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Abstract: As a sound signal has the advantages of non-contacted measurement, compact structure,
and low power consumption, it has resulted in much attention in many fields. In this paper, the
sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern
identification and guarantee the safety quality of the working face. The original acoustic signal is first
collected through an industrial microphone and decomposed by adaptive ensemble empirical mode
decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is
extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm
inspired by bat foraging behavior is applied to determine key parameters of the traditional variable
translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into
the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and
limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as
the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series
of comparisons are conducted to prove the effectiveness and superiority of the proposed method.

Keywords: cutting pattern identification; sound signal; variable translation wavelet neural network;
bat algorithm; ensemble empirical mode decomposition; disturbance coefficient

1. Introduction

Coal is an important fossil fuel and essential industry raw material, which always occupies almost
30% consumption of the primary energy in the whole. Shearer is the key equipment to guarantee the
continuous, stable and safe running of underground coal mining [1,2]. Since the 1960s, scholars have
paid much attention to the development of cutting pattern identification for the shearer, which focuses
on recognizing whether the shearer is cutting coal, rock, or coal-gripping gangue. More than 20 kinds
of cutting pattern identification methods have been researched, such as γ-ray detection [3], infrared
detection [4], cutting temperature [5], vibration analysis [6], radar detection [7], etc. Among these, the
online cutting sound signal, produced by the collision of the shearer cutting unit with the coal seam,
has received much interest in recent years due to its non-contact measurement, simple structure, and
low power. As a hot nondestructive testing method, the intelligent system according to the sound
signal has gained a lot of attention and is widely applied in working condition monitoring [8], feature
extraction [9], noise reduction [10], fault diagnosis [11–13], etc.

The acoustic-based cutting pattern recognition system actually extracts key information from
the cutting sound signal and classifies them into several categories according to the characteristics.
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The wavelet transform (WT), developed from the Fourier transform (FT), is widely used in sound signal
extracting due to its adaptive time-frequency window [14]. Moreover, with the rapid development
of artificial neural network (ANN), many complex and nonlinear issues are well handled due to its
self-adaption, self-organization, and real-time learning [15–17]. Unfortunately, the WT and ANN were
completely separated in the early application, and the parameters in WT were fixed once selected.
In 1992, the wavelet neural network (WNN), organically combining the WT and ANN, was proposed
by Zhang et al. [18]. The transfer function in the hidden layer was the wavelet function in WNN instead
of the traditional sigmoid function. The advantages of multi-scale and multi-resolution were also
retained [19]. Therefore, the WNN has extensive applications in many fields. In [20], the rolling bearing
fault diagnosis of a compressor system based on the WNN was proposed and verified. The Mexican
hat wavelet function was used as the wavelet function, and the result indicated significant superiority
over other neural networks. Turkoglu et al. designed an expert system for interpretation of the Doppler
signals of heart valve diseases based on the WNN and achieved a recognition accuracy of 91% for
123 test samples [21]. A novel method for a noisy speech recognition model based on the integration of
hidden Markov models and WNN was shown in [22]. Then, the WNN was applied in underwater
acoustic communication in [23], and the acoustic channel simulations and pool experiments proved
the method had faster convergence rate and convergence precision.

However, the basic WNN offered a fixed set of weight during the training process and was
unable to obtain the characteristics of all input data. It was difficult to learn the input data deeply
with fixed weight coefficients if the data were distributed in a wide domain [24]. Then, the variable
translation wavelet neural network (VTWNN), where the translation parameters of the wavelets were
variable depending on the network inputs, was developed to solve this problem [25,26]. Whether
the WNN or the VTWNN, the training process was mainly based on the error back propagation (BP)
algorithm. However, the BP algorithm easily falls into local extremum and has a low convergence
rate, which causes extensive computation [27]. Thanks to the swarm intelligence optimization strategy,
the training process for the WTNN ushered in a new development. Ling et al. presented a particle
swarm optimization (PSO)-based VTWNN for modeling the development of fluid dispensing for
electronic packaging [28]. In [29], a new intelligent PSO (IPSO) was used to optimize the parameters of
VTWNN, and an affective design of mobile phones was applied to evaluate the effectiveness of the
proposed method. The result showed that the proposed algorithm was significantly better than the
other methods, with a 95% confidence level. In [30], the VTWNN was trained by the genetic algorithm
(GA), and an application example on short-term daily electric load forecasting in Hong Kong verified
the effectiveness of the proposed work.

