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Abstract: Tracking a mobile target, which aims to timely monitor the invasion of specific target, is
one of the most prominent applications in wireless sensor networks (WSNs). Traditional tracking
methods in WSNs only based on static sensor nodes (SNs) have several critical problems. For example,
to void the loss of mobile target, many SNs must be active to track the target in all possible directions,
resulting in excessive energy consumption. Additionally, when entering coverage holes in the
monitoring area, the mobile target may be missing and then its state is unknown during this period.
To tackle these problems, in this paper, a few mobile sensor nodes (MNs) are introduced to cooperate
with SNs to form a hybrid WSN due to their stronger abilities and less constrained energy. Then,
we propose a valid target tracking scheme for hybrid WSNs to dynamically schedule the MNs and
SNs. Moreover, a novel loss recovery mechanism is proposed to find the lost target and recover the
tracking with fewer SNs awakened. Furthermore, to improve the robustness and accuracy of the
recovery mechanism, an adaptive unscented Kalman filter (AUKF) algorithm is raised to dynamically
adjust the process noise covariance. Simulation results demonstrate that our tracking scheme for
maneuvering target in hybrid WSNs can not only track the target effectively even if the target is lost
but also maintain an excellent accuracy and robustness with fewer activated nodes.

Keywords: target tracking; hybrid wireless sensor networks; target recovery; data fusion; dynamic
cluster scheduling

1. Introduction

Wireless sensor networks (WSNs) have recently emerged as an increasingly significant area
of research owing to their wide range of applications, such as environmental monitoring, security
surveillance, industry control, and intrusion detection [1–4]. In addition, they can be used in military
applications. Examples include monitoring a battlefield, assessing battle damage, biological and
chemical attack detection, and monitoring of water quality control [5]. Among these applications,
tracking a moving target is a prominent application that can be realized by deploying a great deal of
sensor nodes in the interested area to timely monitor the invasion of specific targets, such as enemy
vehicles, enemy soldiers, and wild animals [6].

Generally, WSNs consist of many static sensor nodes (SNs) which are tiny low-cost, energy-limited,
and sensing range-limited for cost saving. Hence, it is imperative to efficiently manage the sensors’
resources to prolong the lifetime of tracking networks without sacrificing performance. Much research
effort has been dedicated to resolve the issue from different perspectives, for example, energy-efficient
tracking scheme [7–10] and energy-balanced tracking scheme [11–13]. However, as long as the sensor
nodes are static, this issue cannot be fully tackled. In recent years, empowered by embedded computing
and wireless communication techniques, some sensor nodes can move around when they are installed
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on mobile equipments. In general, mobile sensor nodes (MNs) are resource-rich devices with more
energy, higher communication power, and more powerful sensing and computational capabilities than
SNs [14]. In the hybrid WSNs, SNs are responsible for sensing environment variables, while the MNs,
also called mobile sinks, move to designated positions for gathering data or results sent by SNs and
then forward them to the remote end. Typically, to support mobility of the MNs, a source node (e.g.,
a cluster head) can report the target state and other related data to the MNs, and the MNs could move
itself to some position according to the target position and then broadcasts its arrival.

However, some aforementioned limitations of SNs in hybrid WSNs remain, raising the need
for some specialized measures, such as dynamic network structure, position computation of target,
future-position prediction of target. These measures will decrease the number of SNs participating
in tracking as small as possible, which may result in the loss of mobile target [15]. Thus, in practical
scenarios of target tracking in WSNs, the problem of losing target may frequently crop up. Many
researchers have focused on this issue and put forward some efficient solutions. Hsu et al. [16],
proposed two recovery algorithms namely CORS and TORS. The CORS searches for the lost target
sequentially based on the probability of being located in certain faces. While the TROS wakes up
all sensor nodes within a circular area that is centered on the position where the target is lost, and
the radius of the circular area is the distance that the target may travel with its maximum speed.
Patil et al. [15] proposed an energy efficient recovery mechanism which considers two types of network
scenarios. The first type is wireless boundaries are known by the network (WSHAN), and the anther is
wireless sensor hole unaware (WSHUN) where the hole boundary nodes are unknown. To decrease the
energy consumption in tracking, Samarah et al. [17] introduced a prediction-based tracking technique
using sequential patterns (PTSPs). Since PTSP approach uses a prediction technique, the tracking
may experience some target missing. To overcome the problem, three recovery mechanisms have
been implemented: source recovery mechanism, destination recovery mechanism, and all neighbors
recovery mechanism. After comparing the experiment results, the source recovery mechanism is
deemed the best one among the three mechanisms.

However, most of recovery mechanisms (including the above methods) are put forward for static
sensor networks rather than hybrid sensor networks. In hybrid WSNs, there are also many reasons
resulting in the loss of target, such as communication failures, node death, sudden change in target
speed or direction, localization errors, and coverage holes in the deployment monitoring area [18].
In real environments, the mobility of target and the distribution of the sensor nodes are usually the
two most difficult factors that users of the tracking networks could control, especially in the battlefront
or hostile environment. Hence, the tracking network often misses the mobile target because the target
sudden changes its speed/direction or enters coverage holes in the deployment monitoring area.

In this paper, we focus on tracking the maneuvering target in hybrid WSNs and put forward
a novel loss recovery mechanism aiming at the situations that the target moves with time-varying
speed and enters coverage holes in the deployment monitoring area. More specifically, considering
characteristics and constraints of target tracking and recovery in hybrid WSNs, we utilise the following
mechanisms to efficiently carry out tracking tasks: (1) a cluster-based structure to cooperation tracking
the mobile target, which consist of a few static sensor nodes and will vary with the moving of the
target; (2) a prediction-based method to dynamically select appropriate task cluster nodes according to
their current energy and distance to the predicted position of target; (3) the cluster head (CH) will fuse
different detection results from other cluster members with its own by using unscented Kalman filter
(UKF) algorithm; (4) the MNs, which are assumed with unlimited energy, higher communication and
sensing capabilities will also cooperate with the task cluster to implement the tracking under normal
conditions; (5) once the target is declared lost, the MNs will continue performing the tracking and
activate the related static nodes to form recovery task cluster; and (6) an adaptive unscented Kalman
filter (AUKF) which adaptively adjusts the prior process noise covariance matrix is proposed for the
MNs to improve the accuracy and robustness of recovery mechanism. Our main contributions are:
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• Propose an effective target tracking scheme in hybrid WSNs where the MNs and the dynamic
activated cluster nodes are integrated for cooperation tracking.

• Design a novel loss recovery mechanism for mobile target in hybrid WSNs, which aims to recover
the mobile target with fewer active nodes in the cases that the target suddenly changes its speed
or direction and the target enters coverage holes in the deployment monitoring area.

