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Abstract: The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims
to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things
(IoT) environments. This paper presents an accurate and up-to-date energy consumption model for
devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and
radio state changes, thus providing a precise representation of the device behavior and an accurate
prediction of its energy consumption. Moreover, energy measurements were performed with a
dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for
devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations
were conducted to observe the TSCH energy consumption effects in end-to-end communication for
both frequency bands. Experimental verification of the model shows that it accurately models the
consumption for all possible packet sizes and that the calculated consumption on average differs less
than 3% from the measured consumption. This deviation includes measurement inaccuracies and
the variations of the guard time. As such, the proposed model is very suitable for accurate energy
consumption modeling of TSCH networks.

Keywords: IEEE 802.15.4e; TSCH; energy modeling; OpenMote

1. Introduction

The well-known IoT paradigm is comprised numerous devices that connect to the Internet and
contribute to world-wide interconnectivity. Low energy consumption is generally expected of the
connected devices, while at the same time being confronted with challenges such as a low expected
manufacturing cost, mobility while being connected and deployment in often difficult-to-reach places.
This makes minimizing the energy consumption, while still fulfilling strict reliability demands, one of
the major challenges of IoT communications.

To achieve high reliability with minimal power consumption, many research works have been
conducted on MAC protocols featuring these requirements [1]. An important development was the
IEEE 802.15.4 MAC layer and more specifically the IEEE 802.15.4e MAC amendment that proposed
the TSCH mode. TSCH-enabled networks achieve a reliability of 99.999% with minimal power
consumption, proving to be a promising solution for wireless industrial networks. TSCH uses channel
hopping to improve reliability by minimizing the effects of external interference and multi-path fading.
In order to limit the power consumption, it uses a time-synchronized schedule that tells a node exactly
when to send and receive data and thus avoids wasting energy during contention periods and idle
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listening. The deterministic nature of TSCH scheduling allows for precise modeling of the energy
consumption as has been done in the work by Vilajosana et al. [2]. Such a model allows for a detailed
energy analysis of new TSCH scheduling functions or new protocols on top of the TSCH MAC layer
(e.g., routing protocols), during simulated or real-world experiments.

In this paper, we propose a novel, more accurate and up-to-date energy consumption model
for the IEEE 802.15.4e TSCH mode. It consists of two main contributions. First is a new energy
consumption model, based on the work by Vilajosana et al. [2], built from the ground up. It includes a
more up-to-date and elaborate set of time slots and states, while using state-of-the-art IoT hardware
and firmware. Additionally, the model is extended to support variable packet sizes, a feature absent in
the previous work, that allows for a more accurate energy consumption analysis for all packet sizes. As
a second contribution, new state durations and state energy consumption measurements are presented
for both the 868 MHz and 2.4 GHz frequency bands, using state-of-the-art OpenMote hardware [3,4].
Moreover, we experimentally verify the accuracy of our model by comparing the calculated values
for both the 868 MHz and 2.4 GHz band to the measured values and compare the model to that of
Vilajosana. Finally, the new measurements are used to analyze the end-to-end performance of a TSCH
network using the official IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) simulator [5].

The remainder of this article is structured as follows. In Section 2, we elaborate on TSCH and
related work on energy modeling. Subsequently, Section 3 introduces the model itself. In Section 4, the
measurement methodology is discussed and the measurement values are presented. Afterwards,
the proposed model is evaluated in Section 5 by analyzing calculated values and measured
consumption values and comparing the model to a state-of-the-art model. That section also shows
the results of the TSCH network simulations to show the energy consumption effects of 868 MHz and
2.4 GHz communication. Finally, Section 6 presents the conclusions of our work.

2. Background and Related Work

In this section, we briefly introduce TSCH and the open-source OpenWSN project that is used as
firmware. Afterwards, the used OpenMote hardware is discussed. Finally, we compare our work to
existing energy consumption models.

2.1. Time-Slotted Channel Hopping

In TSCH networks, every node follows a time-synchronized schedule. This schedule instructs
every node about exactly what to do and avoids wasting valuable energy. The TSCH schedule is
divided into time slots. The duration of a time slot is typically 10 ms or 15 ms and sufficient to transmit a
packet of the maximum size of 127 bytes, immediately followed by an optional acknowledgment frame
indicating that the packet was successfully received. Multiple time slots are grouped into a slot frame,
and the size of a slot frame defines the width of the schedule. These slot frames repeat continuously
over time. TSCH also allows one to use multiple frequencies, leading to a two-dimensional matrix of
cells. The number of available frequencies actually determines the height of the schedule.

A schedule can contain four possible cell types: TX, RX, shared and off. The first two indicate
that the node should send or receive, respectively. Shared cells can be used by any node, and a
contention-based back-off mechanism manages the access to it. They are used to synchronize, join and
boot up the network [6]. An off cell indicates that the radio of the node should be turned off. The cells
in a schedule are updated dynamically by a so-called scheduling function that takes into account the
necessary resources to handle the traffic load and prevents wasting resources.

TSCH also wuses channel hopping to combat multi-path fading and external
interference [7]. This channel hopping depends on the Absolute Sequence Number (ASN) and the
number of channels. The exact frequency on which two nodes will communicate is determined by
frequency = F((ASN + channelOf fset) mod nFreq) where F is a lookup table containing the set of
available channels, channelOf fset is the channel offset of the time slot in the schedule and nFreq is the
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number of available frequencies. The slot frame size (i.e., number of slots in a single slot frame) should
be a prime number in order to be sure that every frequency is used.

Figure 1 illustrates an example of a TSCH schedule with a slot frame size of 101 cells and
16 channel offsets. It represents a combination of all schedules of each individual node. Each cell in the
schedule represents a specific time slot and channel offset in which directed communication between
nodes can be assigned. These assigned cells can either be dedicated to a single transmitter (e.g., from
node W to node Z in the cell with a slot offset of one and a channel offset of two), or they can be shared
between multiple nodes (e.g., the shared cell with a slot offset of zero and a channel offset of one).
All other cells are considered off cells.

This article focuses on TSCH in IEEE 802.15.4e, but the research is also easily transferable to other
protocols using TSCH, e.g., WirelessHART and ISA100.11a [8,9].
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Figure 1. TSCH schedule example.

2.2. OpenWSN

OpenWSN is an open-source project that implements the IPv6 over the TSCH mode of
IEEE 802.15.4e (6TiSCH) architecture [10]. The 6TiSCH network architecture tries to standardize
IPv6 on top of the TSCH mode of IEEE 802.15.4e and as such bridge the gap between deterministic
industrial networks and traditional IP networks [11]. It aims to provide low latency and high reliability
for low-power, critical wireless applications. As such, the OpenWSN firmware provides a complete
protocol stack based on IoT standards such as IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN), Routing Protocol for Low-power and Lossy network (RPL) and Constrained Application
Protocol (COAP) [12-14], as shown in Figure 2. The newest update of the OpenWSN firmware was
used when rebuilding and extending the energy model [15]. The hierarchical design of the project
makes it relatively easy to port the project to new hardware platforms. Hardware drivers for most
common IoT hardware are already available as part of the OpenWSN project itself.