Bat algorithm (BA) was a new meta-heuristic optimization algorithm proposed by Yang et al.
in 2010 [31–33]. Bats expand their search scope by adjusting the intensity of the ultrasonic pulse
and lock the location of prey through changing the emission frequency during the predation
process. The bat-inspired optimization algorithm searched global optimal value by simulating bat
foraging behavior. Recently, the BA was widely applied in data classification [34], scheduling [35],
forecasting [36], artificial neural network model optimization [37], etc. BA was a powerful strategy and
generated robust solutions on low-dimensional issues, but its performance weakened with dimension
increases due to the limited exploration and exploitation abilities [38]. In order to improve the
performance of the basic BA and avoid local optimization, some modified approaches were proposed
to strengthen the local and global optimal value. In [39], a novel two-stage bat algorithm (TSBA)
was designed to balance the relationship between exploration and exploitation using a trade-off
strategy. Twenty-seven benchmark functions were utilized to illustrate advantages in terms of
convergence rate and accuracy over other swarm intelligent optimization algorithms. Hasançebi
et al. integrated an upper bound strategy with the basic bat-inspired algorithm (UBI) to realize the
discrete sizing optimization of large-scale steel skeletal structures. The result showed the total number
of structural analyses decreased 33.23% with respect to standard BA [40]. Besides, the bacterial foraging
strategies were added into the BA to improve the positional accuracy of a wireless sensor network [41].
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Many improvements focusing on the BA were elaborated in the past few years, but few researchers
could balance both local extreme and iterative rate.

Bearing the above observations in mind, a cutting pattern identification system through the
cutting sound signal was designed in this paper. The VTWNN was applied as the classifier, and the
BA was used to determine the parameters of VTWNN instead of the traditional BP training process.
Moreover, a disturbance coefficient was introduced into the basic BA to divide the bats into the native
and explore group. The rest of this paper is organized as follows. In Section 2, the basic theory of
the VTWNN and BA are described. Then, the modified BA (MBA) and the whole flow of proposed
cutting pattern recognition scheme are illustrated in Section 3. Some simulations and comparisons
according to a full-sized coal and rock seam are presented in Section 4 to validate the effectiveness
and superiority of the proposed method. Finally, some conclusions and outlooks are summarized in
Section 5.

2. Basic Theory

2.1. Variable Translation Wavelet Neural Network

Wavelet neural network, proposed by Zhang et al. in 1992, is a kind of feedforward artificial neural
network [18]. The WNN combines the multiscale wavelet transform and nonlinear neural network.
The VTWNN was developed on the basis of the basic WNN with variable translation parameters of
the wavelets according to the network input. The structure of the variable translation wavelet neural
network is presented in Figure 1.

The VTWNN contains three layers: the input layer, hidden layer, and output layer [28,29].
The training process of VTWNN can be summarized as follows. Assume that each training sample is
an I-dimensional vector X = (x1, x2, x3, . . . , xI)T. All input samples can be classified into K categories.
Each input vector corresponds an output Y = (y1, y2, y3, . . . , yK)T. There are J nodes in the hidden
layer by using wavelet function as the activator. The output of each hidden node is calculated as

ϕj,bj
=

1√
j
ϕ(

sj − bj

j
) (1)

where ϕ(x) is the wavelet function, sj is the input of the hidden node, j and bj donate the wavelet scale
and translation coefficient, respectively, and j = 1, 2, 3, . . . , J. The Mexican hat function is widely used
as the mother wavelet function.

