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Abstract: Radiometric normalization attempts to normalize the radiomimetic distortion caused by
non-land surface-related factors, for example, different atmospheric conditions at image acquisition
time and sensor factors, and to improve the radiometric consistency between remote sensing images.
Using a remote sensing image and a reference image as a pair is a traditional method of performing
radiometric normalization. However, when applied to the radiometric normalization of long
time-series of images, this method has two deficiencies: first, different pseudo-invariant features
(PIFs)—radiometric characteristics of which do not change with time—are extracted in different
pairs of images; and second, when processing an image based on a reference, we can minimize
the residual between them, but the residual between temporally adjacent images may induce steep
increases and decreases, which may conceal the information contained in the time-series indicators,
such as vegetative index. To overcome these two problems, we propose an optimization strategy
for radiometric normalization of long time-series of remote sensing images. First, the time-series
gray-scale values for a pixel in the near-infrared band are sorted in ascending order and segmented
into different parts. Second, the outliers and inliers of the time-series observation are determined
using a modified Inflexion Based Cloud Detection (IBCD) method. Third, the variation amplitudes
of the PIFs are smaller than for vegetation but larger than for water, and accordingly the PIFs
are identified. Last, a novel optimization strategy aimed at minimizing the correction residual
between the image to be processed and the images processed previously is adopted to determine
the radiometric normalization sequence. Time-series images from the Thematic Mapper onboard
Landsat 5 for Hangzhou City are selected for the experiments, and the results suggest that our method
can effectively eliminate the radiometric distortion and preserve the variation of vegetation in the
time-series of images. Smoother time-series profiles of gray-scale values and uniform root mean
square error distributions can be obtained compared with those of the traditional method, which
indicates that our method can obtain better radiometric consistency and normalization performance.

Keywords: radiometric normalization; long time-series; cloud and cloud shadow; pseudo-invariant
features; inflexion-based cloud detection

1. Introduction

Remote sensing satellites observe the land surface of the Earth at regular time intervals with
the same observation geometry and obtain time-series of images, which record the occurrence and
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development patterns of land surface phenomena and thus have been widely applied for land change
detection [1], crop yield estimation [2], urban sprawl analyses [3], land-cover transition evaluations [4],
and forest succession analyses [5], and achieving great success. Despite the great success of applications
based on time-series of images, the physical signal recorded by a remote sensor (such as gray-scale
value or reflectance) at different dates is inevitably contaminated by noise unrelated to the land surface,
including different atmospheric conditions at the time of image acquisition and sensor distortion, which
can cause variations in radiometric features between images and decrease the comparability between
different images over the same study area [6]. Contaminated signals can lead to sharp increases or
decreases in the profiles of time-series indicators such as vegetation indices, which conceals the actual
changes of the land surface and hinders information extraction. Thus, removing radiometric distortion
is urgently needed to facilitate remote sensing applications.

Radiometric calibration attempts to eliminate the radiometric distortion caused by non-surface
factors and correct radiometric differences between different images. Based on the transformation
of gray-scale values to physical signals, calibrations can be classified into absolute radiometric
calibrations and relative radiometric calibrations [1]. An absolute radiometric calibration establishes
the relationship between the measurement values from a remote sensor and the reflectance of the land
surface to eliminate the radiometric distortion between images. This method needs to establish an
“atmosphere–land surface–sensor” interaction model, involving certain environmental parameters
(such as the atmosphere) at acquisition time [7]. Additionally, some pseudo invariant calibration
sites are required to calibrate the on-orbit sensors [8]. However, not all archived historical data
were recorded with environmental information, which restricts the practicability of this method [5,9].
The relative radiometric calibration uses a certain image as a reference and corrects another image based
on the reference; thus, the processed image will have a similar radiometric condition as the reference
for the same land surface, namely, radiometric normalization. Radiometric normalization directly
establishes the mapping relationship of radiometric features between different images and can obtain
an application effect comparable to that of absolute radiometric calibration [5,10]. Currently, there are
primarily two types of methods for radiometric normalization; mapping and regression methods.

The mapping method directly establishes a gray-scale mapping equation between images and
uses the mapping value to replace the gray-scale value of the input image. For instance, using a linear
equation, the mean and standard deviation of a reference image can be assigned to the image to be
processed, and the processed image therefore has the same average and standard deviation as the
reference image, which eliminates the radiometric distortion. Another widely used mapping method is
histogram specification, which assigns the histogram of the reference image to the input image so that
the processed image has the same gray-scale distribution as the reference image [11]. Because different
bands of a multispectral image are usually correlated, the differences in the radiometric features
can be eliminated by defining a high-dimensional rotation matrix to match the density function in
multidimensional space [12]. Radiometric normalization based on histogram specifications has been
used for land surface change detection [13], gap filling [14], and image mosaicking [11].