COAP | 0scoar| PN | RPL

UDP Internet Control
Message Protocol

IPv6

6LoWPAN adaption and compression

6top sublayer
IEEE 802.15.4e TSCH
IEEE 802.15.4 PHY

Figure 2. The IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) architecture stack. RPL, Routing
Protocol for Low-power and Lossy network.
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Next to the firmware, useful software such as the OpenVisualizer is also provided. Although the
main use of the OpenVisualizer project is to connect the OpenWSN network to the Internet, it also
provides the ability to monitor the network. The tool shows the internal state of all the motes that are
physically connected to the computer running the OpenVisualizer, e.g., the neighbor table, scheduling
table and packet queue. It also has the ability to run simulated motes and to debug the communication
with Wireshark [16].

2.3. OpenMote Hardware

The measurements presented in this paper are performed using OpenMote, a modular
open-hardware ecosystem designed for the industrial IoT [3]. The platform was developed at UC
Berkeley and is designed to efficiently implement IoT standards such as 6TiSCH.

OpenMote-CC2538 is the core of the OpenMote hardware ecosystem. It is the most important
component, and other components (e.g., the OpenBattery) are considered to be extensions of
it. It features a Texas Instruments CC2538 System-on-a-Chip (SoC) that consists of a 32-MHz
micro-controller with 32 kB of RAM and an IEEE 802.15.4-compliant 2.4 GHz radio.

The OpenUSB version used in this article has a CC1200 radio chip. Unlike the CC2538, which has a
2.4 GHz radio, the CC1200 is a radio transceiver that operates in the 900-MHz range, e.g., the 868 MHz
band in Europe. This allows for longer-range communication between the motes. As OpenUSB only
holds the CC1200 radio transceiver, it needs to be connected to OpenMote-CC2538, which holds the
microprocessor to control it.

Currently, a new board called OpenMote B is being released. OpenMote B will be a
next-generation, dual-band OpenMote device [4]. It provides a dual-radio interface for short- and
longer range communication, combined on one board.

2.4. TSCH Energy Modeling

As minimizing the energy consumption is one of the major challenges of IoT networks, much
research has already been conducted on this topic. Some of the research already focused on TSCH
energy modeling.

Some works target specific features in TSCH. De Guglielmo et al. proposed an analytical model
of the IEEE 802.15.4e TSCH CSMA-CA algorithm that is used in shared time slots [17]. The authors
also observed that the capture effect has a significant impact on the performance of the CSMA-CA
algorithm. Papadopoulos et al. investigated the impact of the guard time in TSCH [18]. The authors
decreased the guard time duration when motes were closer to their sink and concluded that this
results in significant savings in energy consumption without compromising network reliability. While
these works only aim at specific TSCH elements, the proposed work provides an energy consumption
model for the whole of the IEEE 802.15.4e TSCH mode. Other works such as Juc et al. compared
the performance of the TSCH and Deterministic and Synchronous Multichannel Extension (DSME)
modes of 802.15.4e [19]. The authors do not propose a model themselves. They observed that TSCH
mode tends to consume more energy than DSME mode. This is due to the large fixed guard time in
TSCH and because DSME can aggregate multiple acknowledgments and transmit a single group of
acknowledgments.

Finally, Vilajosana et al. presented an energy model for TSCH networks, using the OpenMote
and OpenWSN for their experimental validation [2]. The values from the model were compared
to measurements on the GINA and OpenMote-STM32 platforms. Our paper continues the work of
Vilajosana, but explores several differences and improvements. As such, we propose a model with
an extra time slot type (i.e., TxDataRxNoAck), provide an extended and a more up-to-date set of states
per time slot and extend the model to support variable packet sizes. Furthermore, the OpenWSN
firmware has been continuously updated, and the current software version has changed substantially
since the version used by Vilajosana in 2013. Finally, by using the OpenMote-CC2538 and OpenUSB
board, this paper focuses on state-of-the-art hardware. This allows us to consider the TSCH energy
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consumption in both the 868 MHz and 2.4 GHz band. To the best of our knowledge, we are the first
to do this. We also explicitly look at the difference in power consumption between using a SoC and
the case with a separate micro-controller and radio chip. All the steps in developing the model are
explained in detail, allowing it to be used for different types of hardware by simply changing the
measured consumption values.

3. TSCH Energy Model

In this section, the proposed TSCH energy model is introduced. First, all types of time slots
are discussed, followed by a more detailed examination of the states in these time slots. Afterwards,
the time slot energy model is presented. Finally, we explain how the slot model could be adapted for
use with different hardware. The implementation of the proposed model can be found in [20].

3.1. TSCH Time Slots

A TSCH schedule can contain different types of time slots, i.e., cell types, to indicate that a node
should transmit, listen or put its radio to sleep. In IEEE 802.15.4e, seven different types of time slots
can be identified:

*  TxDataRxAck: The mote sends a frame during this time slot and receives an ACK when the data
have been received successfully.

®  TxData: The mote sends a frame during this time slot, but does not expect an ACK (e.g., broadcast or
multicast frames such as RPL Destination Oriented Directed Acyclic Graph Information Object
(DIO) messages).

®  RxDataTxAck: The mote listens and receives a frame in this time slot and replies with an ACK to
indicate that it successfully received the frame.

*  RxData: The mote listens and receives a frame in this time slot, but no ACK is sent (e.g., broadcast or
multi-cast frames).

e RxIdle: The mote listens, but does not receive a frame in this time slot.

®  Sleep: The mote does not transmit or receive during this time slot.

*  TxDataRxNoAck: The mote sends a frame and expects an ACK, but no ACK is received. This could
be caused by a collision of the data frame.

The proposed model divides each time slot into different states. Figure 3 illustrates this and
presents a general overview of the activity of a transmitter and receiver during a TxDataRxAck time slot
and RxDataTxAck time slot, respectively. Some of the states seen in Figure 3 consist of two parts: one
part where the CPU is active and one part where the CPU is sleeping. These two parts are considered
as separate states in our model. The state of the radio in our model only changes at moments when the
CPU state changes. This is a simplification as in the real world, the radio state changes slightly before
or after this moment, typically while the CPU is active.
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TRANSMITTER | oeeser PREPARE READY | DELAY TXDATA OFFSET|  PREPARE | READY LISTEN RXACK prOC | SHEFP
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Figure 3. States in TxDataRxAck (transmitter) and RxDataTxAck (receiver) time slots, together with the
CPU and radio activity in the TxDataRxAck time slot.
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The remainder of this section explains the TxDataRxAck time slot in full detail. The other
slots are modeled similarly, and we limit the discussion to highlighting the differences with the
TxDataRxAck slot.

3.1.1. Time Slot TxDataRxAck

The different states of the TxDataRxAck time slot are shown in Figure 3, and Table 1 lists the
exact CPU and radio states at each moment. As can be seen in the table, the CPU has two states, i.e.,
Sleep and Active, while the radio has five states, i.e., Sleep, Idle, Listen, Transmit (TX) and Receive (RX).

Table 1. States in a TxDataRxAck slot.

