters are updated based on the batch of data points at a time [27]. The CNN training parameters were set as follows: the number of iterations for training is 60 epochs, with the initial learning rate of 0.01 and reduced by 10% at every 20 epochs. The convergence graphs of the average batch loss and accuracy according to the epoch number of the training process on the two subsets of training data in the two-fold cross-validation are shown in Figure 7 for each country’s banknote dataset. Figure 7 shows that the accuracy values increased to 100% and the loss curves approach zero with the increment of epoch number in all cases.


Figure 7. Convergence graphs with average accuracies and losses according to the epoch number on two subsets of training data in two-fold cross-validation on each national currency dataset: (a) KRW; (b) INR; and (c) USD.
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In Figure 8, we show the 96 trained filters in the first convolutional layers of the trained CNN models for each national currency dataset using two-fold cross-validation. For visualization, the original 7 × 7 × 1 pixel filters were resized by a factor of 5 and the weight values were scaled to the range of unsigned integer number from 0 to 255, corresponding to the gray-scale image intensity values.


Figure 8. Visualization of filter parameters in the first convolutional layers of the CNN model in each national currency dataset, in which the left and right images are obtained from the trained models on the first and second subsets for two-fold cross-validation, respectively: (a) KRW; (b) INR; and (c) USD.
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With the trained CNN models, we conducted the testing experiments on the datasets of each national currency, in a combination of all the denominations and input directions of the banknote images. The experimental results of the two-fold cross-validation using CNN for each dataset are shown in Table 4, Table 5 and Table 6, and expressed as the confusion matrices between the desired and predicted outputs, namely the actual fitness levels of the banknotes and the fitness-classification results using the trained CNN models. From the testing results on two subsets, we calculated the average accuracy based on the number of accurately classified cases of each subset as the following formula [32]:


[image: ]



(10)




with Avr_Acc the average testing accuracy of the total N samples in the dataset, and GA1 and GA2 are the number of accurately classified samples (genuine acceptance cases) from the 1st and 2nd fold cross validations, respectively.



Table 4. Confusion matrices of testing results on the KRW banknote fitness dataset using the proposed method. The 1st Testing Results and 2nd Testing Results mean the results of the testing on the 1st and 2nd subsets of banknote images in the two-fold cross-validation method, respectively (unit: %).







	
1st Testing Results

	
Predicted Results




	
Fit

	
Normal

	
Unfit




	
Desired Outputs

	
Fit

	
98.830

	
1.170

	
0.000




	
Normal

	
3.460

	
93.610

	
2.929




	
Unfit

	
0.035

	
2.148

	
97.817




	
2nd Testing Results

	
Predicted Results




	
Fit

	
Normal

	
Unfit




	
Desired Outputs

	
Fit

	
96.827

	
3.173

	
0.000




	
Normal

	
0.579

	
98.890

	
0.531




	
Unfit

	
0.000

	
2.677

	
97.323




	
Average Accuracy

	
97.612










Table 5. Confusion matrices of the testing results on the INR banknote fitness dataset using the proposed method. The 1st Testing Results and 2nd Testing Results mean the same as those in Table 4 (unit: %).







	
1st Testing Results

	
Predicted Results




	
Fit

	
Normal

	
Unfit




	
Desired Outputs

	
Fit

	
99.832

	
0.168

	
0.000




	
Normal

	
0.705

	
99.094

	
0.201




	
Unfit

	
0.000

	
0.548

	
99.452




	
2nd Testing Results

	
Predicted Results




	
Fit

	
Normal

	
Unfit




	
Desired Outputs

	
Fit

	
99.882

	
0.118

	
0.000




	
Normal

	
0.377

	
99.472

	
0.151




	
Unfit

	
0.000

	
0.000

	
100.000




	
Average Accuracy

	
99.637










Table 6. Confusion matrices of the testing results on the USD banknote fitness dataset using the proposed method. The 1st Testing Results and 2nd Testing Results mean the same as those in Table 4 (unit: %).