The regression method establishes a regression model to describe the radiometric distortion
relationship between the images through pseudo-invariant features (PIFs), which represent pixels
with radiometric features that do not change with time, such as those of buildings and bare land [15].
As the radiometric difference between PIFs are mainly attributed to noise factors, we can establish
a regression model to quantify the radiometric difference between different images and eliminates
the radiometric difference according to the obtained regression model. As a result, the selection
of high quality PIFs is the key for radiometric normalization. The PIF selection method mainly
includes principal component analysis [16], weighted principal component analysis [17], multivariate
alteration detection (MAD) [18], improved Iteratively Re-Weighted MAD (IRMAD) [9], and iterative
slow feature analysis [19]. The PIF extraction methods based on categories, for example, the temporally
invariant cluster (TIC) method [1], are more robust than that of pixel-level methods. For radiometric
normalization models, linear regression models are simple and effective, and later improved linear
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regression methods such as the ordinary least-squares regression, reduced major axis regression [20]
and Theil-Sen regression [21] have been successively developed and widely used to correct radiometric
distortions. In addition, artificial intelligence methods, for example, genetic algorithms, can be used to
not only optimize the regression parameters but also eliminate nonlinear distortions [22].

According to the comparison of the two methods above, the mapping method changes variations
in the radiometric features caused by atmospheric and sensor factors as well as land surface information.
The physical meaning of the corrected image is not definitive; therefore, the mapping method is mainly
suitable for generating visually seamless image mosaics [11] or change detection [13]. However, the
regression method selects PIFs that are affected only by atmospheric and sensor factors and establishes
a model to describe land surface radiometric variation [15]. The regression method can maintain land
surface information and eliminate image-related radiometric distortion, and these merits make it an
ideal method for radiometric normalization of long time-series of images for land surface applications.

However, traditional PIF extraction and regression equation establishment methods are developed
for two images and operate in an image-to-image manner [1,9,15]. Although virtual reference image
determination methods [23] and overall adjustments [16] have been developed, when these methods
are extended to radiometric normalization for long time-series of images, they also operate in an
image-to-image manner [10]. For a radiometric normalization problem involving time-series of images
with n scenes, we should subdivide it into a group of n − 1 image-to-image subproblems. Obviously,
these extensions have two deficiencies. (1) The PIFs are extracted for each group of images separately,
which may not be consistent between different groups of images; therefore, the correction models among
different groups may not be comparable. Additionally, the invariance of different surface features has
different time scales. The traditional selection of PIFs considers the changes of radiometric features at only
two times and causes a potential error in PIF selection. (2) When an image is processed based on a reference
image, although the radiometric residual in between can be minimized, but the residual for the correction
between any two scenes of the images to be processed cannot be minimized. The time-series analysis
views all images in the time-series as a continuously varying entity, thereby minimizing the radiometric
residual for the overall correction between any two image scenes represents an optimal solution.

In recent years, with the development of computing technology and the free distribution of medium
resolution images through the internet, applications utilizing long time-series of images can provide more
temporal details with high accuracy and satisfy various demands; thus, they have become a popular research
topic in remote sensing fields [24–26]. However, according to the above analysis, traditional radiometric
normalization is unsuitable for long time-series of images, and, therefore, a radiometric normalization
method suitable for long time-series of images must be developed. To solve this problem and meet
application demands, we will try to identify a better method for radiometric normalization of long
time-series of remote sensing images in this paper. The main contribution of our method is twofold:

• we developed a PIF selection method, which can consider all images in time-series for PIF selection and
automatically suppress the negative effective of outliers, for example, clouds and cloud shadows; and

• a novel optimization strategy is proposed to minimize the residual between the image to be
processed and the images that have been processed previously, which can avoid the problem of
reference image selection and obtain a smoother time-series profile.

The remaining part of the paper is structured as follows: Section 2 introduces the research area
and the experimental data; Section 3 describes the principle of our method; Section 4 introduces the
implementation approach in detail; Section 5 introduces the experimental results and their performance
comparison; Section 6 discusses the applicability of our method and its uncertainty; and Section 7
presents the conclusions.