State CPU State Radio State
TxDataOffsetStart Active Sleep
TxDataOffset Sleep Sleep
TxDataPrepare Active Idle
TxDataReady Sleep Idle
TxDataDelayStart Active Idle
TxDataDelay Sleep X
TxDataStart Active X
TxData Sleep X
RxAckOffsetStart Active Sleep
RxAckOffset Sleep Sleep
RxAckPrepare Active Idle
RxAckReady Sleep Idle
RxAckListenStart Active Idle
RxAckListen Sleep Listen
RxAckStart Active RX
RxAck Sleep RX
TxProc Active Idle
Sleep Sleep Sleep

At the beginning of each time slot, the CPU wakes up and performs the tasks required for any
slot. This includes incrementing the ASN and scheduling the next state depending on the type of the
slot. The CPU then sleeps again during TxDataOffset until the moment the radio is needed.

During TxDataPrepare, the radio wakes up, the channel is set and the bytes to transmit are loaded
into the radio. The duration of this state is variable, mainly because the time necessary to load the
bytes depends on the frame size. Since this state always starts at the same offset and has a variable
duration, there is some time left between the TxDataPrepare and the actual transmission. During this
TxDataReady state, the radio is in Idle mode, while waiting until it is time to transmit. To minimize
the energy consumption of the mote, the duration of the TxDataReady state should thus be as short
as possible.

The first byte behind the Start-of-Frame Delimiter (SFD) has to be transmitted exactly Tx0ffset ms
after the start of the time slot. In order to do so, the time required to switch the radio from Idle to TX
mode has to be taken into account. The duration of the TxDataDelay equals the time between the TX
command being sent to the radio and the moment the SFD has been transmitted.

After the RxAckOffset that follows where the mote sleeps, the RxAckPrepare state then prepares
the radio again by waking it up and setting the correct channel. Any time less than the maximum
duration of RxAckPrepare is then spent in the RxAckReady state.

The ACK is transmitted TxAckDelay ms after the end of the TxData state. Because the clocks of
the transmitting and receiving node may not be perfectly synchronized, the ACK might arrive slightly
earlier or later than expected. The radio is thus turned on at the start of the RxAckListen instead
of just in time for the data. If no ACK is received during the Acknowledgment Guard Time (AGT)
period, the mote turns off the radio and considers the transmission failed. The duration of the AGT
is defined as 1000 ps in OpenWSN. When the clocks between the motes are perfectly synchronized,
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the RxAckListen state has a duration of AGT/2 plus the time to change the radio from Idle mode to
RX mode (which is considered to be instantaneous in OpenWSN).

During the TxProc state, the ACK is read from the radio and the transmission is considered
successful when the ACK is valid. The mote also synchronizes its clock based on the offset between
TxAckDelay and the actual data reception time, if the ACK came from its parent in the network routing
graph. For the remaining part of the time slot, both the CPU and radio are in Sleep mode.

3.1.2. Time Slot RxDataTxAck

This time slot can be considered the opposite of the TxDataRxAck. The states to handle the
data in TxDataRxAck are found in handling the ACK in RxDataTxAck and vice versa. All states of the
RxDataTxAck time slot can be found in Table 2.

Table 2. States in a RxDataTxAck slot.

State CPU State Radio State

RxDataOffsetStart Active Sleep

RxDataOffset Sleep Sleep
RxDataPrepare Active Idle
RxDataReady Sleep Idle
RxDatalistenStart Active Idle

RxDataListen Sleep Listen
RxDataStart Active RX
RxData Sleep RX
TxAckOffsetStart Active Idle

TxAckOffset Sleep Sleep
TxAckPrepare Active Idle
TxAckReady Sleep Idle
TxAckDelayStart Active Idle
TxAckDelay Sleep X
TxAckStart Active X
TxAck Sleep X

RxProc Active Sleep

Sleep Sleep Sleep

The guard time for the data is however larger than the AGT that is used for ACKs. The Packet
Guard Time (PGT) determines how long the radio listens for the data before the radio is turned off.
When no data are received during the PGT period, we classify the time slot as RxIdle instead of
RxDataTxAck. In OpenWSN, the PGT is defined as 2600 ps.

3.1.3. Time Slot TxData and RxData

When no ACKs are required (e.g., for broadcasts), only the first half of the time slot is used.
During the TxData and RxData slots, the mote sleeps once the data have been transmitted or received.
The states for both TxData and RxData are shown in Tables 3 and 4, respectively.

Table 3. States in a TxData slot.

State CPU State Radio State

TxDataOffsetStart Active Sleep

TxDataOffset Sleep Sleep
TxDataPrepare Active Idle
TxDataReady Sleep Idle
TxDataDelayStart Active Idle
TxDataDelay Sleep TX
TxDataStart Active X
TxData Sleep X

TxProc Active Sleep

Sleep Sleep Sleep
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Table 4. States in a RxData slot.

State CPU State Radio State

RxDataOffsetStart Active Sleep

RxDataOffset Sleep Sleep
RxDataPrepare Active Idle
RxDataReady Sleep Idle
RxDatalistenStart Active Idle

RxDataListen Sleep Listen
RxDataStart Active RX
RxData Sleep RX
RxProc Active Idle

Sleep Sleep Sleep

3.1.4. Time Slot RxIdle

When the transmitter has no data to send, the slot that could have been a TxDataRxAck becomes a
Sleep slot. However, on the receiver side, a different type of slot is needed to represent the behavior
of the node: the RxIdle slot occurs when the receiver expects data, but does not receive anything.
The states of RxIdle are shown in Table 5. The behavior of RxIdle is not an error; it simply means that
a slot was reserved, but the transmitter did not have any data to send at that moment.

Table 5. States in a RxIdle slot.

State CPU State  Radio State

RxDataOffsetStart Active Sleep

RxDataOffset Sleep Sleep
RxDataPrepare Active Idle
RxDataReady Sleep Idle
RxDatalistenStart Active Idle

RxDataListen Sleep Listen

RxProc Active Sleep

Sleep Sleep Sleep

3.1.5. Time Slot Sleep

In time slots where no data have to be transmitted or received, the node sleeps during the whole
duration of the slot. The CPU of the node only briefly wakes up at the start of the slot, e.g., to increment
the ASN. The states of the Sleep time slot are shown in Table 6.

Table 6. States in a Sleep slot.

State CPU State Radio State
SleepStart Active Sleep
Sleep Sleep Sleep

3.1.6. Time Slot TxDataRxNoAck

There are many error states in OpenWSN. The code would go into an error state when, for
example, the radio remains active too long or when the prepare state lasts longer than the maximum
allowed duration. It is unlikely that the code would end up in most of these error states unless there is
a configuration issue. However, there is one error state that is likely to occur eventually: a missing ACK.
In the TxDataRxAck slot, data are transmitted and an ACK is received, but in the slot that we refer to as
TxDataRxNoAck, the ACK is expected, but not received. In this case, the node stays in the RxAckListen
state during the AGT period and does not enter the RxAck state. After the AGT period, the radio goes
to sleep during the TxProc and Sleep state, as can be seen in Table 7.
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Table 7. States in a TxDataRxNoAck slot.