• Propose an adaptive UKF (AUKF) algorithm which adaptively adjusts the process noise covariance
matrix based on the weighting combination of its current theoretical estimation value and
previous data.

The organization of the paper is as follows. In Section 2, we formulate the basic problems and
system models involved in target tracking in hybrid WSNs. Section 3 briefly introduces UKF algorithm
and presents the proposed AUKF algorithm. The mechanism of dynamically selecting cluster members
and cluster head is discussed in Section 4. Section 5 describes the tracking process in hybrid WSNs.
Section 6 illustrates the proposed target recovery mechanism. Simulation experiments are reported in
Section 7. Finally, Section 8 concludes the paper.

2. Problem Formulation and System Models

This section presents the basic problems and system models involved in target tracking. Based
on the realistic models, the definition of tracking probability is introduced at the end. Table 1 has
summarized some key symbols in this paper.

2.1. Problem Formulation and System Overview

As shown in Figure 1, a lot of static sensor nodes are deployed randomly and unevenly in a
area of interest, and some MNs, also called mobile sinks, which could move anywhere in a random
way locate initially in the area boundary [19]. The network consists of Ns cheap and low-power
SNs S = {s1, s2, ..., sNs} and a few MNs M = {m1, m2, ..., mi}. Each of SNs is equipped with an
ultrasonic distance sensor as well as a low-cost passive infrared (PIR) sensor and the MNs are fitted
with an angular sensor besides the above two sensors. Both the sensing and communication models
of nodes are the unit-disk graph model. In order that all sensor nodes that sense the same target can
communicate with each other, their communication radii R are set twice of their sensing radii r. In this
paper, we assume that the sensing radius of the MNs is much greater than that of SN and the energy
consumption of MNs is less constrained, as they can replenish their energy due to the mobility [20].
Meanwhile, the location of each sensor node which can be obtained by on-board GPS receiver is known
by itself after the initialization of network. Without loss of generality, the target and all sensor nodes
are assumed to locate in a 2-D area in this paper. Thus we formulate the target tracking problem with a
2-D model.

In this paper, all static sensor nodes work in two modes: sleep (inactive) and wake up (active).
When nodes are in the sleep mode, they stay in the sleep state and wake up for a relatively short time
periodically, during which time they can detect whether the target appears in their sensing area [21].
When a maneuvering target moves along a curve path in the surveillance area, only some of sensor
nodes along this path will be woken up to form a task cluster which includes the cluster head (CH)
and the cluster member (CM). They measure the distances between target and themselves, and report
the measurements to the CH which serves as the local fusion center. Meanwhile, the MN closest to the
target will follow closely behind the target. It acquires the target position via inquiring the current CH.



Sensors 2018, 18, 341 4 of 24

Figure 1. A moving target tracking scene in a wireless sensor network.

Table 1. Key symbols and their notations.

Symbol Notation Symbol Notation Symbol Notation

MN Motion node c Position vector of = m Position vector of MN
r Sensing radius rt Uncertainty distance R Covariance matrix of v

SN Static node x Target state vector pd(si) Probability of = sensed by si
= The target li Position vector of si d(si,=) Distance between si and =
Θ Tracking cluster si The ith sensor node PD Probability of = sensed by Θ
w Process noise z Measurement vector Q Covariance matrix of w
Υk Cluster node set v Measurement noise ∆ Sampling time interval
Nk Number of Υk vk Velocity vector of = Esp Sensing and processing cost
Er Receiving cost Et Transmission cost Econ Total energy cost of a node
x̂ Estimation of x uk Innovation sequence Pxz Cross covariance matrix
x̄ Prediction of x P̂ Estimation of P Pzz Innovation covariance matrix

θ0, θ1 Parameters of PD R0 Initial R of AUKF Pxx Error covariance of state
τ0, τ1 Thresholds of esi Ω0, Ω1 Thresholds of Nk esi Remaining energy of si
λ, β Parameters of pd bc Bits of data packets et, er, ed c of energy cost

2.2. Event-Detection Model and Tracking-Probability Definition

Event-based methods for sensing target in WSNs must consider the detection probability model.
Several factors may influence the detection efficiency, such as sensor reliability, environmental
conditions, and target characteristics [22]. This paper uses a hybrid detection model similar to that in
the work [13,23] which merges the binary and probabilistic exponential detection model. This model
is based on two thresholds r, rt (r > rt) and considers three situations:

pd(si) =


1, d(si,=) < r − rt,

e−λaβ
r−rt≤ d(si,=) ≤ r + rt,

0 d(si,=) > r + rt,
(1)

where d(si,=) is the distance between sensor si and target =, a = d(si,=)− (r− rt) represents the
target characteristic, and 0 < λ, β ≤ 1 represent the sensor technology and environment factors.

According to the above equation, if d(si,=) ≤ r+ rt, the target could be detected with a probability.
In this work, the cluster nodes will be selected considering the predicted position of target, which
we will describe later. However, the predicted next position of target is not always very accurate.
The nodes that closes to the predicted position of target may detect the target with a high probability at
next timestep [24]. Thus, we take into account the distance-to-target of the SNs and ensure the target
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is detected by the task cluster with a high tracking-probability when selecting the task cluster nodes.
Suppose n task cluster nodes track the target, the average of the detection probability of current task
cluster nodes to the target is defined as the tracking-probability of current cluster

PD =
1
n

n

∑
i=1

pd(si). (2)

See Figure 2 for an example that uses the model of target detection and tracking-probability when
selecting task cluster nodes.

t
r r-

t
r r+

r

Figure 2. An example of target detection model and tracking-probability.

2.3. Motion and Measurement Models

This paper considers only a single-target tracking problem. A four-dimensional state vector,
xk = [x(k), vx(k), y(k), vy(k)]T , denotes target state at timestep k, which includes the position vector
ck = [x(k), y(k)]T and the velocity vector vk = [vx(k), vy(k)]T . li = [sx(i), sy(i)]T is the location of
sensor nodes si. In this article, we assume that the sampling time interval between two successive
timesteps, ∆, is a constant under normal conditions. The motion state of target evolves according to
the following discrete-time dynamic model [25]:

xk = f (xk−1) + wk−1, (3)

where f (∗) is the state transition function of target, and wk−1 is the process noise vector, assumed the
zero-mean white Gaussian with covariance matrix Qk−1. The statistics of initial state vectors x̂0 and its
error covariance matrix Q̂0 are assumed to be known.