2. Materials

Hangzhou City in Zhejiang Province, China, is selected as our study area because of its rapid
land use and cover changes and intensive urbanization in the last thirty years [27]. The research area is
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indicated in Figure 1b. To demonstrate our radiometric normalization method, we selected Thematic
Mapper (TM) images from Landsat 5 with Path = 119 and Row = 38 in the Worldwide Reference
System (WRS) for the experiment. From the website of the United States Geological Survey (USGS),
we obtained a total of 438 scenes of image covering Hangzhou City from 1984 to 2010, the entire
operational period of Landsat 5 (the distribution of the imaging dates is shown in Figure 1c). Then, we
conducted preprocessing that included image decompression and band synthesis, and a subregion of
2000 × 2000 (pixels) was clipped for our experiment. No further geometric processing was conducted
because the geolocation accuracy of these images from the USGS was better than one pixel. The goal
of this paper is to find a better method of radiometric normalization; therefore, we directly adopted
the gray-scale values of different bands to process without converting them to physical signals such as
reflectance. The gray-scale depths of the points in Figure 1c represent the coverage proportion of noise
(such as clouds) in each image (the detailed mask method will be described in the Section 4.2). We can
see that the proportion of clouds is approximately 50% on average, and the identification of cloud
noise in the image is thus the basis for subsequent analyses of the time-series of remote sensing images.
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suburb of Hangzhou City was mainly agricultural land. In approximately 2000, the large amount of 
farmland around Hangzhou City was transformed into cultivated land, and there was only a small 
amount of farmland remaining around Hangzhou City. In 2010, the extent of the built-up district 
expanded. Except for the mountains in the west of the research area, where it was difficult to use the 
land for construction, almost all the land was converted to urban buildings [27]. The land use/cover 

Figure 1. (a) Image acquired on March 3, 1986, of the research area, Hangzhou City. (b) Location
of Hangzhou City (red square) in Zhejiang Province, China. The border of China is indicated with
green polygons, and the boundaries of different provinces are indicated with gray polygons. (c) Image
acquisition dates and proportions of noise caused by clouds and cloud shadows. All the images were
taken by Landsat 5.
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After looking through all the images, the typical false-color composite images over Hangzhou City
during four different time periods (1990, 1998, 2003, and 2008) are shown in Figure 2. The built-up area
of Hangzhou City in 1990 was mainly concentrated in the periphery of West Lake, and some villages
and towns were distributed discretely in the research area. However, the land cover type in the suburb
of Hangzhou City was mainly agricultural land. In approximately 2000, the large amount of farmland
around Hangzhou City was transformed into cultivated land, and there was only a small amount
of farmland remaining around Hangzhou City. In 2010, the extent of the built-up district expanded.
Except for the mountains in the west of the research area, where it was difficult to use the land for
construction, almost all the land was converted to urban buildings [27]. The land use/cover changes of
Hangzhou City indicates that the selection of PIFs is difficult for time-series of remote sensing images
because the number of PIFs continues to decrease during long time periods. A better method of finding
PIFs over long time-series of remote sensing images will benefit radiometric normalization and land
use/cover analysis.
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Figure 2. Time-series of remote sensing images from Landsat 5 over Hangzhou City. (a)–(d) represents
four image acquired on 1990, 1998, 2003, and 2008, respectively, the images from the upper row were
obtained on approximately the 350th days of different years, and those of the lower row were obtained
on approximately the 205th days of different years.

3. Principles

3.1. Factors That Induce Radiometric Variation in Time-Series of Images

We first create a data set for all the images over Hangzhou City from Landsat 5. The n scenes of
images obtained at different times in a certain research area are sorted by acquisition date to constitute
the time-series of the image set X:

X = {X1, X2, ..., Xn}. (1)

The set of pixels corresponding to the image region can be expressed as L, and the time-series of
observation values Pl for a pixel (l ∈ L) is

Pl =
{

Pl
1, Pl

2, ..., Pl
n

}
, (2)

where Pl
i represents the gray-scale value of pixel l in the image Xi ∈ X, and Pl describes the temporal

evolution of the corresponding land surface region, which can be decomposed into three main components:
trend, seasonal change, and remaining components [28]. Similar to Yuan [29], the factors that influence
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radiometric characteristics of long time-series of pixels with Pl over the same area can be summarized
into five types.

(1) Image acquisition condition: Atmospheric conditions and solar elevation at the time of image
acquisition will pose a direct influence on the radiometric characteristics of the acquired image.

(2) Sensor distortion: The performance of a sensor will decay over its operational lifetime, causing the
measurement values obtained by the sensor to decrease over time. However, within a certain time
period, the radiometric properties of the sensor, especially the TM Sensor onboard Landsat 5 [30],
can be considered relatively stable.

(3) Abnormal observation: Clouds and cloud shadows result in extremely large and small values
on images, respectively, and the variation magnitude of the corresponding gray-scale values is
much larger than that of clear-sky pixels. In observations at adjacent times, the gray-scale value
of abnormal observations over the same land surface is prone to change steeply.