	
1st Testing Results

	
Predicted Results




	
Fit

	
Unfit




	
Desired Outputs

	
Fit

	
99.724

	
0.276




	
Unfit

	
15.142

	
84.858




	
2nd Testing Results

	
Predicted Results




	
Fit

	
Unfit




	
Desired Outputs

	
Fit

	
99.520

	
0.480




	
Unfit

	
14.769

	
85.231




	
Average Accuracy

	
96.985










Table 4, Table 5 and Table 6 show that the proposed CNN-based method yields good performance with the average testing accuracy of the two-fold cross-validation of approximately 97% in the cases of the KRW and USD, and more than 99% in the case of the INR, even with the merged denominations and input directions of banknote images in each dataset.



In Figure 9, we show the examples of correctly classified cases in the testing results using our proposed method on the KRW, INR, and USD datasets. Figure 9 shows that the degradation degrees in the INR banknotes are clearer to be distinguished among fitness classes of fit, normal, and unfit than that in the case of the KRW. Furthermore, the visible-light banknote images captured in the case of the USD have slightly lower brightness than those of the KRW and INR. This resulted in the highest average classification accuracy in the testing results using our proposed method on the INR dataset compared to that of the KRW and USD.


Figure 9. Examples of correctly classified cases by our method of the (a) KRW; (b) INR; and (c) USD datasets. In (a,b), upper, middle and lower figures show the cases that are the correctly classified fit, normal, and unfit banknotes, respectively. In (c), the upper and lower figures are the correctly recognized fit and unfit banknotes, respectively.
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Examples of error cases are also given in Figure 10, Figure 11 and Figure 12 for each of the national currency datasets. As shown in these figures, there were some cases where the input banknotes were incorrectly segmented from the background, as shown in Figure 10a and Figure 11d. This resulted in the banknotes being classified as the classes of lower fitness level. Figure 10c and Figure 11c show that the stained and soiled areas occurred sparsely on the banknotes and occasionally could not be recognized by using only visible-light images as in our method. Banknote images in Figure 11a,b are from the fit and normal classes, respectively; however, besides the similar brightness, both of the banknotes were slightly folded on the upper parts, which affected the classification results. The fit USD banknote in Figure 12a has hand-written marks, whereas the degradation on the unfit banknote in Figure 12b is the fading of texture in the middle of the banknote rather than staining or soiling. These reasons caused the misclassification of fitness level in these cases. In addition, the average classification accuracy of the normal banknotes was the least among the three fitness levels in the case of INR and KRW. This is because of the fact that, the normal banknotes have the middle quality levels, which consist of stained or partly damaged more than fit banknotes but not enough to be replaces by the new ones as the cases of unfit banknotes. This resulted in the largest confusions occurring between normal class and either the fit or unfit classes, and the average classification accuracies in the cases of normal classes in both INR and KRW datasets were the least.


Figure 10. Examples of false recognition cases by our method in the KRW dataset: (a) fit banknote misclassified to normal; (b) normal banknote misclassified to fit; (c) unfit banknote falsely recognized as normal banknote; and (d) normal banknote falsely recognized as unfit banknote.
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Figure 11. Examples of false recognition cases by our method in the INR dataset: (a) fit banknote misclassified to normal; (b) normal banknote misclassified to fit; (c) unfit banknote falsely recognized as normal banknote; and (d) normal banknote falsely recognized as unfit banknote.
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Figure 12. Examples of false recognition cases by our method in the USD dataset: (a) fit banknote misclassified to unfit; (b) unfit banknote misclassified to fit.
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In the subsequent experiments, we compared the performance of the proposed method with that of the previous studies reported in [7,11]. As both of the previous methods required training, we also performed the two-fold cross-validation in the comparative experiments. Referring to [7], we extracted the features from the gray-level histogram of the banknote image and used the multilayered perceptron (MLP) network as the classifiers, with 95 network nodes in the input and hidden layers. In the case of the comparative experiments using the method in [11], we selected the areas that contain less texture on the banknote images as ROIs, and calculated the means and standard deviation values of the ROIs’ Daubechies wavelet decomposition. Because the fitness classifiers in [11] are the SVM, in the case of the KRW and INR datasets that have three fitness levels, we trained the SVM models using the one-against-all strategy [33]. The experiments with previous methods were implemented using MATLAB toolboxes [34,35].