Suppose node si is used to detect target = at timestep k, the measurement zi(k) is given by [11]

zi(k) = hi(xk) + vi,k, (4)

where hi(∗) is the measurement function and vi,k is the measurement noise of si at the kth timestep.
Although the practical measurement noise distribution of each sensor node is very complex, vi,k is
assumed as an independent and identically distributed (i.i.d.) Gaussian random variable with zero
mean and identical σ2 to simplify the model, as in [11]. Note that the task cluster node set Υk will vary
with different timestep. Denote Nk be the number of Υk. Then the sensor measurements at the kth time
step can be indicated in a vector form [26]:

zk = h(xk) + vk =



h1(xk)
...

hi(xk)
...

hNk (xk)


+



v1,k
...

vi,k
...

vNk ,k


. (5)
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Then, the measurement noise covariance matrix R(k) can be obtained:

R(k) = diag(σ2, ..., σ2)Nk×Nk . (6)

For SNs si, its measurement function is given by

hi(xk) =
√
(sx(i)− x(k))2 + (sy(i)− y(k))2. (7)

For MNs mj, suppose it locates in mj(k) = [uj,x(k), uj,y(k)] at timestep k, then its measurement
function can be given as follows

h̄j(xk) =

[
hj(xk)

∅j(xk)

]
=

[ √
(uj,x(k)− x(k))2 + (uj,y(k)− y(k))2

arctan((uj,y(k)− y(k))/(uj,x(k)− x(k)))

]
, (8)

where hj(xk) is the measurement function of distance sensor which measures the distance-to-target of
the MNs mj and ∅j(xk) is the measurement function of angular sensors which measures the angular
between the mj and the target.

Note that, under normal conditions, the MNs only turn on their distance sensors, and once the
target is declared to be lost, their angular sensors will be also switched on to detect the lost target.

2.4. Energy Consumption Model

Energy consumption is considered as the most important tracking cost. The proposed energy
consumption model is based on the power and activation time of different functional modules: Sensor,
Microprocessor, and Transceiver [27]. Thus, there are three main aspects consuming energy for task
nodes, namely, target sensing, data processing and data communication [28]. Task cluster nodes, in
active state, always have their modules on to acquire and process information data about the target
and transmit or receive data, which results in most of the energy consumption. The inactive SNs
which spend most of their time in sleep state during which they only periodically sense the target and
receive messages. To simplify system models, we assume that there is no energy consumption of SNs
in inactive state. In addition, the energy consumption of MNs is also negligible for they can replenish
their energy because of the mobility [29].

Static nodes adopt the energy consumption model similar to work [11]. Let Esp denote the energy
consumption of static node si in target sensing and data processing, regarded as a constant in this
work. For data transmitting from si to sj, the energy cost to transmit bc bits data with a distance rij is
given by

Et(i, j) = (et + edrı
ij)bc, (9)

where et and ed are decided by the transmitter, and ı depends on the channel characteristics, assumed
to be time-invariant; the energy cost in receiving data by si from other nodes is

Er(i) = erbc, (10)

where er is decided by receiver install in sensor node sj. Hence, the total energy consumption of si as a
CM during a timestep yields

Econ(i) = Et(i, ch) + Esp, (11)

and the total energy cost of a CH during a timestep is

Econ(ch) = Er(ch) ∗ Nk + Esp + Et(ch), (12)

where Et(ch) stands for the energy cost of transmitting the fusing result to the related nodes (e.g., the
MNs and the nest CH).
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3. Adaptive Unscented Kalman Filter Algorithm for Target Tracking

Each CM will measurement the distance between the target and itself. When the preset time is up,
they send their measurements to their CH, in which a filter algorithm will be performed to fuse the
inaccurate measurements and product some accurate estimations [1]. Unscented Kalman filter (UKF) is
a considerably typical nonlinear filter algorithm, which was proposed for state estimation in nonlinear
dynamic system. As it has many merits such as simplicity in realization, high accuracy, and rapid
convergence [30,31]. In this work, a nonlinear distance-based observation model is adopted, and UKF
is used due to its superior performance for maneuvered targets [32]. However, when the maneuvering
target moves with time-varying speed in the monitoring area, the standard UKF may cannot estimate
the target state robustly because of the highly time-varying process noise [33], and then current task
cluster may lost the target. Therefore, we put forward a robust adaptively UKF (AUKF) algorithm to
estimate the maneuvering target with time-varying speed.

3.1. Standard Unscented Kalman Filter: A Brief Review

With respect to the motion and measurement models which have been described in Section 2.3,
the nonlinear estimation based on standard UKF can be briefly expressed as [13,30]:

1. Compute weights with the initial parameter 0 < ω0 < 1:

ωj =
(1−ω0)

2nx
(13)

c0 =

√
nx

1−ω0
, cj =

√
nx

1−ω0
rj, j = 1, · · · , 2nx, (14)

where nx is the dimension of the state vector, {rj; j = 1, · · · , nx} is the unit vector of the jth
dimension and rj = −r(j−nx) when j = nx + 1, · · · , 2nx.

2. At timestep k, establish symmetric sigma points φ about the previous state estimation with the
last estimation of target state x̂k−1|k−1 and error covariance matrix P̂xx

k−1|k−1:

φ
(j)
k−1|k−1 = x̂k−1|k−1 + Dk−1|k−1cj, j = 0, · · · , 2nx, (15)

where Dk−1|k−1 = (P̂xx
k−1|k−1)

1/2 is the square root of P̂xx
k−1|k−1.

3. Predict the target state at timestep k x̄k|k−1 and its error covariance matrix P̄xx
k|k−1:

x̄k|k−1 =
2nx

∑
j=0

ωj f (φ(j)
k−1|k−1) (16)

P̄xx
k|k−1 =

2nx

∑
j=0

ωj[ f (φ(j)
k−1|k−1)− x̄k|k−1] ∗ [ f (φ(j)

k−1|k−1)− x̄k|k−1]
T + Qk−1, (17)

where Qk−1 is the process noise covariance matrix at timestep k− 1.
4. Establish symmetric sigma points φ about the state prediction:

φ
(j)
k|k−1 = x̄k|k−1 + Dk|k−1c(j), j = 0, · · · , 2nx, (18)

where Dk|k−1 is also the square root of P̄xx
k|k−1.

5. Predict the innovation covariance matrix P̄zz
k|k−1 and cross covariance matrix P̄xz

k|k−1:

P̄zz
k|k−1 =

2nx

∑
j=0

ωj[h(φ
(j)
k|k−1)− z̄k|k−1] ∗ [h(φ

(j)
k|k−1)− z̄k|k−1]

T + Rk (19)
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P̄xz
k|k−1 =

2nx

∑
j=0

ωj[ f (φ(j)
k−1|k−1)− x̄k|k−1] ∗ [h(φ

(j)
k|k−1)− z̄k|k−1]

T , (20)

where z̄k|k−1 =
2nx
∑

j=0
ωjh(φ

(j)
k|k−1) is the prediction of measurement and Rk is the measurement

noise covariance matrix at timestep k.
6. Calculate current Kalman gain Kk and then obtain the estimation of current state x̂k|k and its error

covariance matrix P̂xx
k|k using current actual measurement z0

k .