State CPU State Radio State
TxDataOffsetStart Active Sleep
TxDataOffset Sleep Sleep
TxDataPrepare Active Idle
TxDataReady Sleep Idle
TxDataDelayStart Active Idle
TxDataDelay Sleep X
TxDataStart Active X
TxData Sleep X
RxAckOffsetStart Active Sleep
RxAckOffset Sleep Sleep
RxAckPrepare Active Idle
RxAckReady Sleep Idle
RxAckListenStart Active Idle
RxAckListen Sleep Listen
TxProc Active Sleep
Sleep Sleep Sleep

3.2. TSCH Energy Consumption Model

Having identified all states per time slot, the model for the charge drawn during a time slot
can be constructed. The resulting charge (in coulombs) drawn from the battery during a slot, Qgjot,
is represented by:

Qsiot = 2 Atstate X Istate 1)
StatecSlot

with Atgare and Igggy, the state duration and current drawn in each state, respectively. The unit of the
duration is milliseconds (ms), while the unit of the current is milliamperes (mA), meaning that the unit
of the resulting charge is microcoulombs (1uC). This can be used to calculate the total charge drawn for
each of the slot types discussed in Section 3.1.

Subsequently, the model previously proposed by Vilajosana et al. [2] can be employed to calculate
the total charge drawn across a slot frame. This in turn can be used to compute the lifetime of a mote.
That model, however, has one major shortcoming. It does not consider the actual packet size when
calculating the charge drawn by a slot. Instead, it takes the consumed charge values for the maximum
packet size and scales those linearly based on the actual packet size:

QNsent — Nsent X MAaXpktSize (2)
slot MAX i Size slot

With Nge; the number of bytes being sent in the packet and maxpys;,, the maximum packet
size for which measurements were performed. However, this leads to highly inaccurate estimates,

especially for small packet sizes, as the duration of most states with the slot is independent of the
Nient
slot 7

based on actual measurements with different packet sizes. This is achieved by expressing the duration
of each state that depends on the packet size, as a linear function of the packet size, rather than a fixed
value for the maximum packet size. This is elaborated on in Section 4.

packet size. In contrast, we propose a more accurate estimation of the charge drawn in a slot Q

3.3. Different Hardware Support

Since the model has an elaborate set of parameters, adapting the model to different hardware while
maintaining an equal level of accuracy is a burdensome task. However, at the cost of a slight decrease
in accuracy, the model can easily be simplified in order to apply it to different hardware. For example,
one can set the duration of short states to zero (e.g., TxDataDelayStart and RxAckOffsetStart) and
only update the states that have the most impact on consumption. Alternatively, the duration can be
estimated instead of measured as most durations will be very similar to the ones presented in this
article. Furthermore, the consumption of the CPU and radio does not have to be measured: these
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values can be found in the data sheet of the manufacturer. The resulting model will be slightly less
accurate, but no or only a few additional measurements have to be made to use this model to simulate
the charge drawn by other TSCH hardware.

4. Measurements

This section first presents the setup used to measure the duration and energy consumption of each
state of each slot type. Afterwards, the measurements of the time slot state durations are discussed
together with how the duration values are affected by the packet size. Finally, the consumption of each
device state is presented with a detailed discussion for each of the two evaluated radios.

4.1. Methodology

In this section, the necessary adaptations to the OpenWSN firmware, that allowed performing
the measurements, are briefly explained. Additionally, the two measurement setups for both the state
duration and energy consumption measurements are discussed.

4.1.1. Firmware Changes

To perform valid measurements, the firmware code that toggles debug pins and LEDs on the
OpenUSB board was disabled. Furthermore, the serial communication code was also completely
disabled because even when the OpenUSB is not connected to a computer, the code would still try to
output data, unnecessarily increasing power consumption.

In order to prepare the 2.4 GHz driver for the measurements, only small adaptations had to be
made to the original firmware. The firmware for the 868 MHz driver however required additional
implementation effort, as there were no working drivers for the CC1200 radio chip on the OpenUSB.
Based on a branch of the official OpenWSN repository [21], we implemented a working CC1200 radio
driver, which can be found in [15].

4.1.2. State Duration Measurements

All state duration measurements were done using the EFM32GG-STK3700 Giant Gecko Starter
Kit from Silicon Labs [22]. The setup is shown in Figure 4. Using the Gecko board, an OpenUSB pin
was connected to pin PB9 of the Gecko board, enabling the Gecko to measure how long the connected
OpenUSB pin was made low. The OpenMote firmware would then make the connected pin low at the
beginning of the measurement and high at the end of the measurement. The output was sent over
Serial Wire Output (SWO) to the console in the proprietary software Simplicity Studio on the connected
computer, where post-processing of the duration data was applied [23]. The duration measurements
were averaged in case variability between different measurements was noticed.

Figure 4. Setup used to measure state durations with a connection from the PB9 pin on the Gecko
board (bottom) and to the PD2 pin on the OpenUSB (top).
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4.1.3. Energy Consumption Measurements

In order to perform the different energy consumption measurements, a setup different from the
Gecko setup, described in Section 4.1.2, needed to be used. As the consumption of the OpenMote
hardware happened to exceed 50 mA (i.e., the maximum of the Gecko measuring range), we switched
to using the Keysight N6705B DC Power Analyzer [24]. Using the two-wire mode, the Voltage Common
Collector (VCC) and Ground (GND) pins of the OpenMote-CC2538, in the 2.4 GHz measurement setup,
and of the OpenUSB with the OpenMote-CC2538 attached, in the 868 MHz measurement setup, were
connected to the power supply output of the N6705B, which was configured to provide an input
voltage of 3.0 V. This is the nominal voltage of two serially-connected AA batteries, which can be
used to power an OpenMote via an OpenUSB or OpenBattery module. The measurement setups are
shown in Figure 5a,b, for the 2.4 GHz and 868 MHz measurements, respectively. For the 868 MHz
measurements, the OpenUSB has to be attached to the OpenMote-CC2538 because the former only
holds a CC1200 radio transceiver and needs the microprocessor on the latter to control it.

OPENUSB
(€C1200)

OPENMOTE OPENMOTE
2538 Q538

OUTPUT + vee ADO/DIOO m OUTPUT + vee ADO/DIO0 =]
u DOUT ADY/DIOT u | = DouT ADV/DIOT w]
| = DIN AD2/DI02 =]
1= Dos AD3/DI03 =
| » RESET  RST/ADG/DIOG m—|
| = PWMO/RSSI ADS/DIOS =—|
I VREF »—|
1= RESERVED  ON/SLEEP m—|
| u DTRDIE  CTS/DIO7 w
= DTR/DI CTS/DI07 w ouTPUT- GND AD4/DI04 =—}
OUTPUT- GND AD4/DI04 u

u DIN AD2/DIO2
KEYSIGHT u D08 AD3/DI03 m KEYSIGHT
u RESET  RST/AD6/DIO6 m N6705B
N67058 u PWMO/RSSI  AD5/DIOS m DCPOWER ANALVZER
DCPOWER ANALYZER = PWM1 VREF m
™ RESERVED  ON/SLEEP m

T rnT
POTTTTLTT

@)

=

Figure 5. Energy consumption measurement setups: for the 2.4 GHz measurements, only the
OpenMote-CC2538 was used, while for the 868 GHz measurements, the power analyzer was connected
to the OpenUSB to which the OpenMote-CC2538 was attached. (a) 2.4 GHz measurement setup;
(b) 868 MHz measurement setup.

For most device states, the consumption was averaged over a period of 500ms. However,
some states (e.g., RX and TX states) only last as long as the radio takes to send all bytes. For these
states, the average was taken over a period between 3 ms and 4 ms.