(4) Seasonal change of vegetation: This process is affected by the physiological processes of
vegetation growth and withering, which exhibit an annual cyclic variation. Additionally, there
are interannual time changes of delays or leading, and magnitude changes of intensifying or
weakening in the observation measurements.

(5) Land cover change: This change is induced by the land cover changes, including changes in land
use or natural conditions.

From the above analysis, type (1) and (2) factors form the main noise source of remote sensing
images, and this noise conceals variations of the land surface and should be eliminated through
radiometric normalization. The clear-sky PIFs (i.e., without any cloudy or noisy effect) are affected by
these factors only, so we can model the effect of these factors with a linear equation using the clear-sky
PIFs. Assuming that one image in the time-series is similarly affected by these factors, we can eliminate
the effect using the obtained linear equation. Therefore, the problem of radiometric normalization
has been transformed to the selection of clear-sky PIFs based on abnormal observations (i.e., factor of
type (3)), seasonal evolution of vegetation (i.e., factor of type (4)), and land cover change (i.e., factor of
type (5)) exclusion.

3.2. Variation Range of Different Land Surfaces

As observed by Liu [31], the gray-scale values of the same pixel are similar during the same
season of different years or in adjacent days under similar climate conditions. However, the gray-scale
values of clouds usually vary greatly at the same location, even in adjacent days. In short, the variation
of gray-scale values for clear pixels is usually low and changes slowly from day to day compared with
that for clouds, which is generally high and varies over a wide range. If the long time-series’ gray-scale
values assembled from the same location are sorted in ascending order, the clear-sky observations in
that queue will be located at the front portion, and the cloudy observations will be collected in the back
portion. As the gray-scale values of clear-sky observations distribute within a narrow range, cloudy
pixels distribute over a wide range, the slope of the clear-sky portion in the sequence is small, and the
slope of the cloudy portion in the sequence is large. An inflexion point exists at the transition from
the clear-sky observations to the cloudy observations. According to this fact, an inflexion-based cloud
detection (IBCD) algorithm has been developed for generating cloud masks for Moderate Resolution
Imaging Spectroradiometer (MODIS) land surface reflectance products [31].

Figure 3a shows the original gray-scale values of the near-infrared (NIR) band for a typical
selected pixel in our study area, sorted according to their acquisition times. Figure 3b illustrates
gray-scale values sorted in ascending order, and we denote the curve composited by these points as
Arc. Additionally, we can observe five feature points in the Arc (including the start point A, end point
B, and three inflection points indicated by C, D, and E), which split the Arc into four segments as
illustrated in Figure 3c. Three typical pixels (city, vegetation, and water), sorted in ascending order
according to their gray-scale values, are shown in Figure 4 with the six bands of TM (exclusion of
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thermal infrared i.e., B6), and the five feature points have clipped the Arc into four segments indicated
by different colors. According to reference [31], the red or blue line segment indicates observations
under cloud influence, which has the largest variation magnitude and exhibits a steep increase in
the gray-scale value curve time-series. However, for the normal observation values (namely, clear
pixels) of the green line segment, the variation range is small, and the change of the time-series of the
gray-scale value curve is slow. A distinctive inflexion point occurs at the transition from the clear-sky
observations to the cloudy observations. Accordingly, we can separate the clear observations from the
cloudy observations using a modified IBCD method.Sensors 2018, 18, x FOR PEER REVIEW  8 of 24 
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Figure 3. Schematic diagram of the time-series pseudo-invariant feature (PIF) extraction method based
on the point of inflection. (a) Original gray-scale values for a typical selected pixel sorting according
to their acquisition times; (b) gray-scale values sorted in ascending order, with A and B representing
points with the smallest and largest gray-scale values, respectively. C, D and E are identified inflection
points. (c) Segmentation results of a line segment using the sorted gray-scale values; and (d) inlier and
outlier identification results using the method proposed in this paper.