ϕ(x) = (1− x2) exp(− x2

2
) (2)

So the output of the hidden node can be presented as

ϕj,bj
=

1√
j
(1− (

sj − bj

j
)

2

) exp(−
(

sj−bj
j )

2

2
) (3)

sj is calculated as follows:

sj =
I

∑
i=1

xi ·ωij (4)

where xi is the input vector of the network and ωij is the weight coefficient between the input and the
hidden layer. The translation coefficient bj is calculated as

bj = G(sj) = 4j(
2

1 + e−pj ·sj
− 1) (5)
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where pj is the tuned parameter and ranges generally from [0.3, 1.5]. Finally, the output node is given as

yk =
J

∑
j=1

ϕj,bj
· νjk (6)

where k = 1, 2, 3, . . . , K and νjk donates the weight coefficient between the hidden and the output layer.
The training process of the VTWNN is actually the determination of the value ωij, νjk and pj [26].
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2.2. Bat Algorithm

Bat algorithm is a novel intelligent swarm optimization method first proposed by Yang et al. in
2010 [31]. The BA was a new kind of group evolution algorithm. The location of each bat represented
a potential solution for the problem. The velocity and location of the bat were updated during the
iteration to obtain the accurate place of the prey [42]. The iteration process of BA can be summarized
as follows [32,33]:

Step 1.1: Parameters initialization. Initialize the population size of bat P, the range of pulse
loudness A, the range of emission frequency r, the range of pulse frequency f, the attenuation coefficient
of loudness α, the enhancement coefficient of emission frequency γ, and the iteration number N.
Then, the position and velocity of p-th bat individual in a D-dimensional search space are randomly
distributed in the feasible search space.{

xp,d = xdmin + (xdmax − xdmin) · rand(0, 1)
vp,d = vdmin + (vdmax − vdmin) · rand(0, 1)

(7)

where p = 1, 2, 3, . . . , P, d = 1, 2, 3, . . . , D, xp,d is the coordinate index of p-th bat at d-th dimension, vp,d
is the corresponding speed, and xmin, xmax, vmin , and vmax are determined by the domain size of the
problem of interest.

Step 1.2: Fitness comparison. The location of the bat is regarded as a potential solution of the
optimization problem. The minimal fitness is selected as the best value.

f it = f (xp)

[best f it, bestindex] = min( f it)
(8)
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where xp is the location of the bat, fit is the fitness of the bat, f (·) is fitness function, bestfit is the minimal
fitness of all bat individuals, and bestindex is the corresponding number.

Step 1.3: New location generation. The range of searching pulse frequency f, the flying speed, and
location of each bat are updated as follows:

fp = fmin + ( fmax − fmin) · rand(0, 1)
vn+1

p = vn
p + (xn

p − xbestindext) · fp

xn+1
p = xn

p + vn+1
p

(9)

where xbestindex is the corresponding location of the present best fitness and vn
p and xn

p are the flying
velocity and location for p-th bat at n-th iteration, respectively.

Step 1.4: Random perturbation. If the generated value in the range of [0, 1] randomly is bigger
than the pulse emission frequency r, then a perturbation is introduced for the bat on the basis of the
present best solution.

xnew = xbestindex + εAn (10)

where ε ∈ [−1, 1] is a random value and An is the average loudness of all the bat individuals at this
iteration step.

Step 1.5: Loudness and emission frequency variation. Generate a new random value in the range
of [0, 1] and compare the fitness between the present and the new bat. If the following condition is
satisfied, the new bat is adopted.

rand(0, 1) < Ap & f (xp) < f (xbestindex) (11)

Moreover, the loudness and emission frequency are updated in the next generation as follows:{
An+1

p = αAn
p

rn+1
p = ro

p(1− e−γn)
(12)

where α ∈ [−1, 1] is the attenuation coefficient and γ > 0.
Step 1.6: Global best evaluation. Calculate the fitness of each bat at the present generation and

search the minimal fitness as the best, defined as fitbest. If fitbest is better than bestfit, than bestfit and
the corresponding index number is replaced by the present optimal bat.