4.2. Time Slot State Durations

We measured the duration of each state in every time slot where the CPU is active. The durations
in which the CPU is sleeping can then be trivially calculated, using the active durations and the timing
constants found in OpenWSN firmware. The total length of a time slot was set to 15ms. The state
durations for all time slots are shown in Tables 8-14.

States do not always have the exact same duration for a variety of reasons. There can be multiple
code branches (i.e., different execution paths); the packet size can vary and have an influence; or the
duration of an operation can simply be variable (e.g., waking up the CC1200 chip). Therefore,
multiple measurements were executed to find a single duration that could be associated with the state.

Changing the mode of the CC1200 radio from Sleep to Idle takes between 246 pis and 343 s,
which causes every state where the radio wakes up to have a variable duration. It only required a
few measurements to find that the median for waking up is 268 ns. However, we decided to use the
average value instead of the median because it resulted in a slightly more accurate energy consumption
prediction. To avoid being susceptible to outliers, the wakeup time was measured over ten thousand
times, and an average duration of 273 ps was observed.
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For states with multiple code branches, the median value of multiple measurements was chosen.
For example, in state TxDataOffsetStart, an Enhanced Beacon (EB) might be sent if and only if there
are no data to send. Another example is state TxProc in which the execution path is different when a
data packet has no retries left. However, these small variations of the duration only have a limited
impact on the total slot consumption.

The durations of states where packets are loaded to and read from the radio were measured before
and after the radio was accessed. Afterwards, the communication with the radio for different packet
sizes (from 0 bytes—125 bytes with steps of 25 bytes) was measured. Linear interpolation was applied
on the measured durations to come up with a formula that fits well to all packet sizes. The difference
in durations in states where data are transferred between the radio and CPU (e.g., TxDataPrepare and
TxProc) is caused by the way these bytes are transferred: the CC2538 radio is combined with the CPU
in one chip, so data can just be copied in/out of memory while the CC1200 needs to use the slower
Serial Peripheral Interface (SPI) to transfer data to and from the CPU in the CC2538 chip, resulting in
longer durations.

The duration of transmitting and receiving also depends on the packet size. Since the radio has a
baud rate of 250 kbps, the time it takes to transmit one bit is 4 ps, which makes the time to transmit a
byte 32 ps. To calculate the duration, the amount of transmitted bytes had to be multiplied with 32 ps.
The PHY header byte and two-byte Cyclic Redundancy Check (CRC) also have to be included as they
are sent with the packet. To verify that this calculation is valid, the time between the start-of-frame
interrupt and the end-of-frame interrupt was measured: the average error was only 0.13%.

To model the guard time, we assumed that the clocks are synchronized. Our model thus assumes
that the packet always arrives exactly in the center of the guard interval.

Table 8. State durations in the TxDataRxAck time slot with a total length of 15 ms and s being the packet
size in bytes.

State Duration (us)
C(C2538 CC1200
TxDataOffsetStart 105 105
TxDataOffset 1515 1454
TxDataPrepare 60 + (s x 0.875) 738 + (s x 8.152)
TxDataReady 1954 — (s x 0.875) 1276 — (s x 8.152)
TxDataDelayStart 17 58
TxDataDelay 349 369
TxDataStart 16 16
TxData (3+s)x32—16 (3+s)x32—16
RxAckOffsetStart 32 75
RxAckOffset 3769 3116
RxAckPrepare 38 587
RxAckReady 267 328
RxAckListenStart 17 58
RxAckListen 483 442
RxAckStart 16 15
RxAck 880 881
TxProc 225 619
Sleep 5177 — (s x 32) 4783 — (s x 32)

Table 9. State durations in the Sleep time slot with a total length of 15ms.

State Duration (us)
CC2538 CC1200
SleepStart 57 57

Sleep 14,943 14,943
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Table 10. State durations in the RxIdle time slot with a total length of 15ms.

State Duration (us)
CC2538 CC1200
RxDataOffsetStart 126 126
RxDataOffset 1567 1567
RxDataPrepare 38 676
RxDataReady 969 331
RxDatalistenStart 17 58
RxDatalisten 2583 2542
RxProc 25 118
Sleep 9675 9582

Table 11. State durations in the RxDataTxAck time slot with a total length of 15ms and s being the

packet size in bytes.

State Duration (us)
CC2538 CC1200
RxDataOffsetStart 126 126
RxDataOffset 1567 1567
RxDataPrepare 38 676
RxDataReady 969 331
RxDatalistenStart 17 58
RxDataListen 1283 1242
RxDataStart 17 15
RxData (3+s)x32—-17 (3+s)x32-15
TxAckOffsetStart 126+ (s x 0.91) 362+ (s x 8.439)
TxAckOffset 3443 — (s x 0.91) 2810 — (s x 8.439)
TxAckPrepare 153 930
TxAckReady 518 77
TxAckDelayStart 17 58
TxAckDelay 349 369
TxAckStart 16 15
TxAck 880 881
RxProc 94 135
Sleep 5308 — (s x 32) 5267 — (s x 32)

Table 12. State durations in the TxData time slot with a total length of 15ms and s being the packet

size in bytes.

State Duration (us)
CC2538 CC1200
TxDataOffsetStart 105 105
TxDataOffset 1515 1454
TxDataPrepare 60 + (s x 0.875) 738 + (s x 8.152)
TxDataReady 1954 — (s x 0.875) 1276 — (s x 8.152)
TxDataDelayStart 17 58
TxDataDelay 349 369
TxDataStart 16 16
TxData (3+S) x 32 —16 (3+S) x 32 —16
TxProc 72 109

Sleep

10,832 — (s x 32)

10,795 — (s x 32)
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Table 13. State durations in the RxData time slot with a total length of 15ms and s being the packet

size in bytes.

State Duration (us)
CC2538 CC1200
RxDataOffsetStart 126 126
RxDataOffset 1567 1567
RxDataPrepare 38 676
RxDataReady 969 331
RxDataListenStart 17 58
RxDataListen 1283 1242
RxDataStart 17 15
RxData (3+s)x32-17 (3+s)x32—-15
RxProc 198 + (s x 0.91) 488 + (s x 8.439)
Sleep 10,706 — (s x 31.09) 10,416 —(s x 23.561)

Table 14. State durations in the TxDataRxNoAck time slot with a total length of 15 ms and s being the

packet size in bytes.

State Duration (us)
CC2538 CC1200
TxDataOffsetStart 105 105
TxDataOffset 1515 1454
TxDataPrepare 60 + (s x 0.875) 738 + (s x 8.152)
TxDataReady 1954 — (s x 0.875) 1276 — (s x 8.152)
TxDataDelayStart 17 58
TxDataDelay 349 369
TxDataStart 16 16
TxData (3+s)x32—-16 (3+s)x32-16
RxAckOffsetStart 32 75
RxAckOffset 3769 3116
RxAckPrepare 38 587
RxAckReady 267 328
RxAckListenStart 17 58
RxAckListen 983 942
TxProc 44 137
Sleep 5754 — (s x 32) 5661 — (s x 32)

4.3. Device State Current Consumption

The consumption of the OpenMote-CC2538 connected to the OpenUSB was measured during all

possible device states. Since the CPU and radio are the two components responsible for the majority
of the current consumption, these device states are all combinations between CPU and radio modes.
Instead of measuring the consumption of the CPU and radio separately, we measured the consumption
of the entire device. The result is that any current consumption not related to the CPU or radio
(e.g., SPI or timers) are measured as part of the CPU usage. This allows for a slightly more accurate
prediction of the charge drawn compared to models that ignore these other components.

