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Abstract: The recent developments in measurement technology have led to the installation of
efficient monitoring systems on many bridges and other structures all over the world. Nowadays,
more and more structures have been built and instrumented with sensors. However, calibration and
installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge,
in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors
on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor
installation took place two years after the bridge construction. The calibration was conducted in
two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built
around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample
was subjected to a defined tension force. The sensor response was compared with the applied load.
Experimental results showed that the relationship between load and magnetic permeability does
not depend on the sensor fabrication process except for an offset. The determination of this offset
required in situ calibration after installation. In order to perform the in situ calibration without
removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’
tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic
sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing
bridges and new structures.

Keywords: calibration; elasto-magnetic sensors; cable-stayed bridge; structural health monitoring;
vibration test

1. Introduction

Structural health monitoring (SHM) systems have gained rapid progress with the aid of advanced
technologies in sensing, data communication and data analysis. They provide relevant information on
structural behavior and are particularly important for early damage detection, reliability evaluation
and residual capacity determination. Unnecessary periodical inspections can be avoided leading to
a reduction of maintenance costs by using permanent monitoring systems. Nowadays, monitoring
systems have been widely accepted and used to check the structural health and condition of civil
infrastructure. More and more large-scale monitoring systems have been designed and implemented in
existing structures and during the construction stages. However, the application of monitoring systems
on existing structures can be a challenging and costly task. Many of these structures are cable-stayed
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or cable-suspended bridges. In these structures, the cables are the fundamental components that
guarantee the overall structural safety. Therefore, permanent monitoring of cable stress is of great
importance for assessing the health of such bridges. Measuring stress in cables during the service life
of bridges can be extremely challenging if we use traditional methods. Elasto-magnetic (EM) sensors
use a new low-cost technology for measuring the actual stress in ferromagnetic materials such as
that of steel wires, strands and steel bars. They are considered to be a promising tool owing to heir
non-destructive and non-contact properties, which also include corrosion resistance and long service
life [1,2].

The fundamental principle of EM sensors is the magneto-elastic phenomenon of the ferromagnetic
material. The magnetic properties of a ferromagnetic material change under the application of stress and
under the influence of temperature. Thus, it is possible to measure the stress applied to a ferromagnetic
material by knowing the relationship between magnetic permeability and stress. This relationship can be
derived from the calibration process. The first studies about the magneto-mechanical effect were made
in the 19th Century. Later studies discussed the theoretical background of the magnetization process
in ferromagnetic metals and its application to the magneto-mechanical effect [3,4]. In recent years,
many investigations have been devoted to developing, installing and improving the performance
of EM sensors. In 1996, Kvasnica and Fabo [5] designed a microcomputer-based instrument for the
magnetic measurement of mechanical stress in low-carbon steel wires. In 1998, Wang et al. introduced
the concept of stress monitoring in the cables of cable-stayed bridges by using EM sensors [6] and
confirmed, in 2000, that EM technology can provide adequate accuracy and reliability to monitor the
actual stress of tendons and cables [7]. The reliability of EM sensors in measuring the actual stress of
cables and reinforcement bars has been shown by several literature sources [1,8]. Others have applied
EM sensors to determine the fatigue state in the ferromagnetic steels [9]. In 2003, Cajko discussed a
pulse variant method for measuring the incremental permeability, which improves information and
reduces the specimen heating caused by the traditional techniques [10]. In 2004, numerous experiments
were performed by Singh et al. on ferromagnetic steels at different temperatures and for different
cross-sections, in order to test the accuracy of EM sensors in corrosion evaluation [11]. Rumiche et al.
have reported that EM sensors can possibly be used as a reliable non-destructive tools for the detection
of corrosion in the early stages of carbon steels [12]. Furthermore, Park et al. have proposed a
monitoring technique that enables a cable-climbing robot to detect cross-sectional losses [13]. In 2008,
Wang verified the capability of EM sensing technology for long-term structural health monitoring of
the external tendons of a double-box girder bridge [14]. In the same year, Tang et al. designed a new
EM sensor that performs temperature compensation in a wide temperature range [15]. The use of EM
sensors for the detection of creep in ferromagnetic materials was examined by Polar et al., in 2010 [16].
In the same year, Cao and Wang studied structural effects using data collected by EM sensors [17].
In 2011, Duan et al. developed a smart elasto-magneto-electric sensor for stress monitoring in railway
infrastructures [18]. In 2012, Duan et al. proposed a magneto-electric sensing unit to replace the
secondary coil of conventional EM sensors [19].