Step 1.7: Iteration termination. If the present iteration number n reaches the maximal N or the
error satisfies the preset precision threshold value, the iteration process stops. Otherwise, steps 1.3 to
1.6 are repeated. The iteration process could be presented in Figure 2.
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3. Algorithm Design

3.1. Modification of the Bat Algorithm

It can be seen from the BA searching process that the bats always fly toward the present best
location during the generation of new individuals. Although the random perturbation is introduced
in step 1.4, the moving distance decreases when the iteration increases. Once the bats fall into the
local extremum in the later stage, it is difficult to jump the present area due to the lack of a powerful
variation mechanism. Moreover, as the objective function is usually multimodal, the situation can
become even more severe, especially for multiple parameters optimization. In this paper, the bat
population is divided into two sections when the current best location remains unchanged for multiple
iterations. Some of the bats (called native bats) continue searching for better position around the
previous extremum, while the others (called explorer bats) are disrupted in a random way. Moreover,
the bat individual is sorted into the above populations according to its fitness. The detailed iterative
process of the modified bat algorithm (MBA) can be summarized as follows.

A disturbance coefficient c is introduced into the MBA first. Assuming that the current best
location is unchanged in the last c iterations, the bats are sorted in the order of smallest to largest in
fitness. As the population size of bat is P and the bat optimization is actually searching for the minimal
value, the bat with best fitness is numbered as 1 and the worst as P. The probability of one bat classified
into the explorer population is defined as g.

gp =
2
π

arctan(
p

10 · c ) (13)

where p = 1, 2, 3, . . . , P. The probability distribution curve with the change of p and c is shown in
Figure 3.
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It can be seen from the figure that probability increases with fitness, which means the bat with
the best fitness has the smallest probability to be disturbed, while the one with the worst fitness has
the biggest. For example, the first bat may be nregarded as the explorer with the probability of 0.64%,
the 10-th of 5.71%, the 100-th with 50.00%, and 1000-th with 93.65% at c = 10. A small disturbance
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coefficient means a strength perturbation for the bat population. Here, the MBA can be regarded as the
basic BA when c equals to the maximal iteration number N.

For the native population, all bats fly towards the current optimal position and their location
and velocity are updated according to Equations (8)–(12). On the other hand, the explorer bats are
flying to other area randomly as Equation (7). The two groups update independently, which indicates
the natives and explorers fly to their own best locations, respectively. Once one of the populations
gets a better fitness than the current global optimal, all bats fly toward the corresponding position.
If the present global extremum remains unchanged for more than c iterations, the bats are resorted and
divided into two groups, according to the above method. The pseudocode of the MBA is shown in
Algorithm 1.

Algorithm 1. The pseudocode of modified bat algorithm

Initialize P, A, r, f, α, γ, N, c and the objective function f (·).
Initialize the position and velocity of each bat according to Equation (7).
n = 0. Evaluate the fitness of each individual and find the best position xbestindex.
while (n < N)
if (f (xbestindex) remains unchanged more than c iterations)

Rank the bats according to their fitness and divide them into two populations.
Set xbestindex as the best native bat and generate new native bats as Equation (9).
if (rand(0, 1) > r)

Generate new native bat according to Equation (10).
if (the new bat satisfy Equation (11))

Accept the new native bat and update the loudness and emission frequency
end if

end if
Generate explorer bats randomly as Equation (7), calculate their fitness and find the best one xebestindex.
Set xebestindex as the best explorer bat and generate new explorer bats as Equation (9).
if (rand(0, 1) > r)

Generate new explorer bat according to Equation (10).
if (the new bat satisfy Equation (11))