Kk
∆
= P̄xz

k|k−1(P̄
zz
k|k−1)

−1 (21)

x̂k|k = x̄k|k−1 + Kk(z
0
k − z̄k|k−1) (22)

P̂xx
k|k = P̄xx

k|k−1 −KkP̄xz
k|k−1(Kk)

T . (23)

As shown in Equations (17) and (19), to run UKF, users need to provide noise covariance Qk−1
and Rk. Thus, performance of UKF depends on how well users can configure the Qk−1 and Rk for
current applications. Conventionally, they are often configured as constant matrices during the running
of standard UKF using a trial-and-error approach, which relies on the experience and background
of users.

3.2. Adaptive Unscented Kalman Filter

The standard UKF algorithm works well under suitable prior Q and R. However, when the target
moves with time-varying noise, the standard UKF may fail and thus its estimation results become
inaccurate and not robustness due to the mismatch between the prior process noise distribution and
the actual one [34]. To address this challenge, we propose a robust and efficient adaptive unscented
Kalman filter (AUKF) algorithm. The algorithm adaptively adjusts the prior process noise covariance
matrix Q based on the weighting combination of its current theoretical estimation value and the last
data. It should be noted that, in this paper, we only update Q rather than R, because the measurement
noise v of each sensor nodes is assumed to be a small variation.

The innovation sequence µk denotes the additional information available to the filter as a
consequence of the incoming new measurements. Hence, it is considered as the most relevant
information for the filter adaptation and can be used to estimate the noise covariance [35]. According
to Equation (3), the process noise can be represented as wk−1 = xk − f (xk−1). Furthermore, from
Equation (22) in Section 3.1, it yields

ŵk−1 = x̂k − f (x̂k−1|k−1) = x̂k − x̄k|k−1
= Kk(z0

k − z̄k|k−1) = Kkµk.
(24)

Therefore, the estimation of Qk−1 can be estimated as:

Qk−1 = cov(ŵk−1) = KkE[µkµT
k ]K

T
k , (25)

where E(∗) is the expectation operation. To implement the above equation, E(µkµT
k ) is usually

approximated by means of averaging µkµT
k over time using a windowing method. Instead of using

moving window methods (like in works [35]), this paper adaptively adjusts Q by utilizing a weighting
factor λ to balance the last noise covariance value and its current estimation. The weighting factor
λ ∈ (0, 1) is used to ensure the update strength. Therefore, the Q is updated as:

Qk−1 = (1− λ)Qk−1 + λ(KkµkµT
k KT

k ), (26)
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When the covariance matrices Qk−1 are updated, state estimations x̂k|k and P̂xx
k|k should be corrected

with the new Qk−1, which are given as follows:

P̂xz
k|k =

2nx

∑
j=0

ωj[φ
(j)
k|k − x̂k|k] ∗ [h(φ

(j)
k|k)− Ẑk|k]

T (27)

P̄xx
k|k =

2nx

∑
j=0

ωj[φ
(j)
k|k − x̂k|k]

T ∗ [φ(j)
k|k − x̂k|k] + Qk−1 (28)

K̂k
∆
= P̂xz

k|k(P̄
zz
k|k)
−1 (29)

x̂k|k = x̂k|k + K̂k(z
0
k − Ẑk|k) (30)

P̂xx
k|k = P̄xx

k|k − K̂kP̂xz
k|k(K̂k)

T . (31)

The overall procedure of the proposed AUKF algorithm is summarized in Algorithm 1.

Algorithm 1: The adaptive Unscented Kalman filter (AUKF) algorithm.

Input: f (∗), h(∗), x̂0, Q0, R1, P̂0, λ.
1: Initialization:

2: ωj = (1−ω0)/2nx; c0 =
√

nx
1−ω0

; cj =
√

nx
1−ω0

rj, j = 1, · · · , 2nx.

3: for k = 1→ K do
4: Implement the standard UKF to obtain x̂k|k, P̄zz

k|k−1, Kk, P̂xx
k|k.

5: Update the Qk−1:
6: µk = z0

k − h(x̄k|k−1)

7: Qk−1 ← (1− λ)Qk−1 + λ(KkµkµT
k KT

k );
8: Correct state estimations:

9: K̂k
∆
= P̂xz

k|k(P̄
zz
k|k)
−1;

10: x̂k|k = x̂k|k + K̂k(z0
k − Ẑk|k);

11: P̂xx
k|k = P̄xx

k|k − K̂kP̂xz
k|k(Kk)

T ;

12: Qk ← Qk−1, Rk+1 ← Rk.
13: Save the x̂k|k and P̂xx

k|k.

14: end for

4. Selection of Task Cluster

In WSNs, each SN usually has limited bandwidth and energy resources. Additionally, not all
nodes that detect the target contribute equally to the tracking. Therefore, to increase the lifetime of
a WSN, only some SNs should be activated to act as task cluster nodes and other SNs should keep
being asleep.

According to Section 2.2, in which we discuss the detection model and tracking-probability
definition, the selected SNs should locate as close to the target as possible. Thus, nodes that close
to the predicted target position will be selected as cluster nodes with a high priority. In addition,
the candidate SNs with high remaining energy should also be given preference to act as cluster nodes
to balance the energy distribution. Therefore, we cast such a selection problem as an optimization
problem as 

min Φk = ∑
si∈Γk

(d(si ,=))2

esi

s.t. PD = 1
Nk

∑
si∈Γk

pd(si) ≥ θ0
Nk

Nk > Ω0

esi > τ0

, (32)
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where Nk is the node number of selected set Γk = {si; i = 1, · · · , Nk} which acts as the task cluster
to detect the current target at timestep k, and esi is the remaining energy of node si. As described in
Equation (32), there are three requirements to restrict the selected task cluster Γk: (1) the predicted
tracking-probability of the selected Γk, PD, should first exceed a threshold θ0

Nk
; (2) Nk should also exceed

a threshold Ω0 to guarantee tracking precision (note that, if the number of candidate nodes is less
than Ω0 and more than Ω1, all candidate nodes will form the task cluster, otherwise the target may
enter a coverage hole and the recovery mechanism should be performed); and (3) node should be
equipped with enough energy (at least τ0 J) to work normally. After satisfying the three requirements,
we try to keep Φk as smaller as possible to save energy. As for the selection of CH, the node sj with the

minimum
(d(sj ,=))2

esj
in Γk will be selected as the CH, which is described as

sj = arg min
∀si∈Γk ,esi>τ1

(
(d(si,=))2

esi

), (33)

where τ1 is the least energy to ensure a CH work normal. Figure 3 describes the process of selecting
next task nodes.