In this work, we present how we can instrument in-service cable-stayed bridges with an EM
sensor network, in order to continuously monitor the actual stress of its cables and guarantee the
structural reliability. EM sensors are usually prefabricated and installed on bridge cables during the
construction stages [1,20]. In this situation, the calibration can be carried out by loading and unloading
the cables while recording the temperature. However, in our case, the sensors had to be installed two
years after the bridge construction, and the owner could not allow the cables to be unloaded in order to
perform calibration tests. In this contribution, we demonstrate a low-cost calibration and installation
procedure for monitoring the tension of stay cables using EM sensors. This procedure is suggested for
monitoring stresses in in-service cable-stayed bridges.

The monitored structure, presented in Figure 1, is a cable-stayed bridge spanning Adige River,
10 km north of the town of Trento, Italy. It is a statically indeterminate structure, having a composite
steel-concrete deck of a length of 260 m overall supported by 12 stay cables, six per deck side. The deck
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cross-section consists of four “I” section steel beams of a depth of 2 m carrying a 25 cm-thick concrete
slab. The deck is anchored to a cable every 30 m. The bridge tower is made of four pylons; it is 45 m
high and is located in the center of the bridge. The stay cables are full-locked steel cables of diameters
of 116 mm–128 mm, and they are designed for operational loads between 5000 and 8000 kN. Structural
redundancy, possible relaxation losses and an as-built condition that are different from design suggest
that long-term load redistribution between cables can be expected [21].

This paper is organized as follows. In Section 2, we introduce the physical principle of an EM
sensor and justify the need for calibration. Next, we discuss the calibration process, which is divided
into two phases: one in the laboratory and the other one on site. Section 3 is devoted to the laboratory
calibration, where a sensor was built around a segment of cable, identical to those of Adige Bridge,
and loaded up to 9000 kN. The response of the sensor at various load levels is compared with the load
applied by the machine. Section 4 discusses the installation process and presents the in situ calibration,
during which we carried out vibration tests in order to estimate the tension force of the actual bridge
cables. Next, we assess the sensor accuracy and present one year of data recorded from the EM sensors
after calibration. Finally, Section 5 outlines the conclusions.
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Figure 1. Adige Bridge: (a) plan view with sensor names (1TN–6TN, 1BZ–6BZ); (b) lateral view;
(c) cross-section of the deck.

2. Sensor Physical Principle

When a magnetic field H is applied to a medium, the resulting magnetic flux density B is related
to H, given the magnetic permeability µ of the medium. The value of µ measures how easily a magnetic
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field can traverse a medium. For ferromagnetic materials, this relationship is nonlinear and hysteretic.
Thus, we normally refer to the incremental permeability, which is the ratio between the incremental
changes in the two magnitudes:

µ =
∆B
∆H

. (1)

The magnetic properties of a ferromagnetic material are altered with the application of stress.
The magnetic strain energy Eσ is related to stress σ and the angle θ between the direction of the applied
stress and the magnetization vector, according to the equation:

Eσ =
3
2

λsσ sin2 θ, (2)

where λs is the bulk magneto-restriction strain induced when the sample is magnetized to saturation
magnetization [8]. Equation (2) shows that, in order to minimize Eσ, θ has to change as σ changes.
In other words, the random magnetization field that characterize the specimen before the magnetic
field is applied rotates because of the variation of σ, making a magnetization in another direction
more or less difficult. The measured permeability changes as a result. Hence, the cable stress state
can be obtained from experimental measurements of the magnetic permeability. The easiest way to
achieve this goal is through the principle of magnetic induction: by magnetizing the material using
two solenoids. An EM sensor consists of two coils wound round the tensioned cable, as depicted
in Figure 2a. In order to make a measurement, the cable is subjected to a pulsed magnetic field H
generated by passing a pulsed current through the primary coil. Long measurements are avoided
because they would increase the temperature of the sensor and consequently cause errors during the
reading. The changes in the flux density B produce an output voltage Vind(t) across the secondary
coil around the cable. The induced voltage Vind(t) allows the magnetic properties to be sensed and
deduced through Faraday’s law:

Vind(t) = −N
[

Af
dB(t)

dt
+ (A0 − Af)µ0

dH(t)
dt

]
, (3)

where N is the number of turns in the secondary coil, µ0 is the magnetic permeability of the free space
and A0 and Af are the cross-sectional areas of the secondary coil and the steel element (i.e., the cable),
respectively. If the induced voltage is integrated in the time interval [t1, t2], the time-averaged voltage
output on the secondary circuit is:

V = − 1
t2 − t1

t2∫
t1

Vind(t)dt, (4)

or:

V =
1

RC
NAf

[
∆B +

(
A0

Af
− 1
)

µ0∆H
]

, (5)

where:

∆B =

t2∫
t1

dB
dt

dt, ∆H =

t2∫
t1

dH
dt

dt, (6)

and R and C are the resistance and capacitance of the circuit shown in Figure 2c. If we take the same
measurement without the ferromagnetic material, the resulting output voltage V0 is:

V0 =
1

RC
NA0µ0∆H. (7)
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By taking the ratio of (5) and (7), the permeability can simply be derived from the following equation:

V
V0

=
1

µ0

Af
A0

∆B
∆H

+

(
1− Af

A0

)
= µr

Af
A0

+

(
1− Af

A0

)
, (8)

where µr is the relative permeability of the ferromagnetic material:

µr =
1

µ0

∆B
∆H

. (9)

From Equations (8) and (9), we eventually obtain:

µr = 1 +
A0

Af

(
V
V0
− 1
)

. (10)

Equation (10) directly correlates the relative permeability µr of the steel core to the sensor output
V. Since the output voltage is temperature and stress dependent, the sensor must be calibrated in order
to measure only the stress of the steel rod.
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3. Laboratory Calibration

The first calibration phase was carried out in laboratory conditions using segments of cables
identical to those of Adige Bridge. The cables, with an EM sensor attached, were subjected to
different values of load and temperature. The EM sensors used in this project were supplied by
Intelligent Instrument Systems Inc (Burr Ridge, IL, USA). In order to install these sensors on the
specimen, the primary coil and secondary coil were wrapped around the cable by a winding rig.
Then, the measurements were obtained by recording the permeability variations of the steel core based
on the voltage induced in the secondary coil. This voltage is sensitive to: (1) intensity of magnetization;
(2) stress applied to the cable; (3) cable cross-section; (4) sensor manufacturing process; (5) temperature.
Therefore, the quantification of permeability variations requires investigating the effect of each variable
through the calibration process, which must be performed before using these sensors. The scope of the
calibration is to provide the laws relating the sensor measurements to the stress applied to the cable
and to compensate the effects of the other variables. If we take into account the effect of all parameters
in Equation (8), we obtain:

µr(σ, T, H) = 1 +
A0

Af

(
V(σ, T, H)

V0
− 1
)

, (11)

where σ is the stress applied to the cable and T is the temperature at which the measurement was done.
First, it is necessary to eliminate the dependency of the sensor measurements on the magnetic

field H. This process is experimentally completed by finding the magnitude of the excitation current
that is necessary to make each sensor work. The relationship between the magnetic permeability and
the stress of the cable is linear and stable provided the applied field H is equal to an optimum value [7].
In fact, the magnetic field H should be high enough to technically saturate the cable. The magnetic
saturation is important to obtain the highest possible sensitivity and linearity. However, increasing the
current generates heat, which worsens the performance. Thus, the input current needs to be optimized.
In order to do so, the producer of the sensors performs a set of laboratory tests at various conditions,
so that the best working range can be determined and the effects of H can be ignored in (11).