Accept the new explorer bat and update the loudness and emission frequency
end if

end if
Evaluate the fitness of all bats and search the best one x*.
if (f (x*) is better than f (xebestindex))

Accept x* as the optimal.
end if

else
Set xbestindex as the best bat and generate new bats as Equation (9).
if (rand(0, 1) > r)

Generate new bat according to Equation (10).
if (the new bat satisfy Equation (11))

Accept the new bat and update the loudness and emission frequency
end if

end if
Evaluate the fitness of all bats and search the best one x*.
if (f (x*) is better than f (xebestindex))

Accept x* as the optimal.
end if

end if
Search the current best bat.
n = n + 1.
end while
Postprocess the results and visualization.
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3.2. Flowchart of Cutting Pattern Method

In order to identify the cutting pattern of the coal mining shearer effectively, the cutting sound
signal of the shearer is collected and analyzed in this paper. The cutting sound signal is first
decomposed by adaptive ensemble empirical mode decomposition (EEMD). Then, the energy of
each decomposition level is extracted as the feature vector. The VTWNN is applied as the recognizer.
Moreover, the weight coefficients of the adjacent layers and the tuned parameters in VTWNN are
trained by the MBA instead of the BP method in this paper. The flowchart of the proposed cutting
pattern method through VTWNN optimized by MBA (VTWNN-MBA) can be summarized as follows.

Step 2.1: Decomposition of the initial cutting sound. The initial acoustic signal is segmented into
T series, which can be divided into T1 training samples and T2 testing samples separately. In this
paper, the initial sound was saved as .wav file. The sound signal collected directly from the field
usually has the characteristic of strong nonlinearity, nonstationarity, and incontinuity. Therefore, it is of
great importance to pretreat the signal through a suitable approach [43]. However, the most common
time-frequency processing methods such as Fast Fourier Transform (FFT), Wavelet Transform (WT),
and Wavelet Packet Transform (WPT) have difficulty satisfying the cutting sound signal. The FFT is
restricted by the Dirichlet condition and Heisenberg uncertainty principle, which is inappropriate for a
nonlinear and nonstationary signal. The WT and WPT have unavoidable defects for discontiguous
signal as the wavelet basis and decomposition level are fixed once determined [44]. Empirical Mode
Decomposition (EMD) was proposed by Huang et al. in 1998. EMD is an adaptive method to
decompose any data into a set of IMFs, which become the basis of the data. As the basis is adaptive,
the basis usually offers a physically meaningful representation of the underlying processes. In 2004,
Ensemble Empirical Mode Decomposition was proposed by Wu et al. to deal with the mode mixing
problem during EMD [45]. After 10 years of rapid development, EEMD is now widely applied in
feature extraction [46], fault diagnosis [47], pattern recognition [48], etc. Assuming that the sound
series can be decomposed into M intrinsic mode functions (IMFs) and a residue, the normalized energy
of each IMF is calculated as the feature vector of the series.

Step 2.2: Parameters preset. Key parameters of VTWNN-MBA contain: the number of input
layer in VTWNN I, the hidden layer J and the output layer K. So there exist I·J + J·K + J parameters in
the VTWNN need to be optimized. The population size of bat P, the range of pulse loudness A, the
range of emission frequency r, the range of pulse frequency f, the attenuation coefficient of loudness
α, the enhancement coefficient of emission frequency γ, the iteration number N and the disturbance
coefficient c. The original location of the p-th bat ωp = [ω1, ω2, ω3, . . . , ωD]T, D = I·J + J·K + J.
The training samples are used to optimize the connection weight of the VTWNN-MBA, and the
remaining testing series are applied to verify the cutting pattern recognition algorithm.