Figure 3. An example of selecting the next cluster nodes. At timestep k, the CH will predict the target
position at timestep k + 1 according to the current estimations of target state. Then, the SNs close to the
predicted position and equipping with much energy will be activated as cluster nodes. However, if the
maneuvering target changes its trajectory or speed, the selected task cluster may fail to detect it. Then,
the target recovery mechanism will be implemented, which we will introduce later.

5. Tracking the Target with Mobile Sensors

5.1. Description of Tracking Process with Mobile Nodes

After deployment of the sensor network, all sensor nodes are assumed to have known their own
positions and then acquire the location information of their neighbor nodes by exchanging beacon
messages. At first, all SNs are in sleep mode, but periodically awake to receive messages. The MNs are
assumed to locate at the area boundary and be in charge of detecting whether a target is approaching
the monitoring area. Once a target is detected, the MNs sensing the target will compute the target
position by performing the trilateration. After the target is located, the MN nearest the target will select
some SNs around the target to form a task cluster and it will also approach the predicted position as
soon as possible and cooperate with the static task cluster to perform the tracking task.

Once a SN is activated by the last CH, its PIR sensor will be turned on and the tracking task
begins. Note that we assume that each sensor node can compute and store data locally, as well as
replying with data packets locally.
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In general, each CM (not the CH and the MN) will perform the following tasks during the
timestep k:

1. Once the PIR sensors make a positive detection, it will turn on the distance-measuring sensor to
achieve the distance-to-target.

2. When the preset time interval is up, the node will send a data packet which includes its current
measurements and remaining energy information to the CH and the closest MN after a random
delayed time with the conflict detect mechanism, CSMA/CA.

3. Once sending the data packet successfully, it will shut down its sensors and turn into sleep mode
again to save energy until awakened next time.

As for the CH, which acts as the scheduler of the task cluster, it needs to perform the
following operations:

1. After receiving the activated message packet from the last CH, it extracts and saves the previous
state information of the target, and then it will also execute the detection task like that in the CM.

2. When the preset time interval is up, it begins to receive the data packets from its CMs and the
MN. Then, it carries out standard UKF algorithm to fuse different measurements with its own
measurements and then obtains current estimations of target state as well as its predictions.

3. It extracts the remaining energy information of its neighbour nodes from the data packet coming
from the MN and then chooses appropriate cluster nodes and a new CH for next cluster according
to the method described in Section 4.

4. It sends a data packet which includes current estimations of target state and its predictions to the
MN and activates the next cluster nodes.

5. After reporting the results to related nodes, it also closes its sensors and puts into sleep state until
awakened next time.

In this paper, the selected MN services as a sink node due to its superior communication ability and
sufficient energy. Thus, it will perform the following works during a timestep under normal conditions:

1. It will approach the predicted position of target at current timestep as soon as possible and then
implement the detection task like the cluster node.

2. When the preset time interval is up, it sends a data packet including its measurements and the
remaining energy information of the neighbour nodes of current CH.

3. Once receiving the data packet from the CH, it forwards the current state information of the target
to the remote end by some internets (e.g., the cellular network) and also shares the information
with other MNs.

4. It will select the MN nearest to the predicted position of target as the next mobile sink.

5.2. Analysis of Mobile Nodes in Tracking

In this work, we assume that the MNs could move anywhere in a random way and their sensing
and communication radius are much greater than that of static nodes. Before the target appears at
the monitor area, these MNs will locate in the area boundary to detect if there exists a target that will
enter the area. During one timestep, the MN will service as a mobile sink and participate in detecting
the target. Furthermore, at the end of current timestep, the MN closest to the predicted position of
the target in the next timestep will be selected in advance, and then the selected MN will approach
the predicted position as soon as possible. In addition, the selected MN could detect the target with
a probability 1 when it arrives at the predicted position of target owing to superior sensing ability.
That is to say, only one suitable mobile node will take part in current tracking task during one timestep,
and other mobile nodes will go on keeping detection state or move to someplace to replenish their
energy if they are running out their energy.

According to the description in Section 5.1, the selected MN will service as a mobile sink to collect
and forward relevant information as well as participating in detecting the target in this work. Thus,
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there are two functions that the MN preforms in tracking the mobile target, namely, mobile sink and
tracking node. Next, take Figure 4 as an example to illustrate the performance of the MN in tracking a
mobile target.

• Performance as the mobile sink. As the sinks, node needs to gather information from current cluster
head and forward it to a remote end. As shown in Figure 4a, four fixed sinks are involved in the
monitor area. If current cluster head closes to one of sinks, it could communicate with the sink
directly. When current cluster head is far away the fixed sinks, it has to depend on a relay node to
communicate with the closest sink, which brings in a heavy communication burden. While, in this
work, the selected MN will service as a mobile sink and keep close to current cluster during a
timestep. Hence, current cluster head can directly communicate with the mobile sink without any
relay nodes as shown in Figure 4b.

• Performance as the tracking node. To ensure a high tracking accuracy, the tracking scheme should
select a task cluster with a tracking-probability. Thus, as shown in Figure 4a, six static nodes are
selected as current task nodes to ensure a high tracking-probability. Nevertheless, when a mobile
node is involved, only two static nodes are required to ensure a high tracking-probability, which
can been seen in Figure 4b. That is because the selected MN will move close to target, improving
the detecting probability and saving the energy consumption of static nodes [21].

Target

Static sink

Mobile sink(Mobile 

node)

Sleep static node

Active static node

Cluster head (CH)

(a) (b)

Figure 4. Illustration of the tracking methods based on the static nodes (left, the method used in
work [13]) and hybrid nodes (right, the method used in this work): (a) four fixed sinks are involved
and six static nodes required to form a task cluster to track the target in current timestep; and (b) four
mobile nodes works in the monitor area and one of them cooperates with the task cluster that only
consists of two static nodes.

6. Recovery Mechanism for Target Lost

In the cluster-based network, the CH has responsibility to predict the next position of mobile
target and activates the next respective CH and its CMs that the target is approaching in advance to
carry out further tracking. The prediction is only based on target’s present speed and direction and
thus the network may lose the target [36]. The reasons of losing the target can be summarized as
follows [18]:

• Localization errors: As mentioned earlier, only some sensor nodes are awakened to track the target
for saving energy. Localization is never perfect no matter what estimation methods (e.g., EKF, UKF
or PF) are used. Furthermore, the estimation errors may have a cumulative effect on estimating
the target state. Then, an inaccurate estimation of target location may result in prediction errors
which can further lead to target loss, since an unsuitable cluster is wakened in advance.