After excluding the abnormal values caused by clouds and cloud shadows from the time-series
observations, the main challenge of long time-series of radiometric normalization has transformed
to PIF selections. The magnitude of gray-scale value variations in the time-series of observations
of a pixel caused by different factors is not consistent, for example, radiometric variation caused
by land surface change, which is larger than that of other factors, and these variations form the
theoretical basis for threshold-based change detection [32]. The time-series of PIF variations can be
considered as a stationary time-series, the unconditional joint probability distribution of which does
not change over time. In other words, parameters such as the mean and variance also do not change
over time [33]. In an ideal situation, the time-series values of pixels would obey the normal distribution,
and most of the gray-scale values would be concentrated around the mean, which has been used for
PIF selection [9,15,18]. In contrast, vegetative pixels are influenced by intra-year seasonal changes
and inter-year amplitude changes, and the time-series’ gray-scale values vary within a wide range.
This fact has been verified by classical and recent studies of time-series decompositions [30].
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Figure 4. Schematic diagram for the variations of the time-series’ gray-scale value curves in multiple
bands for three different land surface types (city, vegetation, and water body). The normal observation
(indicated by green line) and abnormal observation values (indicated by red, blue and pink line) have
obvious points of inflection at the visible (B1–B3) and near-infrared bands (B4), however this feature is
not obvious for the two short-wave infrared bands (B5 and B7). The dashed lines connect the smallest
gray-scale values, clear pixels and largest cloudy pixels, and the inflection points can be determined by
searching the maximum distances from the arcs to the dashed lines.
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Specifically, the variation magnitude of PIFs is smaller than that of vegetation and land cover
change pixels. Figure 4 also shows that on the line segment composed of normal observation values
(the green line segment, which is called the clear line segment hereafter). In the visible light (B1,
B2, and B3) and near-infrared bands (B4), the variation amplitudes of water bodies, cities (namely,
PIFs), and vegetation continue to increase, and the line segments change from gentle to steep (i.e., the
slopes of the line segments change from small to large), however this feature is not obvious for the
two short-wave infrared bands (B5 and B7). This feature is particularly obvious in the near-infrared
band (B4, in Figure 4). Therefore, we can identify the PIFs based on the time-series’ gray-scale value
curve segmentation. In summary, the clear line segment of the PIFs is steeper than that of water
bodies and flatter than that of vegetation and land surface change pixels. This characteristic can be
quantitatively expressed with the slope of the clear line segment; thus, the slope of PIFs is smaller than
that of vegetation and larger than that of water bodies.

4. Methods

According to the analysis above, after segmenting the Arc into segments, our method can be
implemented using the following steps (as Figure 5). First, we classified the time-series’ observation
values for every pixel into inliers (namely, normal observation values with good acquisition condition)
and outliers (namely, abnormal observation values caused by cloud and cloud shadow noise). Second,
PIFs were extracted based on the smaller and larger variation magnitudes of PIFs relative to those
of vegetation and water, respectively. Next, we established the radiometric calibration equation
for images acquired at different time points to eliminate the radiometric distortion between images.
Therefore, we will introduce our method with four main steps as follows.
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Figure 5. Flowchart of a long time-series radiometric normalization method for Landsat images
proposed in this paper.

4.1. Arc Segmentation

For the time-series of observations Pl for pixel l (l ∈ L) (as shown in Figure 3a), we first segmented
the Arc into segments using the following method.

Step 1.1: Sorting the time-series’ gray-scale values: The time-series’ gray-scale values of Pl for
pixel l ∈ L were sorted in ascending order to generate a series of sequence values, which is expressed
as Pl

S:
Pl

S =< Pl
S1, Pl

S2, ..., Pl
sn > . (3)
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The sorting results are shown in Figure 3b with the black solid line. This arc is denoted as Arc(Pl),
and the points in Arc(Pl) can be expressed as

V =< v1, v2, ..., vn > . (4)

The coordinates of points vi ∈ V on Arc(Pl) can be expressed as (xsi , ysi ), i = 1, 2, ..., n. Here, xsi

represents the image sequence after the observation values are sorted and is a natural number in the
range of [1, n]; and ysi represents the gray-scale value corresponding to xsi , which ranges from 0 to 255
for the TM image.

Step 1.2: Arc Segmentation with the inflection points: Connect point v1, which is marked by A in
Figure 3b and has a minimum gray-scale value, and vn, which is marked by B in Figure 3b and has a
maximum gray-scale value, to determine the straight line l(Pl). The equation of the straight line can
be expressed as

ax + by + c = 0. (5)

According to Equation (6), we calculate the distance d(vi) for point vi ∈ V in the arc Arc(Pl) to
the straight line l(Pl):

d(vi) =
|axsi + bysi + c|√

a2 + b2
. (6)

The distances of all the points in the Arc(Pl) form a vector:

DIS = {d(v1), d(v2), ..., d(vn)}. (7)

Obviously, the point of inflection on Arc(Pl) corresponds to the maximum value in the distance
vector. Accordingly, the inflection point C can be obtained by extracting the maximum distance in

vc = argmax
vi∈V

d(vi). (8)

Connect points A and C, and then points B and C, and then repeat the step mentioned above.
Then, we can obtain two other inflection points named D and E. According to the inflection points
obtained, we can split Arc(Pl) into four segments as shown in Figure 3c, which can be expressed as,
AD, DC, CE, and EB.