Step 2.3: Network optimization. P sets of weight coefficient solutions are generated, and the
fitness value of each network is obtained according to Equation (14). When the recognition accuracy
for the training samples reaches the minimal error, the network has its optimal structure. The iterative
process is promoted according to MBA, and a series of new weight coefficient sets are produced in
each circulation.

f it =
1
T1

T1

∑
t=1

RMSEt (14)

RMSEt =

√√√√ 1
K

K

∑
k=1

(Yt,k − yt,k)
2 (15)

where T1 is the number of training samples, RMSEt indicates the root mean square error for t-th
acoustic series, K is the number of output layer, and Yt,k and yt,k donate the desired and actual value of
k-th output node, respectively.

Step 2.4: Termination condition. If the iteration number reaches N or the fitness error less than ξ,
terminate the iterative process; otherwise, continue the optimization.
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Step 2.5: Network test. The VTWNN-MBA is trained by the T2 testing samples and the recognition
rate is output. The flowchart of the VTWNN-MBA is shown in Figure 4.
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4. Simulation and Analysis

In order to verify the validity and superiority of the proposed cutting pattern identification
scheme, a simulation platform with different cutting patterns was put forward. A cutting acoustic
signal with four working conditions was collected through an industrial microphone. Then, the original
signal was normalized and decomposed successively. The key weight coefficient in the VTWNN-MBA
was determined according to the training samples. The accuracy of the recognition network was
validated by the testing samples. Some comparison and analysis were finally organized according to
the simulation example.

4.1. Cutting Sound Acquisition and Pretreatment

The original cutting acoustic signal was collected from the National Coal Mining Equipment
Research and Experiment Center in Zhangjiakou, China. A full-sized coal and rock seam simulating
the practical condition was built in the center. Then, an industrial microphone was installed on the
coal mining shearer. The shearer type was an MG500/1130-WD (Ac traction shearer, Xi’an, Shanxi,
China), the hauling speed of the shearer was 3 m/min, and the sampling frequency of the microphone
was 44.1 kHz. The experimental site is shown in Figure 5. Four different kinds of sound corresponding
to the shearer cutting coal seam with a Protodikonov hardness coefficient of f2 (S1), coal seam with
a Protodikonov hardness coefficient of f3 (S2), coal seam gripping rock (S3), and no-load (S4) was
recorded. Two hundred sound series were collected with a duration of 0.2 s for each cutting pattern.
Half of them were regarded as the training samples, and the remaining were testing. The sound signal
of four different kinds of cutting conditions are presented in Figure 6.
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coal seam with f3; (c) sound of coal seam gripping gangue; and (d) sound of no-load.

In order to extract key information from the original data, EEMD was applied to decompose the
sound into a series of IMFs adaptively. The decomposition result are shown in Figure 7. The energy
Enm of each IMF was calculated as the feature vector

Enm =
L

∑
l=1

enml
2 (16)
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where Enm represented the energy of m-th IMF for the n-th sample respectively, L was the length of the
sample, and enml donated the l-th element. Moreover, the normalization operation was then conducted
to summarize the energy into the range of [0, 1]. For an arbitrary x ∈ [xmin, xmax], the normalization
can be presented as follows:

xN =
x− xmin

xmax − xmin
(17)

where xN was the normalized value. Finally, the normalized energy of each IMF component was
extracted as the feature vector as the input of the VTWNN-MBA. The feature vector of each sound
series is shown in Table 1. It can be seen from the table that each acoustic fragment is presented as a
13-dementional vector from IMF1 to IMF13.
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Table 1. Feature vector of the acoustic series.

Sample Number Feature Vector

1 [0.493820, 0.018635, 0.002433, 0.003701, 0.001007, 0.000861, 0.000946, 0.000362, 0.000330,
0.000204, 0.000200, 0.000091, 0.000046]

2 [0.744507, 0.190640, 0.001730, 0.003545, 0.000902, 0.000844, 0.000783, 0.000187, 0.000305,
0.000197, 0.000167, 0.000080, 0.000140]

3 [0.700600, 0.081532, 0.001633, 0.004464, 0.000536, 0.000669, 0.000517, 0.000216, 0.000437,
0.000244, 0.000163, 0.000132, 0.000025]