4.3.1. 2.4 GHz CC2538 Radio

In Table 15, the consumption values of the different device states when using the CC2538 radio,
i.e., the 2.4 GHz radio, are shown. The values for the TX state were measured when the transmit power
of the radio was set to 0 dBm. When the transmit power was set to 3dBm, i.e., the current default in
OpenWSN, the consumption values of the TX states are 33.04 mA and 29.01 mA, for the CPU in Active
and Sleep state, respectively.
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Table 15. Current drawn during different device states.

CPU State Radio State Consumption (mA)

CC2538 CC1200
Active Sleep 13.97 15.06
Active Idle 13.97 17.49
Active Listen 31.14 40.13
Active RX 26.94 50.63
Active X 31.47 54.26
Sleep (PM_NOACTION) Sleep 10.06 11.42
Sleep (PM_NOACTION) Idle 10.06 13.82
Sleep (PM_NOACTION) Listen 27.18 36.18
Sleep (PM_NOACTION) RX 23.16 46.73
Sleep (PM_NOACTION) X 27.55 50.24
Sleep (PM2) Sleep 0.00156 0.27
Sleep (PM2) Idle 0.00156 2.64

The CC2538 radio has an identical consumption of 13.97 mA when the radio is in Sleep or Idle
state because the OpenMote-CC2538 consists of both the CPU and radio, and the radio itself does not
have a separate Idle or Sleep state. Instead, it has a single Off state for which the consumption was
used for both the Sleep and Idle states. Thus, the CC2538 radio has only four states: TX, RX, Listen
and Off.

As expected, the difference in the consumption between an active or a sleeping CPU is nearly
identical for all radio states: the CPU in active mode consumes on average 3.92 mA more than when
being in sleep mode, with a standard deviation of only 0.07 mA.

When switching the CPU of the CC2538 chip to the deeper sleep mode PM2 instead of PM_NOACTION
(http:/ /www.ti.com/product/CC2538 /datasheet/), while the radio was in the Sleep and Idle state
(which are actually both the Off state in the CC2538 radio), the consumption dropped to 1.56 pA.

4.3.2. 868 MHz CC1200 Radio

The device state consumption values when using the CC1200 radio, i.e., 868 MHz, are shown
in Table 15. The values for the TX state were measured when the transmit power of the radio was
set to 0dBm. When the transmit power is set to 14dBm, i.e., the current default in OpenWSN,
the consumption of the TX states is 91.94mA for an active CPU and 88.25mA for a sleeping CPU.
The CC1200 radio Sleep state is the Idle state with the crystal oscillator turned off (http://www.ti.
com/product/CC1200/datasheet/). Consumption is expected to be lower when the Sleep state of the
CC1200 chip is used or when the CC1200 is turned completely off.

As expected, the difference in the consumption between an active or a sleeping CPU is nearly
identical for all radio states: the CPU in active mode consumes on average 3.81 mA more than when
being in sleep mode, with a standard deviation of only 0.15 mA.

When both the CPU and the radio are put in the Sleep state, the consumption is still high. This is
caused by the high current consumption of the CPU, which is put in the least possible sleep mode
PM_NOACTION. When putting the CPU in a deeper sleep, i.e., the PM2 power mode, while the CC1200
radio is in Sleep and Idle state, the consumption dropped to 0.27 mA and 2.64 mA, respectively.

5. Evaluation

In this section, the accuracy of the model is verified. First, the charge drawn per slot type for
both radios is calculated and compared to the measured values. Afterwards, the accuracy of the
charge drawn during a slot frame is validated using a small-scale test network. The developed packet
size-aware model is also compared to a state-of-the-art model to show the accuracy improvement
when including the packet size in the model. Finally, using the measured charge consumption values
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for both frequency bands’ communication, several TSCH network simulations were conducted to
observe the energy consumption effects in an end-to-end context.

5.1. Slot Charge Consumption

Using the duration and consumption of each state, the charge drawn during each type of slot is
calculated using the formula shown in Equation (1). To verify the accuracy of our model, the entire
consumption of each type of slot was also measured separately. Table 16 compares the measured and
calculated values for both types of radio. Both radios are configured with a transmit power of 0 dBm
and a packet size of 127 bytes, i.e., the maximum packet size when including the CRC bytes.

As seen in Table 16, the difference between the measured and calculated values is close to
negligible. Among the main contributors to these differences are measurement errors and the variations
in guard time duration. In the measured data, the guard time can be smaller or larger than in the
calculated data, which assumes perfectly synchronized clocks. On average, the difference is limited to
5.08 uC or 1.55% with a standard deviation of 3.3 uC and a maximum difference of 14.89 nC, which
proves the accuracy of our model.

More specifically, for the CC2538, the average relative difference is 0.75%, while for the CC1200
chip, the average relative difference is 2.3%. In the case of the CC1200 chip, the larger relative difference
is explained by the fact that a specific device state (e.g., CPU is active and radio is sleeping) does not
always result in exactly the same current drawn, which we abstracted in Table 15.

Table 16. Measured and calculated charge drawn for each slot type.

Measured (us) Calculated (us)
CC2538 CC1200 CC2538 CC1200
TxDataRxAck 250.35 420.01 250.94 407.81

Slot Type

RxDataTxAck 253.2 432.09 251.32 417.2
TxData 229.8 360.2 230.13 357.12
RxData 235.1 373.55 228.72 362.12
RxIdle 197.4 245.2 196.35 240.98
Sleep 152.4 168.65 151.12 171.51

TxDataRxNoAck  246.95 395.65 246.79 384.94

Figures 6 and 7 show the current drawn of all time slots (except for the error time slot
TxDataRxNoAck) over time according to both the model and the measurements, when using the
CC2538 and CC1200 radio, respectively. For all time slots, the measured graphs and their modeled
counterpart look very similar. The peaks on the graphs however do not perfectly match, because the
model simplifies certain states. The radio state may be changed while the CPU is active, causing the
CPU and radio to be active at the same time, while the model might only consider the radio as active
once the CPU goes to sleep. This results in a peak in the measured time slot where there is no peak in
the model.
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Figure 6. Measured (left, between vertical lines m1 and m2) and modeled (right) current comparison for each time slot when using the CC2538 radio. (a) TxData time
slot; (b) TxDataRxAck time slot; (c) RxData time slot; (d) RxDataTxAck time slot; (e) RxId1le time slot; (f) Sleep time slot.
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Figure 7. Measured (left, between vertical lines m1 and m2) and modeled (right) current comparison for each time slot when using the CC1200 radio. (a) TxData time
slot; (b) TxDataRxAck time slot; (c) RxData time slot; (d) RxDataTxAck time slot; (e) RxId1le time slot; (f) Sleep time slot.
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5.2. Slot Frame Charge Consumption

When considering the charge consumption in the different time slots, the energy consumption of
a slot frame can be calculated. To further verify the accuracy of our model, the calculated slot frame
charge consumption of a small-scale, real-world 6TiSCH network is compared with the measured
values, for both 868 MHz and 2.4 GHz.