A comparison of the experimental results between our proposed method and those in previous studies are shown in Table 7, Table 8 and Table 9, in which the fitness-classification accuracies are calculated separately according to denominations and input directions of the banknote images in each national currency. This is because in the previous studies, the fitness-classification models were trained with these manually separated type banknote images. Therefore, although our proposed method does not require the pre-classification of denominations and input directions of the banknote images, we showed the accuracies separately according to these categories for comparison.



Table 7. Comparison of fitness-classification accuracy by our proposed method with that of previous studies on the KRW banknote dataset. Denom. and Dir. are denominations and directions, respectively. The 1st Testing Results and 2nd Testing Results mean the same as those in Table 4 (unit: %).







	
Denom.

	
Dir.

	
Method Based on Gray-level Histogram and MLP [7]

	
Method Based on DWT and SVM [11]

	
Proposed Method




	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy

	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy

	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy






	
KRW 1000

	
A

	
55.974

	
63.459

	
59.719

	
68.926

	
72.682

	
70.805

	
94.930

	
94.536

	
94.733




	
B

	
86.504

	
68.650

	
77.577

	
80.037

	
78.116

	
79.077

	
95.408

	
96.954

	
96.181




	
C

	
76.631

	
62.961

	
69.793

	
45.625

	
50.733

	
48.180

	
97.521

	
98.282

	
97.902




	
D

	
78.058

	
81.823

	
79.942

	
56.796

	
60.640

	
58.719

	
96.893

	
96.946

	
96.920




	
KRW 5000

	
A

	
84.766

	
96.859

	
90.814

	
85.203

	
85.035

	
85.119

	
96.552

	
99.476

	
98.014




	
B

	
79.472

	
93.528

	
86.502

	
82.734

	
84.851

	
83.793

	
95.683

	
97.795

	
96.739




	
C

	
78.459

	
99.072

	
88.765

	
70.427

	
69.777

	
70.102

	
98.514

	
99.536

	
99.025




	
D

	
89.157

	
86.254

	
87.705

	
76.857

	
80.883

	
78.871

	
96.993

	
98.134

	
97.564




	
Average Accuracy

	
80.487

	
72.230

	
97.162










Table 8. Comparison of fitness-classification accuracy by our proposed method with that of previous studies on the INR banknote dataset. Denom., Dir., 1st Testing Results and 2nd Testing Results mean the same as those in Table 7 (unit: %).







	
Denom.

	
Dir.

	
Method Based on Gray-level Histogram and MLP [7]

	
Method Based on DWT and SVM [11]