Next, the effects of temperature and stress on the relative permeability were analyzed using different
stress and temperature levels. This investigation is necessary in order to identify the stress-permeability
relation and compensate the influence of temperature. Since we are interested in the permeability
variations related only to stress variations, the initial permeability of the cable at zero stress has to be
subtracted from the measured one. This operation can simply be accomplished by solving:

∆µ′r(σ, T, T0) = µr(σ, T)− µr(0, T0). (12)

By using Equation (12), we obtain:

∆µ′r(σ, T, T0) =

[
1 +

A0

Af

(
V(σ, T)

V0
− 1
)]
−
[

1 +
A0

Af

(
V(0, T0)

V0
− 1
)]

. (13)

Then,

∆µ′r(σ, T, T0) =
A0

Af

[
V(σ, T)−V(0, T0)

V0

]
, (14)

where T0 is the baseline temperature at which V0 and the permeability at zero stress are measured.
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The temperature effects can be mathematically excluded using the common experimental formula,
which expresses the steel permeability variation due to temperature deviation from the baseline T0.
The formula was experimentally tested by many researchers [22] and confirmed in this study:

∆µ
′′
r (T) = α(T − T0), (15)

where α = dµr/dT is the temperature sensitivity or temperature compensation coefficient.
By compensating the influence of temperature on the measured permeability, Equation (14) becomes:

∆µr(σ, T, T0) = ∆µ′r(σ, T, T0) + ∆µ
′′
r (T) =

A0

Af

[
V(σ, T)−V(0, T0)

V0

]
+ α(T − T0). (16)

This equation relates the permeability variation due to the stress to the voltage output and
temperature variation. By substituting the temperature-compensated relative permeability ∆µr,
the force F applied to the cable can be estimated by polynomial interpolation:

F = C0 +
m

∑
n = 1

Cn∆µn
r = C0 +

m

∑
n = 1

Cn

{
A0

AfV0
[V(σ, T)−V(0, T) + α(T − T0)V0]

}n
, (17)

where Cn are coefficients independent of temperature to be derived from the calibration process.
In order to determine these coefficients, as well as the parameters α and m, the sensor response was
measured under different load and temperature conditions. The load calibration provided Cn and n,
while temperature calibration provided α. During the load calibration, the cables, with the EM sensors
attached, were connected to the tensing machine of Figure 3a, under constant temperature conditions.
Then, the specimens were loaded and unloaded up to a force of 9000 kN, in steps of 1000 kN. After each
load step, the sensor response was measured with at least three voltage readings (as suggested by
the manufacturer) and compared to the force applied by the machine. Figure 3b shows that the
temperature sensitivity of the permeability coefficient slightly depends on load. The permeability
for the force of 7000 kN is an outlier and must be ignored. Figure 4a shows the relationship between
the applied load F and the voltage V, for a cable of a diameter of 128 mm. Curves 3a and 2a are the
responses of the first and second load cycles, at a temperature of 27.2 ◦C. It is clear that the relationship
is not necessarily linear for every value of force. However, as long as the force is greater than 4000 kN,
the relationship can be considered linear. Since the load applied to the cable of Adige Bridge is above
4000 kN, a linear equation was adopted for the force estimation. Moreover, the laboratory calibration
showed that that the relationship curves obtained during several load cycles become more similar after
the second cycle.

The temperature-permeability relationship was studied, and α was estimated by taking voltage
readings at different loads for two different temperatures: 27.2 ◦C and 37.7 ◦C. Curves 1a and 2a
of Figure 4a show an example for a cable with a diameter of 128 mm. The result indicates that the
temperature modification does not affect the slope of the force-voltage curve F-V, but changes its
position. It appears that the influence of temperature is to shift the curve F-V to a new position.
This result is in accordance with Equation (15). A deep examination of the coefficient α reveals that it
is not exactly constant, but changes slightly with the stress level: as is shown in Figure 4b, values from
0.011 ◦C−1 to 0.007 ◦C−1 have been identified at different load levels. Fortunately, the relationship
is linear and can be taken into account in the calibration equation. The temperature sensitivity also
depends on the cable diameter.