4 [0.363571, 0.066428, 0.003079, 0.004894, 0.000692, 0.000852, 0.000895, 0.000415, 0.000399,
0.000256, 0.000155, 0.000107, 0.000003]

5 [0.480629, 0.035871, 0.009238, 0.014017, 0.001057, 0.001220, 0.003743, 0.000455, 0.000014,
0.000180, 0.000214, 0.000052, 0.000125]

6 [0.767436, 0.023610, 0.002480, 0.002233, 0.000964, 0.000818, 0.000401, 0.000157, 0.003202,
0.000255, 0.000136, 0.000823, 0.000227]

. . .

799 [0.772048, 0.016429, 0.021885, 0.009308, 0.002668, 0.000636, 0.000302, 0.004158, 0.000097,
0.000159, 0.001217, 0.000137, 0.000038]

800 [0.268025, 0.015486, 0.001868, 0.007008, 0.000349, 0.001086, 0.001178, 0.000568, 0.000233,
0.000230, 0.000118, 0.000140, 0.000049]
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4.2. Training and Testing of the VTWNN-MBA

In order to recognize the cutting pattern of the coal mining shearer accurately, the VTWNN-MBA
was trained and applied in this paper. The structure of the VTWNN was designed as follows: the
number of the input layer I = 13, the hidden layer J = 6, and the output layer K = 4. So, there are
108 coefficients in the VTWNN that need to be determined. The key parameters of the modified
bat algorithm were set as follows: the population size of bat P was 100, the range of pulse loudness
A ∈ [0, 2], the range of emission frequency r ∈ [0, 1], the range of pulse frequency f ∈ [0, 2], the
attenuation coefficient of loudness α = 0.9, the enhancement coefficient of emission frequency γ = 0.9,
the iteration number N = 1000, and the disturbance coefficient c = 10. The acoustic samples were
divided evenly between training and testing. The number of training series was 400, and the remaining
400 were testing ones. The desired output of the four different cutting pattern were S1 = [1, 0, 0, 0],
S2 = [0, 1, 0, 0], S3 = [0, 0, 1, 0], and S4 = [0, 0, 0, 1] respectively. The average of root mean square error
for all training samples was regarded as the fitness value.

The optimization was actually searching an appropriate 108-dimentional set to minimize the
fitness. The iteration curve is shown in Figure 8. It can be seen in the iterative process that the final
fitness was 0.154831. Then, the trained VTWNN was applied to identify the testing samples, and the
recognition results are presented in Figure 9. Four hundred testing cutting acoustic series was input
into the VTWNN, and 381 of them were recognized accurately. Specifically, four samples in S1 were
misjudged into S2, and one was identified as S4. Three fragments in S2 were recognized as S1, and
five were mistakenly classified into S3. Four series in S3 were sorted into S2, and one was into S1.
One cutting sound sample in S4 moved to S3 by mistake. The recognition accuracy was defined as
(N1/N2) × 100%, where N1 was the number of testing samples recognized correctly and N2 donated
the total testing samples. So, the cutting pattern identification accuracy through the cutting sound
signal by VTWNN-MBA was 95.25%. Through a deep analysis on the result, it can be seen that sound
of cutting objects with similar hardness had little distinction, and those with evident differences could
be identified precisely.
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4.3. Comparison and Discussion

It can be seen from Equation (13) that the probability of one bat sorted into the explorer population
was mainly determined by the disturbance coefficient c. In order to evaluate the impact of the
disturbance coefficient, several contrast experiments were conducted, and the results are presented
in Table 2. Different disturbance coefficient, such as c = 5, 10, 15, 25, 30, and 1000 (amount to BA)
separately, and the corresponding iteration time for the 400 training samples, minimal fitness value
and recognition rate were elaborated in the table. A small disturbance coefficient meant a strong
disturbance during the optimization process. A bigger coefficient indicated weaker stimulus, and the
bat group more easily fell into local extremum. When the bat population remained unchanged for
several iterations, the explorer bats appeared immediately. It is shown in the table that the fitness value
increased with the disturbance coefficient c, while the iteration time and recognition accuracy decreased.
When c = 10, the recognition effect and the calculation time both reached a satisfactory value.