• Communication failures: Sensor nodes may be unable to communicate due to some obstacles, such as
trees, stones, and buildings. Moreover, packet loss and delay in response owing to communication
breakdown, overload, and environmental factors can also be considered in this case.
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• Node failures: Sensor nodes in WSNs have limited battery capacity and unreliable components in
order to reduce costs. Thus, node failures may occur due to software or hardware failure, battery
discharge, enemy action, etc.

• Abrupt change in target’s speed or direction: The target may change its trajectory or speed suddenly
because of the internal or external factors. In this case, the difference between actual and
prior prediction position of target becomes so large that the active cluster cannot track the
target efficiently.

• Target enters the coverage hole in WSN: The coverage holes exist in the sensor networks due to the
uneven deployment of the sensor nodes [15]. The tracking network system may lose the target
when it enters the holes where only few nodes could detect the target.

In this paper, the problem we discuss is to track a maneuvering target with time-varying speed.
Thus, we only consider the following failure reasons: the case “Abrupt change in target’s speed or direction”
and the case “Target enters the coverage hole in WSN”. Without loss of generality, the recovery mechanism
can be divided into two distinct phases: (1) declaration of lost target; and (2) target recovery.

6.1. Declaration of Lost Target

The recovery mechanism is initiated when cluster reports loss of target. Thus, before initiating
the target recovery mechanism, we should first confirm whether the target has been lost. As the target
moves away from current cluster, the current CH will send wake-up message to activate the next
cluster nodes and the MN closest to the predicted target position will also follow the target. If the
selected cluster cannot sense the target well in some stipulated time, it will declare that the target is
lost and inform the nearest MN to start up the target recovery mechanism. The criterion of judging
that a cluster could sense the target well yields

PD > θ1 and Dk > Ω1, (34)

where Dk is the number of active nodes which could detect current target and θ1 is a parameters of PD.
Otherwise, the task cluster will declare that the target is lost.

Then, we will describe the decision process in detail by taking an example. As shown in Figure 3,
the target is tracked by the cluster 1 during timestep k. At the end of timestep k, the CH in cluster 1
predicts the target will be likely to move to the cluster 2 according to the current direction and speed
of target. However, the maneuvering target suddenly changes its speed or direction during timestep
k + 1, and then the target locates actually at cluster 3. Therefore, there are only three cluster nodes in
cluster 2 cloud sense the target, and other selected cluster nodes will turn into sleep state after sending
a report message to their CH. Clearly, the PD of cluster 2 is less than θ1 or the Dk ≤ Ω1. Under this
circumstance, the CH of cluster 2 will inform the nearest MN that the target has been lost.

6.2. Target Recovery Method

To enable an energy-efficient and robust target recovery method, one needs to consider from both
the MN and SNs. In this paper, a novel target recovery method is employed to continue acquiring the
target state during the period at which the task cluster loses the target. On the other hand, based on the
estimation information of the target, the MN can efficiently recover the tracking of target, while saving
energy by decreasing the number of awakened SNs. Our proposed recovery method has following
three steps:

(1) The MN detects and tracks the target: Once receiving the message about the loss of target, the
MN will continue to detect and track the target by using AUKF algorithm. The initialize process noise
covariance matrix and error covariance matrix in AUKF are both set as the values of their previous
timestep. However, the initialize measurement noise covariance matrix will be updated as a new value
R0 Furthermore, to improve the tracking accuracy, the MN will reduce its sampling time interval to
∆/N∆. After N∆ samples, the target position at next N∆ timestep will be predicted and all SNs whose
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sensing range covers the position will be acquired. Then, if the number of those nodes is no less than
Ω1, the nodes will be activated to form a recovery cluster and detect the target, otherwise the MN will
continue to execute the above operations.

(2) The recovery cluster detects the target: The recovery cluster nodes will detect the target as soon
as they are activated. If the cluster cannot sense the target well in some stipulated time, the CH will
inform the MN the target is still lost, and then the MN will go on detecting the target as described in
step 1.

If the recovery cluster could detect the target well, the location process will be implemented.
In this paper, we use the classic trilateration method to acquire the target position. Readers could
refer to work [37] for more details about the trilateration method. The location process of trilateration
is described in Figure 5. Note that if the number of detection nodes is two, the MN will serve as a

complement node and if the number is more than three, the three nodes with the minimum
(d(sj ,=))2

esj

will be chosen for saving energy. Suppose the computational position of target at timestep K1− N∆/2
and K1 are (p1

x, p1
y) and (p2

x, p2
y), respectively. Then, the target velocity at timestep K1 is given by{

vx = (p2
x − p1

x)/(∆/2)
vy = (p2

y − p1
y)/(∆/2)

(35)

After obtaining the new estimation of target position and velocity, the sampling time interval of
the tracking system will be recovered to ∆.

(3) The downstream cluster tracks the target: Once the recovery cluster obtains the new target state
information, the standard UKF algorithm will be used to predict the next target state. Furthermore, the
related nodes will be activated as the downstream task cluster and all the active nodes involved in
recovery fall asleep as soon as the target recovery message is received except those that are selected as
downstream cluster nodes.

S1

S3
S2

(x1,y1)

(x2,y2)

(x3,y3)

d1

d2

d3

Target

Figure 5. Description of the trilateration method.

The target recovery algorithm is summarized in Algorithm 2.
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Algorithm 2: The target recovery mechanism.

Step 1: The MN detects and tracks the target:
1: Reduce its sampling time interval to ∆/N∆, and implement AUKF to estimate

the position of target at each timestep.
2: After N∆ samples, predict the next position of target.
3: Activate all static nodes whose sensing range covers the predicted position.
4: If there are no appropriate nodes to form a recovery task cluster, then
5: continue to implement the step 1.
6: end if.
Step 2: The recovery cluster detects the target:
7: If the cluster could track the target well according to the Equation (34), then
8: Execute the location process two times to obtain the target position and velocity.
9: Recover the sampling time interval to ∆
10: else
11: the current CH informs the MN that the target is lost and skip to step 1.
12: end if.
Step 3: The downstream cluster tracks the target:
13: Initialize the noise covariance with Q0 and R0, target state with

the position and velocity of target.
14: Perform the standard UKF to predict the next target state, and select the

downstream cluster nodes.
15: The recovery cluster broadcasts a target recovery message and activate the

downstream task cluster to work.