Based on the previous considerations, we can assume that the F-V relationship is linear:

F = F0 + a · ((V −V0)− b · (T − T0)), (18)

where a = dF/dV is the force to voltage slope and b = dV/dT is the voltage to temperature sensitivity.
Equation (18) allows the calculation of the force applied to a cable, given its calibration coefficients a, b,
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the voltage response V at temperature T and the response V0 to a reference load F0 and temperature
T0. Table 1 shows the mean and standard deviation of coefficients α, a and b, identified during the
laboratory calibration (data of the third cyclic loading were used).

Further tests were carried out to verify the repeatability of measurements. Figure 4b shows the
response of three different sensors manufactured in the laboratory on the same cable and using the same
procedure. The curves are similar in the slope a, but exhibit very different shifts in position, making
the installation of each sensor non-repeatable. Additional tests showed that the voltage-to-temperature
sensitivity dV/dT and α are virtually independent of the manufacturing process. The scatter in the
curve of slope a is relatively small and can be attributed to a bias error.
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Figure 4. (a) different load-voltage calibration curves of the same sensor: the (3a) and (2a) lines are
for different load cycles at temperature T = 27.2 ◦C, while the (1a) line was recorded at temperature
T = 37.7 ◦C; (b) force to voltage ratio for three different sensors, after temperature compensation.

Table 1. Mean and standard deviation (StD) of coefficients α, a and b identified by laboratory calibration.

Cable Diameter (mm)
α (1/◦C) a (kN/V) b (V/◦C)

Mean StD × 10−3 Mean StD Mean StD

116 –8.79 1.40 6.35 0.34 –7.48 2.08
128 –9.27 2.42 6.20 0.66 –8.88 1.32

As a result of the laboratory calibration, a relationship of the type shown by Equation (18) is
achieved for each combination of cable and sensor. However, due to the uncertainty in reference
load F0, each sensor requires an on-site calibration after installation for at least one value of tension
and temperature.

4. Installation, On-Site Calibration and Accuracy Estimation

After the laboratory calibration, 12 EM sensors were manufactured on site and installed on the
12 cables of Adige Bridge. The primary and secondary coils were wound around each cable by a
winding machine, as shown in Figure 5a. After completing the winding procedure, temperature gages
were attached, and electric cables were connected. The two coils were separated by plastic shells and
protected by half-cylindrical epoxy covers (Figure 5b).
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The in situ calibration was carried out without unloading the stay cables. The goal of this
calibration was to define, for each cable, the offset F0 that the laboratory calibration showed to be
dependent on the installation process. In order to estimate the reference loads of the cables of Adige
Bridge without releasing the cables, vibration tests were performed. Two different accelerometers
were applied near each other on each cable (Figure 5c). The connection was made by fastening a
steel shell on the cable. Then, the accelerometers were glued to an aluminum plate, and the plate
bearing the accelerometers was later screwed to the shell. The whole system was considered perfectly
rigid. The test was carried out for each cable by recording its response to a hammer blow with a rate
of 500 Hz. Figure 6 shows as an example the response of cable 1TN (Figure 1a). Next, frequency
spectrums were obtained by implementing a fast Fourier transform (FFT). The frequency spectrum
of cable 1TN is shown in Figure 7a. Despite the peak frequencies being clearly visible in the graphs
obtained through the FFT, the natural frequencies were calculated by fitting the spectrums (Figure 7b)
with the theoretical expression:

q( f ) = ∑
n = 1

An f 2

| f 2
n − f 2 − 2ξ · i · fn · f | , (19)

where q is the acceleration, fn are the peak frequencies, f is the frequency (the independent variable),
An are the acceleration at the peak frequencies, ξ is the relative damping and i2 =−1. In (19), parameters
An, ξ and fn were considered unknown, while the sum was carried out up to frequencies of about
45–50 Hz. This let us identify the natural frequencies fn shown in Table 2 with a precision of 0.02 Hz.
After extracting the harmonic series of the signal, the tension was estimated using the following
expression [23–25]:

F = k
(

2L
n

)2
f 2
n −

(πn
L

)2
EJ, (20)

where k is the linear mass of the cable, L the cable length, fn the frequency of the nth harmonic, E the
apparent Young’s modulus of the cable steel and J the moment of inertia of the cable cross-section.
More specifically, we fitted the relationship between the experimental frequency f n and the harmonic
order n using F as a parameter.

Despite this method considering only the bending effect and neglecting the effects of sag-extensibility,
this approach is often used in practice due to its simplicity and speediness. For cable 1TN, the effect of
parameter estimation is shown in Figure 7b. It was observed that the first seven modes deviate from
the curve fitting obtained from the other modes. The reason may be attributed to the sag-extensibility
effects, which mainly affect the lower modes. It has been proven by many studies that the utilization
of higher modes provides better accuracy [25,26]. Thus, the first seven lower modes were neglected in
this work.

While the vibration test was being performed, the voltage of the EM sensor installed on the
vibrating cable was recorded together with its temperature value. Table 3 shows the acquired data.
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Table 2. First 16 frequencies in Hz obtained with FFT.

No. 1TN 2TN 3TN 4TN 5TN 6TN 1BZ 2BZ 3BZ 4BZ 5BZ 6BZ

1 – 1.913 2.568 2.698 1.827 1.419 1.459 1.923 2.618 2.689 1.892 1.447
2 2.641 2.659 5.201 5.372 3.770 2.857 2.914 3.845 5.217 5.349 3.777 2.889
3 3.964 3.825 7.782 8.059 5.644 4.264 4.360 5.768 7.808 8.015 5.653 4.318
4 5.280 5.730 10.107 10.561 7.512 5.669 5.781 7.625 10.222 10.509 7.521 5.732
5 6.590 7.585 12.181 12.774 9.285 7.089 7.227 9.494 12.398 12.725 9.293 7.185
6 7.901 9.416 14.384 14.934 11.006 8.500 8.680 11.270 14.941 14.847 11.065 8.613
7 9.176 11.205 16.813 17.459 12.540 9.878 10.080 12.875 16.834 17.251 12.604 10.012
8 10.388 12.799 19.639 20.293 14.400 11.189 11.438 14.545 19.456 20.104 14.314 11.344
9 11.590 14.441 22.360 23.277 15.985 12.479 12.790 16.316 22.660 23.044 16.024 12.651

10 12.774 16.212 25.553 26.431 17.986 13.695 14.074 18.303 25.812 26.170 18.010 13.991
11 14.015 18.223 28.856 29.737 20.040 14.946 15.447 20.387 29.022 29.411 20.102 15.168
12 15.256 20.273 32.152 33.184 22.190 16.417 16.842 22.560 32.324 32.752 22.194 16.614
13 16.647 22.435 35.594 35.856 24.370 17.926 18.346 24.788 35.766 36.200 24.382 18.127
14 18.074 24.654 39.083 40.719 26.680 19.467 19.921 27.061 39.246 39.743 26.633 19.676
15 19.511 26.899 42.119 44.537 28.946 21.034 21.506 29.384 42.837 43.370 28.893 21.263
16 21.019 29.205 46.878 48.485 31.262 22.640 23.143 31.741 46.217 47.068 31.245 22.880

Table 3. Forces from vibration tests and voltages acquired during the in situ calibration.