	
Proposed Method




	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy

	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy

	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy






	
INR 10

	
A

	
100.000

	
100.000

	
100.000

	
89.981

	
91.715

	
90.848

	
100.000

	
100.000

	
100.000




	
B

	
100.000

	
100.000

	
100.000

	
90.559

	
91.329

	
90.944

	
100.000

	
100.000

	
100.000




	
C

	
100.000

	
100.000

	
100.000

	
96.935

	
97.323

	
97.129

	
100.000

	
100.000

	
100.000




	
D

	
100.000

	
100.000

	
100.000

	
97.359

	
99.245

	
98.302

	
100.000

	
100.000

	
100.000




	
INR 20

	
A

	
92.437

	
93.855

	
93.147

	
84.594

	
86.592

	
85.594

	
100.000

	
99.441

	
99.720




	
B

	
91.292

	
93.017

	
92.157

	
85.955

	
87.430

	
86.695

	
98.876

	
99.441

	
99.160




	
C

	
93.277

	
91.922

	
92.598

	
93.277

	
93.315

	
93.296

	
99.720

	
99.721

	
99.721




	
D

	
92.877

	
95.184

	
94.034

	
92.308

	
92.068

	
92.188

	
99.715

	
100.000

	
99.858




	
INR 50

	
A

	
99.346

	
99.674

	
99.511

	
93.464

	
92.508

	
92.985

	
100.000

	
100.000

	
100.000




	
B

	
99.674

	
100.000

	
99.837

	
90.228

	
88.312

	
89.268

	
100.000

	
100.000

	
100.000




	
C

	
100.000

	
100.000

	
100.000

	
93.069

	
93.443

	
93.257

	
100.000

	
100.000

	
100.000




	
D

	
99.676

	
100.000

	
99.839

	
90.939

	
93.248

	
92.097

	
100.000

	
100.000

	
100.000




	
INR 100

	
A

	
99.140

	
98.650

	
98.895

	
91.646

	
89.816

	
90.731

	
99.017

	
99.509

	
99.263




	
B

	
99.026

	
98.660

	
98.843

	
90.012

	
89.769

	
89.890

	
99.513

	
99.756

	
99.635




	
C

	
97.340

	
97.582

	
97.461

	
89.480

	
90.085

	
89.782

	
99.637

	
100.000

	
99.819




	
D

	
98.315

	
98.798

	
98.557

	
91.697

	
90.745

	
91.221

	
99.519

	
99.639

	
99.579




	
INR 500

	
A

	
88.153

	
88.353

	
88.253

	
86.747

	
87.952

	
87.349

	
99.398

	
99.598

	
99.498




	
B

	
89.421

	
88.845

	
89.133

	
86.028

	
86.255

	
86.142

	
98.403

	
99.602

	
99.003




	
C

	
90.041

	
89.697

	
89.868

	
88.211

	
87.879

	
88.045

	
97.967

	
98.990

	
98.480




	
D

	
85.859

	
88.531

	
87.198

	
88.081

	
87.726

	
87.903

	
99.394

	
99.396

	
99.395




	
INR 1000

	
A

	
97.166

	
95.547

	
96.356

	
76.923

	
76.923

	
76.923

	
99.190

	
99.595

	
99.393




	
B

	
97.590

	
96.825

	
97.206

	
78.715

	
79.365

	
79.042

	
100.000

	
100.000

	
100.000




	
C

	
96.825

	
96.047

	
96.436

	
88.889

	
89.723

	
89.307

	
100.000

	
99.605

	
99.802




	
D

	
97.266

	
98.438

	
97.852

	
85.938

	
85.938

	
85.938

	
99.609

	
100.000

	
99.805




	
Average Accuracy

	
96.274

	
89.952

	
99.637










Table 9. Comparison of fitness-classification accuracy by our proposed method with that of previous studies on the USD banknote dataset. Denom., Dir., 1st Testing Results and 2nd Testing Results mean the same as those in Table 7 (unit: %).







	
Denom.

	
Dir.

	
Method Based on Gray-level Histogram and MLP [7]

	
Method Based on DWT and SVM [11]