Table 2. Comparisons between the different disturbance coefficients.

Disturbance Coefficient Iteration Time (s) Fitness Value Recognition Accuracy

5 65.962150 0.150311 95.25%
10 64.201883 0.154831 95.25%
15 62.193844 0.163709 94.50%
25 62.001930 0.180094 94.25%
30 61.003760 0.183762 92.50%

1000 60.227091 0.201358 91.50%

Moreover, seven other similar cutting pattern methods were also applied on the acoustic-based
system to research the advantage of the proposed algorithm. In this paper, back propagation neural
network (BPNN) [49], probabilistic neural network (PNN) [50], support vector machine (SVM) [51],
the basic VTWNN, the VTWNN optimized by PSO, the VTWNN optimized by the GA, the VTWNN
optimized by the original BA, and the proposed VTWNN-MBA were used to identify the cutting
pattern, and the results are listed in Table 3. As can be seen from the table, the VTWNN-based methods
had better fitness values and recognition accuracy for high dimensionality classification issues but
cost more time due to the complex structure. Among the five VTWNN-based schemes, the swarm
intelligence–based strategies had a better recognition rate and cost less time during the parameters
optimization process. The basic VTWNN based on BP training had a simple structure. However, it had
a low convergence speed and was easy trapping in local optimum. Further, the PSO-based method
had the shortest calculation time due to its brief particle generation mechanism, and the GA was the
most time-consuming among the four intelligence-based methods due to its complex crossover and
mutation operations. The BA searched a balance between the above two methods. The VTWNN-MBA
improved the identification rate 8.25% compared with the PSO algorithm and just cost 8.192333 s more
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time. On the other hand, it saved 19.10% time and achieved the same recognition accuracy when
comparing with the GA-based method. As a whole, the proposed VTWNN-MBA had a good balance
between the recognition rate and the calculation time.

Table 3. Comparisons between the different cutting pattern identification methods.

Compared Methods Iteration Time (s) Fitness Value Recognition Accuracy

BPNN 82.675028 0.330370 78.75%
PNN 89.002130 0.310938 82.50%
SVM 83.309544 0.311052 82.50%

VTWNN 92.395211 0.310279 84.75%
VTWNN-PSO 56.009550 0.229624 87%
VTWNN-GA 79.362199 0.160962 95.25%
VTWNN-BA 60.227091 0.201358 91.50%

VTWNN-MBA 64.201883 0.154831 95.25%

5. Conclusions and Future Work

In order to identify the cutting pattern for the coal mining shearer, a novel scheme through the
cutting sound signal based on VTWNN and an improved intelligent swarm algorithm was developed.
The improved strategy on the basis of introducing a disturbance coefficient into the basic bat inspired
algorithm was applied to enhance the ability to escape the present extremum. The intelligence
optimization method was used for the parameters training process of the bat algorithm. To validate
the effectiveness and advantages of the proposed method, a series of simulations was conducted, and
some comparisons were analyzed. The simulation example and comparison results show that the
acoustic-based cutting pattern identification method can accurately distinguish the cutting pattern,
and the proposed approach preceded other algorithms.

However, there are also some limitations in this method that can be summarized as follows: (1) the
disturbance coefficient in MBA is selected mainly through vast computer simulations. The lacking of
rigorous derivation will increase the uncertainty of the system. (2) The proposed VTWNN-MBA is still
time-consuming, so the execution efficiency of the code needs to be improved. In future studies, the
authors plan to implement some improvements on the proposed method. These may include a strict
mechanism to select an appropriate disturbance coefficient in MBA and a shorter calculation time of
the algorithm code to realize online recognition.
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