Cable 1TN 2TN 3TN 4TN 5TN 6TN 1BZ 2BZ 3BZ 4BZ 5BZ 6BZ

Fi (kN) 6670 5400 4260 4930 6320 7030 6930 6600 4570 4600 6320 7120
σF,i (kN) 151 194 188 206 185 148 154 196 191 203 186 152

Vi (V) 5189 5248 4631 4589 5368 5282 5374 5139 4480 4496 5303 5584
σV,i (V) 5 7 5 5 5 5 12 9 5 5 5 13
Ti (◦C) 23 31 26 22 13 14 30 26 21 18 17 15

σT,i (◦C) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Experimentally, it has been found that the estimated loads have limited accuracy even when many
harmonics are identified: the standard deviation of the baseline cable tension was 200–300 kN for cable
tension varying from 4000 kN to 7000 kN. Furthermore, due to uncertainties in the coefficients a and b,
the accuracy deteriorates when the conditions are different from those of calibration. Figure 8 shows
the expected standard deviation for different values of tension and temperature simulated using Monte
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Carlo analysis [27]. The graph shows that the most significant source of error is the inaccuracy of the
baseline measurement. Compared to this, the uncertainty in force sensitivity is not critical, while the
temperature sensitivity can result in an additional error of 50 kN. Similar results were found for all the
cables of Adige Bridge.
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5. Monitoring Data

The in situ calibration of the force in each cable enabled the continuous acquisition of data from
the monitoring system. The values of temperature and force acquired since 1January 2017 are shown
in Figure 9. The effect of temperature on the sensors was removed from the data of Figure 9, while the
effect of temperature on the structure was not. The figure shows, for each cable, one value per day,
recorded in the early morning, at about 6:00 a.m. At this time, the temperature of the whole structure
is approximately homogenous. However, the average daily temperature changes during the year.
Since the structure is statically indeterminate, we expected different temperature effects on different
cables due to load redistribution. Figure 9 proves that the force in the cables is severely affected by
the temperature variations. The monitoring data show that the force of the cables anchored near the
bridge shoulders (1TN, 1BZ, 6TN and 6BZ) increases with temperature, while the force of the cables
anchored near the tower (3TN, 3BZ, 4TN and 4BZ) decreases with temperature. The explanation of
this phenomenon is beyond the scope of this paper and will be made in future work. Nevertheless,
the force recorded from the stay cables was compatible with the behavior predicted during the design
of the structure and was in the range of the force obtained from vibration tests, which confirms the
reliability of EM sensors.
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6. Conclusions

In this contribution, we begin by providing a description of EM sensors for the monitoring of
tension in ferromagnetic cables. Then, using the case study of Adige Bridge, we show the feasibility
of monitoring the force in stay cables. We explain how calibration of EM sensors and installation on
existing cables can be easily performed. One year of data from the EM sensors installed on Adige Bridge
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is presented at the end of the paper in order to show the reliability of the sensors. Our concluding
remarks on the use of this technology can be summarized as follows.

The stability of the force-to-voltage and voltage-to-temperature sensitivity, which are not affected
by the installation process, assert EM sensors’ applicability and eases the installation of EM sensors on
existing structures.

Experimental results showed that two calibration stages are required: the first must occur in
laboratory conditions, and the second is to be performed on site. The former is needed in order to
define the force-to-voltage and voltage-to-temperature sensitivity; the latter is required to determine
the offset in voltage, which depends on installation.

EM sensors can measure the real stress of a steel cable even when the zero-stress state of the
cable is unknown. Actually, neither the laboratory calibration, nor the in situ calibration enabled us to
measure the zero-stress state, because the force-to-voltage relationship was non-linear for small values
of load.

However, in order to monitor the actual force of stay cables such as those of Adige Bridge, it is
required to measure at least one value of real stress and the corresponding sensor response and
temperature for each cable. In our case study, in order to obtain the tension of the existing cables,
vibration tests were carried out.

For Adige Bridge, the precision of the force measurements was better than 200 kN, which is a
relatively high value, but acceptable. This precision was mainly due to the inaccuracy of the baseline
measurements (second calibration stage).

To sum up, EM sensors are a promising, simple and affordable tool for stress monitoring of steel
structures. EM sensor technology enables simple and inexpensive installation on in-service bridges,
without any change being made to the bridge structures. Moreover, it provides adequate accuracy and
reliability for monitoring the actual stress of steel cables during the entire service life of civil structures.
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