4.2. Outliers and Inlier Identification

Step 2.1: Marking outliers and inliers: We took the segment comprising the minimum values
(namely, the blue segment in Figure 3c) as the abnormal observation value affected by a cloud shadow.
The segment in the middle part (namely, the black segment in Figure 3c) represents the normal
observation value, and we denoted it as a clear line segment. The two segments of and with maximum
gray values (namely, the red and pink segment in Figure 3c) are marked as the abnormal observation
values affected by cloud.

4.3. Extraction of Pseudo-Invariant Features

Step 3.1: Slope calculation for the clear line segment: First, we conducted a least squares fitting
on the clear line segment and then used the slope to express the inclination degree of various line
segments. Then, the research area can be expressed with one band of BS indicating the slope of the
clear line segment of the pixel, which describes the gray-scale value variation magnitude.

Step 3.2: Extraction of PIFs: We set two thresholds TLow and THig and took the values of BS greater
than TLow and smaller than THig as the PIFs. Here, the selection of the thresholds was not obtained by a
universal criterion or an automated method. Instead, we selected the threshold manually to ensure the
representativeness and integrity of the PIFs by statistically analyzing and observing the characteristics
of BS, adjusting TLow and THig, and using the trial-and-error method.
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More specifically, by analyzing the histogram of the Band BS (transformed to bins of integers), we
defined two thresholds to exclude the land surfaces with low slopes (such as water) and land surfaces
with high slopes (such as vegetation and changed land cover) first. We then segmented the remaining
pixels into certain predefined groups. Then, through investigating the pixels in the various groups, we
selected minimum and maximum gray-scale values of the group of the most invariant pixels (PIFs
candidates) as the initial TLow and THig , and then adjusted the TLow and THig to exclude or include
some pixels as PIFs.

Step 3.3: Exclusion of cloudy images with small amounts of clear PIFs: It is worth noting that
images containing high proportions of clouds and cloud shadows can bring in noisy pixels. When using
these cloudy images, the numbers of PIFs from different images substantially differ, and it is difficult
to obtain sufficient PIFs to estimate a reliable radiometric normalization equation. In this study, we
excluded these cloudy images by using two conditions, minimum clear PIFs number (CPmin) and the
coefficient of determination (R2) between the image to be processed and the first image (the method
for determination of the first image will be introduced in Step 4.2). If the R2 was smaller than the
threshold, the corresponding images were excluded from further radiometric normalization.

According to this method, we could obtain PIFs with relatively small changes in land surface
features during the entire image acquisition period, and the obtained m PIFs are expressed as a set S.
Obviously, S is a subset of L, namely, S ⊆ L.

4.4. Radiometric Normalization Optimization

When the least squares method is adopted to normalize the image Xi ∈ X based on the reference
image XR ∈ X, the objective is to obtain normalized images denoted by f (Xi), which minimizes the
correction error between f (Xi) and XR. This process is equivalent to solving the optimal solution
under the constraint of the objective function QR:

QR = min
n

∑
i=1

∑
s∈S
‖ f (Xs

i )− Xs
R‖2, (9)

where f (Xi) represents the radiometric normalization result of the image Xi, ‖•‖2 represents the
2-norm of the vector, and s ∈ S represents the selected PIFs. Clearly, this model cannot ensure an
optimized solution with the smallest residual for all the corrected images.

Hence, in this paper, we propose a time-series normalization strategy under the constraint of the
objective function QG:

QG = min
n

∑
i=1

n

∑
j=1

∑
s∈S

∥∥∥ f (Xs
i )− f (Xs

j )
∥∥∥

2
. (10)

This objective optimization model not only minimizes the error between the normalized image and
the reference image but also minimizes the error between the image to be processed and the image these
were processed previously. As a result, a radiometric consistent time-series of images will be obtained.
To find the optimal solution for the objective function QG, we designed the following algorithm.

Step 4.1: Sorting the standard deviations for PIFs: We calculated the standard deviation of
the gray-scale value for the sample set S for the n scenes of time-series images and sorted them in
descending order. The standard deviation of the gray-scale value after sorting can be expressed as

σr = {σ(r1), σ(r2), ..., σ(rn)}. (11)

Obviously, the standard deviation satisfies σri ≥ σr(i+1), i = 1, 2, ..., n− 1. The sequence numbers
of the images are sorted according to standard deviation in descending order, which can be expressed as

r = {r1, r2, ..., rn}. (12)
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Step 4.2: Correction of the first image: We first corrected image r2 to image r1. For implementation,
we obtained the correction parameters of k2 and b2 under the restricted condition Q(r2).