7. Simulation and Performance Evaluation

In this section, we evaluate the performance of the proposed robust tracking scheme with a
simulation framework in three different cases, as well as compare it with other related methods. Our
experiments are performed on an Intel Core i7-6700 3.4 GHz PC with 16G memory and implemented
in Matlab R2015b.

7.1. Simulation Setup

In our simulation, we consider the tracking scenario as shown in Figure 1. A maneuvering target
with time-varying speed (e.g., vehicle) moves in a 100 m × 100 m square area with coordinates from
[0, 100] to [0, 100] which is covered by Ns SNs and a few MNs. In terms of the target motion, we use
a simple linear model to represent the moving target with the discrete time dynamic state equation.
More complex models require a priori knowledge, often unavailable in most situations, hence is not
considered in this paper [13].

xk = f (xk−1) + wk−1 = Axk−1 + wk−1, (36)

where A is the state transition matrix. The sampling time interval ∆, process noise covariance matrix Q
and measurement noise covariance matrix R are constant under normal conditions during the tracking
process. However, if the target is lost, the three parameters will be changed with the timestep by the
scheduler of the recovery method. Without loss of generality, the initial energy of each SN distributes
uniformly in [0, 1](J), and the energy consumption model of SN in different roles has been described
in Section 2.4. Additionally, it is assumed that there is no wireless transmission error when nodes
communicate with each other.
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In this paper, the root mean-squared error in position at each timestep, RMSEp, and its average,
ARMSEp, are adopted as the indications of tracking accuracy, since it yields a combined measurement
of the bias and variance of a filter estimate [38]. The ARMSEp is given by

ARMSEp =

√√√√ 1
NmK

Nm

∑
i=1

K

∑
k=1

[(x̂(i)k − xk)
2
+ (ŷ(i)k − yk)

2
], (37)

and the RMSEp at timestep k yields

RMSEp(k) =

√√√√ 1
Nm

Nm

∑
i=1

[(x̂(i)k − xk)
2
+ (ŷ(i)k − yk)

2
], (38)

where (x̂(i)k , ŷ(i)k ) is the estimated target position in timestep k at i-th Monte Carlo run. Nm = 1000 is the
number of Monte Carlo runs and K = 60 is the number of sample steps in one run. Other parameter
settings in the simulations are shown in Table 2.

Table 2. The settings of system parameters in our simulation environment.

Q = 2 ∗


∆3

3
∆2

2 0 0
∆2

2 ∆ 0 0
0 0 ∆3

3
∆2

2
0 0 ∆2

2 ∆

, A =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

,

x̂0 = [16.18, 2.14, 81.32,−4.75], P̂0 = diag([0.2, 0.3, 0.2, 0.3]),
σ2 = 2, ∆ = 0.5 s,
r = 10 m, t = 2 m,
λ = 0.5, β = 0.5,
τ0 = 0.05 J τ1 = 0.2 J,
Ω0 = 4, Ω1 = 2,
θ0 = 2.5, θ1 = 1,
R0 = diag([1, 0.0001]), ı = 2,
et = 4.5× 10−5 J/bit, ed = 1.0× 10−8 J/bit,
er = 1.35× 10−4 J/bit, esp = 8.0× 10−7 J/bit,
bc = 48 bits, N∆ = 4.

We carry out our simulation experiment under two typical scenarios, including both the normal
situation and target is lost due to the uneven distributed nodes or the abrupt change of the target speed.
Then, the performance of the proposed tracking scheme can be evaluated under these situations. There
is no need to change the scheme itself when facing the different situations. Note that all results are
averaged by Nm = 1000 Monte Carlo runs.

7.2. Tracking Performance under Normal Circumstances

In this section, to evaluate the tracking performance of our proposed scheme, we assume that the
target will not be missing during the tracking. Thus, to ensure the assumption, there is no coverage
hole in the sensor network and target speed would not change suddenly and greatly. For fully
evaluating the tracking performance, we take into account two different sensor networks: uniformly
and randomly distributed sensor networks.

Two metrics have been used in the performance analysis.

(1) Tracking errors. As shown with the red dotted line in Figure 6, a maneuvering target move
along a curve trajectory in the monitored area which is assumed to be covered by Ns uniformly
distributed SNs. One of the estimated target trajectories is displayed with green solid line.
The tracking errors shown in Figure 7 is indicated by the RMSE in position (RMSEp) at each
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timestep. The minimum and maximum RMSEp are separately 0.5046 m and 1.9921 m, and
the ARMSEp is 0.8920 m. As for the tracking errors in randomly distributed sensor networks,
Figures 8 and 9 show, respectively, one of the estimated target trajectories and tracking errors.
The minimum and maximum RMSEp are respectively 0.5684 m and 1.9463 m, and the ARMSEp

is 0.8670 m.
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Figure 6. One of tracking trajectories using our proposed tracking scheme in a uniformly distributed
sensor network.
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Figure 7. Tracking errors (RMSEp) at each timestep using our proposed tracking scheme.
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Figure 8. One of tracking trajectories using our proposed tracking scheme in a randomly distributed
sensor network.
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Figure 9. Tracking errors (RMSEp) at each timestep using our proposed tracking scheme in a randomly
distributed sensor network.

(2) Total energy consumption. The amount of energy consumed by the whole network to monitor
the mobile target is another important metric to measure the practicality of our scheme.
The averaged energy consumption of the proposed tracking scheme in one tracking action
used in the randomly distributed sensor network is 2.4623 J, higher than that in the uniformly
distributed sensor network a bit (2.3449 J). The reason for this is that the proposed method may
activate more SNs due to the uneven distribution in the randomly distributed sensor network.

7.3. Performance Analysis of Mobile Nodes in Tracking the Target

To evaluate the benefits of using mobile nodes in this work, we compare the tracking based on
hybrid nodes (our proposed method, THN) with the tracking only based on static nodes (TSN). To be
fair, the two methods use the same cluster node selection mechanism and UKF algorithm as described
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in this paper. To clearly present the difference between two methods, Ω0 and θ1 are separately set to 3
and 3.5, and other parameter settings are similar to Table 2.

Figure 10 shows the number of activated cluster nodes in each timestep used the two different
methods. In this figure, we can see that the number of activated cluster nodes in TSN is greater than or
equal to that in THN at each timestep. As for the comparisons of tracking errors, the two methods
have nearly the same good performance, which is shown in Figure 11. The ARMSEp of THN and TSN
are, respectively, 0.9286 m and 0.9163 m. Therefore, in Figures 10 and 11, we can find that the use
of the MNs in target tracking could decrease the number of activated task nodes and then obtain an
energy-saving with a good performance in tracking errors.
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Figure 10. Comparisons of the number of activated cluster nodes in each timestep.
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Figure 11. Comparisons of tracking errors (RMSEp) at each timestep.