The experiment network topology, depicted in Figure 8, used the OpenMote-CC2538 and the
OpenMote-CC2538/OpenUSB board combination as hardware nodes for 2.4 GHz and the 868 MHz
measurements, respectively. The root node is connected to a computer using OpenVisualizer to
monitor the network. The leaf mote was configured to send a packet of 127 bytes (including CRC)
every two seconds. The slot frame size was 51 time slots. Since there are 51 slots in a slot frame and
every time slot lasts 15ms, the duration of each slot frame is 765 ms. The first time slot in every slot
frame was reserved for management messages, e.g., EBs, RPL DIOs, RPL Destination Advertisement
Objects (DAOs) and 6TiSCH Operation Sublayer (6top) messages, but these were not considered.
As such, the first time slot in each slot frame is thus considered to be of type RxIdle.

(@Gﬁﬁ)})%(@@ﬁb})}%{(@@)}) -

e I °

Figure 8. Topology used while comparing the consumption of a slot frame.

The slot frame of the leaf mote always consists of one RxIdle slot and at least 49 Sleep slots.
The last slot will either be of the type TxDataRxAck when there are data to send or another Sleep slot
when there are no data. As such, two slot frame types were considered for the leaf node: a slot frame
where no data were sent and a slot frame where the packet was sent in a TxDataRxAck slot. The charges
consumed in each of these two slot frame types are represented by:

Qleaf_Sleep = QRurdle +50 X QSleep 3)

and:

QleaffoDataRxAck = QRru1dle T QraDataRxAck + 49 X QSleep 4

For the relay node, a slot frame was considered where the packet coming from the leaf was
received in the first slot of the slot frame; subsequently, the relay forwarded the packet to the root,
but no acknowledgment was received, followed by a successful retransmission. As such, there are
RxDataTxAck, TxDataRxNoAck and TxDataRxAck slots when a packet was received and forwarded,
while the remaining 48 slots are Sleep slots. The charge drawn during the slot frame of the relay node
is represented by the following formula:

Qrelay = QrxDataTxAck + QTxDataRxNoAck + QTxDataRxAck + 48 X QSleep ®)

The charge consumption of the root node is not considered as the root device is typically connected
to a computer using OpenVisualizer, serving as a gateway to the Internet. Therefore, the root typically
does not run on batteries. Additionally, the serial communication between the root and OpenVisualizer
cannot be disabled, making the comparison between the measured consumption and the proposed
model invalid.

We measured the charge consumed over the length of an entire slot frame for both the leaf
and relay node and compared these values to the values calculated using the proposed model and
Equations (3)-(5). Table 17 shows the results. On average, the error between the calculated and
measured values is lower than 1%. The differences between the CC2538 measured and calculated
consumptions, for the leaf and relay nodes, are limited to 1.3% and 1.03%, respectively. For the CC1200
radio, the differences are even slightly smaller: respectively 0.88% and 1.01%. The consumption
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comparison results again show that our model is accurate, even when measuring across an entire
slot frame.

Table 17. Measured and calculated charge drawn during a slot frame.

Measured (uC)

Calculated (uC)

Mote Type

CC2538 CC1200 CC2538 (CC1200
Leaf (Sleep) 7833.6  8698.05 7752.35  8816.48
Leaf (TxDataRxAck) 7910.1  8942.85 7852.17 9052.78
Relay 8086.05  9348.3  8002.81  9442.96

5.3. Energy Model Comparison

In order to indicate the accuracy gain of using the proposed packet size-aware model over the
model introduced by Vilajosana et al., these two models are compared in Figure 9. The two models are
compared for packet sizes going from 58 bytes, which is the minimum 6TiSCH packet size without
additional payload, up to the maximum packet size, i.e., 127 bytes (125 bytes and 2 CRC bytes).
The consumption of both models is compared to the packet size-aware model using the exact duration
measurements for the packet sizes of 75, 100 and 125 bytes. The device state current values of Table 15
are used for this comparison. In the states where the CPU is sleeping and the radio is sleeping or in
idle mode, the PM2 values were preferred over the PM_NOACTION values.
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Figure 9. Comparison between the proposed packet size aware model and the model introduced by
Vilajosana et al., which linearly scales the charge consumption based on the packet size. (a) TxData
time slot; (b) TxDataRxAck time slot; (c) RxData time slot; (d) RxDataTxAck time slot; (e) TxDataRxNoAck

time slot.
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As can be seen in the graphs, the proposed model accurately represents the charge consumption
for all packet sizes. The model of Vilajosana et al., however, becomes highly inaccurate especially when
the packet size decreases. Looking at a packet size of 75 bytes, the average errors of the Vilajosana et
al. model are 32.03 uC (o = 21.05uC) and 17.05 uC (o = 12.41 uC) for the CC1200 and CC2538 radio,
respectively. Of course, for the maximum packet size, both models estimate the consumption correctly.

The reason for this large inaccuracy introduced by the model of Vilajosana et al. is that their
approach linearly scales the entire slot consumption. This is not the correct approach, as only the states
in which data are transmitted over the radio or copied between the radio and the CPU can be scaled.
Since a time slot consists of many more states than only data processing states, those states should
not be scaled. Because the proposed model differentiates between the state durations that depend
on the packet size and the durations that are independent of the size, as can be seen in Tables 8-14,
it accurately models the slot consumption for different packet sizes.

5.4. Frequency Band Consumption Comparison

Using the measured energy consumption values for both 868 MHz and 2.4 GHz, we conducted
several TSCH network simulations to analyze the end-to-end network performance and energy
consumption at these frequency bands.

5.4.1. Simulation Setup

To perform the experiments, the 6TiSCH simulator is used: an open-source, event-driven Python
simulator developed by the 6TiSCH Working Group (WG) [5]. The simulator supports IEEE 802.15.4e
TSCH experimentation with straightforward parameter configuration. The configuration parameters
for the simulation experiments discussed in this article, are listed in Table 18. To be able to compare the
energy consumption for both 868 MHz and 2.4 GHz, we changed the default propagation model
of the simulator (i.e., the so-called Pister-hack) to the International Telecommunication Union -
Radiocommunications sector (ITU-R) Rural Macro model, which is applicable to both frequency
bands [25]. To have a realistic low-power energy consumption comparison between 868 MHz
and 2.4 GHz, we re-calculated the charge consumption values of Table 16, using the device state
consumption values of Table 15 and adjusted them to make sure the measured CC2538 PM2 power
mode consumption value 1.56 pA was used in all states where the CPU was sleeping. When the CPU
and radio were sleeping, the Idle state (with the crystal oscillator turned off) consumption value of the
CC1200 chip, i.e., the radio Sleep state, was also replaced by the power down Sleep state consumption
value of the CC1200 datasheet, which is 0.5 pA (http://www.ti.com/lit/ds/symlink/cc1200.pdf).
The resulting slot consumption values are listed in Table 19. The 6TiSCH simulator implementation
used for these simulation experiments can be found in [26].