Q(r2) = min∑
s∈S

( f (x(r1)
s)− f (x(r2)

s))
2
= min∑

s∈S
((k1x(r1)

s + b1)−(k2x(r2)
s + b2))

2. (13)

The restricted condition minimizes the error between corrected image of image f (X(r2)) and
the corrected image f (X(r1)) of image r1; this problem can be solved using the least squares method.
Note that we denoted the image r1 as f (X(r1)) for descriptive simplicity, the correction parameters of
which are k1 = 1 and b1 = 0.

Because the standard deviation for the gray-scale values of r1 and r2 satisfies σ(r1) ≥ σ(r2), the
correction coefficient of k2 is expected to be greater than or equal to 1 in most situations; namely, the
gray-scale value of the correction results is relatively stretched. Therefore, the compression of the
gray-scale value was avoided in the correction process.

Step 4.3: Correction of other images in the time series: For image X(ri), i > 2 in the time-series,
we set the reference image X(ri)

re f for X(ri) as follows:

X(ri)
re f = { f (X(r1)), f (X(r2)), f (X(r3)), ..., f (X(ri−1)}. (14)

The implementation method takes all the corrected images as reference images. The correction
parameters of ki and bi for image Xri can be obtained under the restricted condition:

Q(ri) = min
i−1

∑
j=1

∑
s∈S

( f (x(rk)
s)− f (x(ri)

s))
2
= min

i−1

∑
j=1

∑
s∈S

((k jx(rk)
s + bj)− (kix(ri)

s + bi))
2. (15)

Obviously, this implementation method ensures the minimum error between the image to be
processed and all the corrected images and is thus a greedy algorithm. Accordingly, the correction
coefficient of image X(ri) can be obtained using the least squares method.

We repeated this step for all the images in the time-series with the order determined by (12), and
we obtained the correction coefficients for various images. The correction vector can be expressed
as follows:

K = (k1, k2, ..., kn)
T, (16)

B = (b1, b2, ..., bn)
T. (17)

Step 4.4: Adjustment of correction parameters: As mentioned above, in the linear model, when
the slope is ki < 1, i = 1, 2, ...n, the radiation resolution will be compressed. When bi < 0, i = 1, 2, ..., n,
the gray value will be negative [16]. Assume that kmin is the minimum of

kmin = min
i=1,..,n

ki. (18)

From this, we can calculate

bmin =
1

kmin
min

i=1,..,n
bi. (19)

If kmin < 1, we adjust K according to the following method and derive the new slope vector KN :

KN =
1

kmin
(k1, k2, ..., kn)

T. (20)

If bmin < 0, we adjust B and obtain the new intercept vector BN :

BN =
1

kmin
(b1 − bmin, b2 − bmin, ..., bn − bmin)

T. (21)
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It is worth noting that our method performs sorting according to the standard deviation to
ensure that the slope value is greater than 1, and a slope less than 1 is therefore less likely to appear.
Additionally, the parameter adjustment will have a negative effect on calculating the error (the details
will be analyzed in Section 5.2.2). Therefore, we could omit this step decided by the user according to
that kmin was near 1 or.

According to the correction coefficients KN and BN after adjustment, the near-infrared band of the
image was corrected, and the resultant image of the radiometric normalization could obtain a smaller
residual. According to the PIFs marked by this process and the corrected order, we then normalized
the other bands of the image to obtain the resultant image from radiometric normalization.

5. Results

5.1. Experimental Results

The slope of the clear line segment BS in the research area, which forms the basis for PIF selection,
is shown in Figure 6a, which shows that: (1) Water bodies presented the smallest variations and are
represented by a dark blue color in the images. (2) This was followed by the PIFs of cities. The old
town area of Hangzhou City and the built-up area of the surrounding villages and towns remained
stable during the entire time-series and exhibit a light blue color. These areas provide redundant PIF
candidates. (3) Vegetation surface features presented the largest variations. On the right side of the
research area (Figure 6a), some farmland had transformed into a built-up area, and the slope of which
lies between the PIFs and vegetation, whose corresponding area exhibits a bright yellow color.
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Figure 6. (a) Slope of the clear line segment, i.e., the band of BS. (b) PIFs extracted using the threshold
segmentation from the slope of the clear line segment. The PIFs are dilated with two pixels. The black
pixels indicate PIFs, and the white pixels indicate non PIFs; the selected PIFs are mainly the old
Hangzhou City and artificial river levee, which remained stable during the image period.