	
Proposed Method




	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy

	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy

	
1st Testing Accuracy

	
2nd Testing Accuracy

	
Average Accuracy






	
USD 5

	
A

	
96.774

	
82.540

	
89.600

	
75.807

	
76.191

	
76.000

	
98.387

	
96.825

	
97.600




	
B

	
78.723

	
82.979

	
80.851

	
74.468

	
76.596

	
75.532

	
87.234

	
95.745

	
91.489




	
C

	
81.395

	
75.000

	
78.161

	
44.186

	
56.818

	
50.575

	
95.349

	
93.182

	
94.253




	
D

	
95.652

	
89.130

	
92.391

	
71.739

	
76.087

	
73.913

	
91.304

	
100.000

	
95.652




	
USD 10

	
A

	
80.682

	
82.022

	
81.356

	
88.636

	
88.764

	
88.701

	
96.591

	
92.135

	
94.350




	
B

	
80.851

	
92.632

	
86.772

	
94.681

	
94.737

	
94.709

	
100.000

	
100.000

	
100.000




	
C

	
73.973

	
68.919

	
71.429

	
65.753

	
56.757

	
61.224

	
93.151

	
95.946

	
94.558




	
D

	
93.590

	
100.000

	
96.835

	
89.744

	
83.750

	
86.709

	
94.872

	
100.000

	
97.468




	
USD 50

	
A

	
91.358

	
96.341

	
93.865

	
82.716

	
83.537

	
83.129

	
95.062

	
98.780

	
96.933




	
B

	
99.394

	
98.795

	
99.094

	
93.939

	
90.964

	
92.447

	
96.364

	
96.988

	
96.677




	
C

	
91.837

	
92.568

	
92.203

	
93.197

	
92.568

	
92.881

	
97.959

	
96.622

	
97.288




	
D

	
91.156

	
91.892

	
91.525

	
89.796

	
89.189

	
89.492

	
95.918

	
93.919

	
94.915




	
USD 100

	
A

	
98.137

	
96.914

	
97.523

	
86.335

	
86.420

	
86.378

	
100.000

	
98.765

	
99.381




	
B

	
95.513

	
94.267

	
94.888

	
87.820

	
87.898

	
87.859

	
98.718

	
94.904

	
96.805




	
C

	
92.157

	
94.771

	
93.464

	
90.196

	
90.196

	
90.196

	
99.346

	
96.732

	
98.039




	
D

	
94.483

	
87.671

	
91.065

	
91.034

	
90.411

	
90.722

	
99.310

	
98.630

	
98.969




	
Average Accuracy

	
91.462

	
85.940

	
96.985










Table 7, Table 8 and Table 9 show that the proposed CNN-based fitness classification method outperformed the previous methods in terms of higher average classification accuracy for all the national currency datasets. This can be explained by the disadvantages of each method: the histogram-based method used only the overall brightness characteristic of the banknote images for the classification of fitness levels. This feature was strongly affected by the capturing condition of the sensors. Moreover, degradation might occur sparsely on the banknote, therefore it cannot be easily recognized by the brightness histogram only. The ROI-based method in [11] relied only on the less textured areas on the banknote images. Consequently, if the degradation or damage of the banknote occurs on other areas, it will not be as effective as the proposed method. The CNN-based method has the advantage of the ability to train not only the classifier in the fully connected layer parts but also the filter weights in the convolutional layers, which can be considered as the feature extraction part. As a result, both the feature extraction and classification stages were intensively trained by the training datasets. Moreover, when the whole banknote image is inputted to the CNN architecture, we can make use of all of the available optical characteristics of the banknote for feature extraction. Consequently, owning to the advantages in the feature extraction procedure, the proposed fitness-classification method gave better performance compared to previous methods in terms of higher average accuracy using two-fold cross-validation.




5. Conclusions


This study proposed a fitness-classification method using visible-light banknote images and CNN. The fitness level of the banknotes is assigned to three levels for the cases of the KRW and INR, and two levels for the USD banknotes. Our proposed method is designed to classify fitness level regardless of the denominations and input directions of the banknote images. The experimental results on the three datasets of the KRW, INR, and USD banknote images with merged denominations and input directions gave good performances, and showed that the proposed method outperformed the methods in the previous studies, in terms of higher average accuracy with two-fold cross-validation. For future work, we plan to test the proposed method with banknotes from other countries. We also intend to further study the multinational fitness-classification method, which is able to simultaneously recognize the fitness level of banknotes from multiple countries.
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