7.4. Recovery Performance When Target Is Lost

In this section, we will evaluate the performance of our loss recovery mechanism and compare it
with the classic source recovery mechanism (SRM) used in work [17]. Readers can refer to work [17]
for more details about the source recovery mechanism. Meanwhile, to further illustrate the superiority
of the proposed AUKF algorithm in the recovery mechanism, we also compare it with the recovery
mechanism with the standard UKF algorithm.
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7.4.1. Abrupt Change in Target’s Speed or Direction

In this case, we will test the recovery mechanism of our tracking scheme in the situation that the
target is lost as its speed or direction is changed suddenly during moving in the monitor area. To avoid
the situation that the target may enter the coverage hole, we assume that the monitored area is covered
by Ns = 196 uniformly distributed SNs.

As shown in Figure 12, the target suddenly increases its speed at timestep 3 and decreases it speed
at timestep 10, and then it begin to change its direction. In Figures 12 and 13, it can be seen that the
proposed recovery mechanism with AUKF could works well when the target is lost. After the task
cluster declares that target is lost, the MN goes on tracking the target by using the AUKF. However,
if the MN tracks the target by using UKF, the tracking performance will suffer from degradation
and even divergence after losing the target. That is because the actual process noise distribution will
mismatch with the assumed one when the motion state of the target occurs abrupt change, leading to a
biased or even divergent filter solutions [34]. Therefore, the proposed recovery mechanism with UKF
could not recover the target tracking in this case. As for the recovery performance of the classic SRM,
the current task cluster nodes will activate their neighboring nodes if the target is not in its detection
area. Furthermore, if the target is still not found, all the sensor nodes in the network will be activated
to looking for the target. Therefore, in this case, the SRM could ensure to recover the target, despite
missing the target state in some timesteps.
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Figure 12. Tracking trajectories of the target under different recovery mechanism when the target
suddenly change its speed or direction.
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Figure 13. Tracking errors (RMSEp) at each timestep under different recovery mechanism when the
target suddenly change its speed or direction.
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Table 3 summarizes the averaged activated node amount in one tracking action for recovering the
target tracking and the ARMSEp of the three different methods. Our proposed recovery mechanism
with AUKF outperforms the SRM by about 75% in the averaged activated node amount in one
tracking action which can be adopted as the indication of energy consumption with an almost identical
ARMSEp. Obviously, the ARMSEp of the proposed recovery mechanism with UKF is the largest and
we have explained the reasons in the above discussion.

Table 3. Features of different recovery mechanisms.

Recovery Mechanisms Averaged Amount of Activated
Nodes in One Tracking Action ARMSEp

Our recovery mechanism with AUKF 6.010 1.581 m
Source recovery mechanism (SRM) 24.505 1.378 m
Our recovery mechanism with UKF - 18.360 m

7.4.2. Target Enters Coverage Holes in the Monitoring Area

In this case, we will test the recovery mechanism of our tracking scheme in the situation that the
target will enter a coverage hole due to the uneven distribution of SNs. Similarly, we assume that the
target would not suddenly change its speed to focus on the problem of coverage hole.

As shown in Figure 14, the target will enter a coverage hole at the timestep 41 from which there is
no suitable node could track the target. In this case, the proposed recovery mechanism with AUKF
and UKF are both works well. When the target enters a coverage hole, the related MN is informed that
the target is lost and begins to track the target alone. Although the node number is less, the sample
rate is raised and the motion state of target does change significantly. Thus, the MN can obtain a good
estimation of target state by using AUKF or UKF algorithm. However, from the Figures 14 and 15 we
can find that the SRM could not track the target when the target locates in the coverage hole. That is
because the SRM recovers the target tracking by means of activating related neighbour nodes to find
the lost target, but there is no nodes in the coverage hole.
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Figure 14. Tracking trajectories of the target under different recovery mechanism when the target
enters a coverage hole.
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Figure 15. Tracking errors (RMSEp) at each timestep under different recovery mechanism when the
target enters a coverage hole.

Table 4 also summarizes the averaged activated node amount in one tracking action for recovering
the target tracking and the ARMSEp of the three different methods in this case. We can find the
proposed recovery mechanism with AUKF achieves the best performance in both two features.
Additionally, the performance of the proposed recovery mechanism with UKF is very close to that
with AUKF in this case. As for the SRM, the averaged activated node amount of it in one tracking
action is far more than that of the previous two, which will consume a great deal of energy. The reason
for this is, when the activated neighbour nodes also cannot find the lost target, all nodes in the network
will be activated to look into the target according to the theory of SRM.

Table 4. Features of different recovery mechanisms.

Recovery Mechanisms Averaged Amount of Activated
Nodes in One Tracking Action ARMSEp

Our recovery mechanism with AUKF 3.5 0.977 m
Source recovery mechanism (SRM) 433.996 2.140 m
Our recovery mechanism with UKF 3.7 1.153 m

8. Conclusions and Future Work

In this paper, we present a novel loss recovery and tracking scheme for maneuvering target
in hybrid WSNs where a few MNs are used to cooperate with SNs to build up robust and efficient
tracking networks. Based on the hybrid WSN, we consider a cluster-based single target-tracking scene.
By dynamically scheduling the MNs and static cluster nodes, the tracking probability and accuracy can
be effectively guaranteed with fewer cluster nodes and less energy consumption compared with the
tracking only based on static nodes. In addition, in view of the the fact that the task cluster may lose
the mobile target when the target abruptly changes its target’s velocity or enters coverage holes in the
deployment monitoring area, we propose a novel loss recovery mechanism by using the characteristics
of the hybrid WSNs. Furthermore, an adaptive UKF (AUKF) is proposed for the MN to track the
lost target robustly. The simulation results demonstrate that the proposed loss recovery and tracking
scheme behaves really well in improving the robustness and accuracy of recovering and tracking the
mobile target as well as decreasing the amount of the activated task nodes.

In our future endeavors, we will aim to carry out our work on investigating the multi-target
tracking schemes in hybrid WSNs, which is more complicated than tracking in the single tracking
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scenario. Furthermore, the loss recovery mechanism will be also extended to the multi-target tracking
scenario. Additionally, the number of mobile nodes which take part in the tracking task in one timestep
is fixed with one. In our following work, we will research the influence of the number of mobile nodes
which take part in the tracking task in one timestep on the tracking accuracy and the energy-saving in
hybrid WSNs. Moreover, we will also focus on how to move the mobile nodes to save their energy and
ensuring the tracking-probability of task nodes.
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