5.4.2. Simulation Results

In the first TSCH network experiment, the number of nodes in a random topology varies from
2-32 nodes. Figure 10 shows the average hop count and the total energy consumed per node over
a period of 300s. As seen in Figure 10a, for 2.4 GHz, the average hop count increases as the number
of nodes in the network increases. For 868 MHz, the hop count stabilizes to one. Communication at
868 MHz is stable over longer ranges than communication at 2.4 GHz, resulting in a lower hop count
to reach the root node. For the shorter range 2.4 GHz communication, the increase in consumption
is significant when the average hop count increases. Since there are more nodes that have to relay
additional packets towards the root, the total consumption per node increases. Figure 10b also clearly
shows that the total consumption per node is higher for 868 MHz than for 2.4 GHz as is explained by
the absolute slot consumption values in Table 19.
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Table 18. Parameter configuration in the 6TiSCH simulator.
Parameter 868 MHz 2.4 GHz
Timeslot duration 15ms
Slot frame size 101 time slots
No. of SHARED cells 1
Inter-node distance 70m
No. of stable neighbors 1
RPL parent set size 1
Traffic period 5s
Traffic period variability 0.05
EB period 10s
EB probability 0.15s
DIO period 30s
DIO probability 0.15
OTF threshold 2
OTF housekeeping period 10s
6top housekeeping False
TX power 0dBm
No. of channels 1 16
Stable RSSI —83dBm —78dBm
Table 19. Calculated charge drawn for each slot type, used in the simulator experiments.
Icul
Slot Type Calculated (uC)
CC2538 CC1200
TxDataRxAck 106.45 275.61
RxDataTxAck 107.66 286.76
TxData 83.07 210.32
RxData 82.97 219.8
RxIdle 47.54 81.57
Sleep 0.82 0.89
TxDataRxNoAck  100.32 246.98
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Figure 10. Total consumed charge per node and average hop count for 868 MHz and 2.4 GHz frequency

communication in a random topology as a function of the number of nodes. (a) Average hop count;

(b) total energy consumed per node.

In the second TSCH network experiment, the average charge drawn per node per cycle was
observed over a period of 300 s. The results are shown in Figure 11, which differentiates between two
grid topologies with different sizes: Figure 11a,b shows the Cumulative Distribution Function (CDF)
for nine and 25 nodes, respectively. In the network of nine nodes, all eight nodes directly connect
to the root node for both 868 MHz and 2.4 GHz. The CDF in Figure 11a shows that almost all of the
nodes consume less charge when using 2.4 GHz compared to when using 868 MHz. The difference in
consumption is explained by the measured slot consumption values shown in Table 19, which indicates
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that 2.4 GHz consumes less energy than 868 MHz. However, when looking at nodes between 0.8 and
0.9, we observe that 868 MHz consumes less. The same effect is observed in the results for 25 nodes:
60% of the nodes that use 2.4 GHz consume less than the nodes using 868 MHz. These nodes represent
leaf nodes and nodes that do not have to forward many data packets originating from children in the
routing graph. Apart from these nodes, there are also other intermediate nodes, as indicated by the
2.4 GHz hop count of 2.49 (¢ = 1.21) for the grid scenario with 25 nodes, which have to relay many
more packets towards the root and consume more energy. When using 868 MHz, the average hop
count was 1.01 (¢ = 0.1), which means that all nodes are directly connected to the root and thus do
not relay other packets. For both the grid networks of nine and 25 nodes, the root nodes for 2.4 GHz
consume less than those of 868 GHz, which again can be expected by looking at the consumption
values in Table 19.

1.0 1.0 r T
0.8 0.8} o
w 06 o w 0.6 ,
[a) / [a) .
O o4l ! 1 O oa} ! 1
| — 868 MHz I — 868 MHz
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(@) (b)

Figure 11. Comparison of charge drawn per cycle per node for 868 MHz and 2.4 GHz frequency
communication in a grid topology of nine nodes and 25 nodes. (a) Grid topology of nine nodes;
(b) grid topology of 25 nodes.

Looking at the absolute energy consumption values for both 868 MHz and 2.4 GHz, an increased
energy consumption for all sub-1-GHz communication is expected. However, these simulation results
show that due to the longer-range capabilities of sub-1-GHz communication, there can be nodes that
consume less energy compared to when using 2.4 GHz communication.

In the third TSCH simulator experiment, we observe the lifetime of all TSCH nodes in a grid
of 25 nodes for different packet periods. Each node is assumed to be running on two AA batteries,
i.e., a battery capacity of 2000mA h. Figure 12 shows the results. The total number of children are
all children of a node, e.g., the root node will have 24 children. It is clear that in the case of 2.4 GHz
communication, there is much more variability in the number of children a node has, compared to
when using 868 MHz communication. This is due to the longer range communication of 868 MHz
that allows nodes to directly connect to the root over longer distances. In this 25-node grid topology,
however, it is still possible that a 868 MHz leaf node needs multiple hops to reach the root: as observed
in Figure 12, there are some nodes that have one, two or three children, which indicates that the signal
of those children to their parent was better compared to the signal of their link to the root. With
2.4 GHz communication that lacks such longer range capability, a packet typically has to traverse more
hops to reach the root. For 2.4 GHz, there is also more variability in the lifetime of nodes with the same
amount of children. For 868 MHz, we do not observe this effect. This is because the quality of the
different links between the 2.4 GHz nodes differs in every experiment, resulting in a variable number
of transmission cells and retransmissions that are necessary to deliver packets, which in turn also
influences the energy consumption. Most 868 MHz nodes however are directly connected to the root
with good link quality, resulting in almost no variability.

The results show that for a higher packet frequency, the average number of days a node lasts
decreases, e.g., the average lifetime for 1 packet/s is 204 days compared to 487 days when having a
frequency of 1 packet/h, for 2.4 GHz. The graph also shows that on average, the lifetime in a 868 MHz
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network is lower, because of the higher consumption values shown in Table 19. However, the results
in Figure 11 showed that this does not necessarily hold for all nodes in a TSCH network.
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Figure 12. Comparison of the lifetime of a TSCH node, running on two AA batteries, between 2.4 GHz
and 868 MHz communication for different packet periods in a grid topology of 25 nodes.
(a) 1 packet/s, 2.4 GHz; (b) 1 packet/s, 868 GHz; (c) 1 packet/min, 2.4 GHz; (d) 1 packet/min, 868 GHz;
(e) 1 packet/h, 2.4 GHz; (f) 1 packet/h, 868 GHz.

6. Conclusions

In this paper, we propose a more accurate energy model for IEEE 802.15.4e TSCH using dual-band
OpenMote hardware. The model differs from previous work in several ways. First, it includes an
elaborate and up-to-date set of time slots and states and accurately models variable packet sizes.
Second, we present state durations and energy consumption measurements for both the 868 MHz and
2.4 GHz frequency bands, using the CC1200 and CC2538 radio, respectively. We have experimentally
verified the accuracy of the proposed model by comparing measured values of all time slots to their
modeled counterpart. Furthermore, the energy consumption of a small-scale TSCH network was
compared with its modeled consumption. For both the time slot comparison and the small-scale
network experiment, the average error was less than 3%, including measurement inaccuracies and
variations of the guard time. Using the measured energy slot consumption for both 868 MHz and
2.4 GHz communication, we also conducted several TSCH network simulations to observe the energy
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consumption effects for both frequency bands in an end-to-end context. We have also shown that
the proposed model can accurately model all packet sizes, a feature absent in current TSCH energy
consumption models, which only consider the maximum packet size. These results prove that our
model is suitable to accurately predict the energy consumption of TSCH networks.
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