The thresholds utilized in this paper for segmenting the band of slope made up of clear sky points
(BS) to extract PIFs were 0.195 for TLow and 0.217 for THig. The PIF selection results are indicated in
Figure 6b. In total, we obtained 2876 PIFs for completely clear images, and by careful inspection, the
PIFs selected by our method mainly comprised the artificial river levee of the Qiantang River, the
old Hangzhou City, and its surrounding village. Obviously, the selected PIFs remained unchanged
throughout the study period, especially the river levee, which remained stable without any significant
variations. The thresholds for excluding the cloudy images are CPmin = 100 and T(R2) = 0.8, and
190 scene images have been selected for further radiometric normalization.

The results of radiometric normalization corresponding to the images in Figure 2 are shown in
Figure 7 with a mosaic pattern. In the original images of Figure 2, all the surface features, including
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buildings, roads, water bodies, vegetation, and wetland, exhibit an obvious radiometric difference.
However, in the normalized image, the radiometric characteristics of land surface features such as
buildings, roads (namely, PIFs), and water bodies are characterized with similar color and contrast
in temporal-adjacent images, which indicates that the radiometric distortion has been eliminated
effectively. The vegetation pixels acquired with similar acquisition dates in different years are
characterized with distinct radiometric features, which demonstrates that the radiometric variations
caused by seasonal changes of vegetation (important information contained in remote sensing images)
have been effectively reserved. These results indicate that the method proposed in this paper is
not only able to effectively eliminate the noise caused by random factors but also can maintain the
time-dependent radiometric feature information of vegetation, thus providing good consistency of
radiometric features for subsequent land use change detection and urban dynamic analysis.
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Figure 7. Resultant images of radiometric normalization. Panels (a,b) are the mosaicked results by
four images corresponding to Figure 2. Panels (a1,a2,b1,b2) are two local areas that show very similar
radiometric features, indicating the effectiveness of our method. Note that the color difference between
vegetative land cover indicates that our method can maintain the radiometric signal, whereas no
or little color difference between artificial objects (such as buildings and airports) indicates that our
method can remove radiometric distortion.

Figure 8a–d show the scatter diagrams for the variations of gray-scale values from the
near-infrared Band (Band 4) over time for four pixels with city, water body, vegetation, and “vegetation
to city” land cover types. In this figure, the black points indicate the original gray-scale values, while
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the red points represent the gray-scale values after radiometric normalization. In Figure 8a, the
original gray-scale values contained noise that led to large magnitude fluctuations, which increased
the difficulty of discovering the variation pattern. The time-series’ gray-scale values after radiometric
normalization lie close to a straight line, demonstrating that the radiometric distortion is effectively
eliminated. The water body pixel in Figure 8b is similar to the city pixel in Figure 8a, although the
magnitude of variation is smaller than that of the city pixel. Figure 8c shows the variation curve of the
gray-scale value for the vegetation pixel over time, and the radiometric distortion at different times
is effectively eliminated. The results of radiometric normalization can well describe the inter-annual
variation of vegetation. Figure 8d shows the gray-scale value change of a pixel where the vegetation
was converted to city in approximately 1997. The data transformation from vegetation has an obvious
periodic variation with respect to a straight curve, and the results of radiometric normalization can
enhance the points of discontinuity, thus providing the basis for accurately timing the land cover
change. These results indicate that the radiometric normalization method proposed in this paper
can enhance the time-series’ characteristics for various types of pixels and can provide comparable
time-series data for further applications.
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Figure 8. Comparison of the gray-scale values before and after radiometric normalization in long
time-series sequences. Panels (a–c) present the comparison for three different land cover types: city,
water body, and vegetation. The land cover did not change during the time period of observation.
Panel (d) indicates radiometric normalization results for an area with changes in land surface. The pixel
before 1997 corresponds to vegetation, whereas the pixel has changed to urban buildings after 1997.

5.2. Evaluation and Comparison of the Experimental Results

Because the workload for evaluating all available pairwise PIF selections is huge, only part of
the images are selected to perform an accuracy evaluation. First, to test the normalization effect of
long time-series of images, 26 images were collected on approximately the 100th days of different
years under smaller cloud effects for experiment 1. Second, to test the normalization effect of short
time-series of images, 11 images are selected with a proportion of clear pixels greater than 50% during
2001 and 2002 to conduct experiment 2.



Sensors 2018, 18, 4505 16 of 22

As the difference between our method and traditional methods lies in the PIF selection and the
normalization strategy, we therefore evaluate our method from these two aspects.

5.2.1. Evaluation of Pseudo-Invariant Features Selection

For the contrast method of PIF selection, the IRMAD PIF selection method has been widely
used for radiometric normalization and achieved satisfactory results for a number of applications [9].
However, the IRMAD PIF selection method can only consider images obtained at two different dates
for the same area for one time. We should classify the images to be processed into multi-groups for
radiometric normalization to obtain PIFs. First, we manually selected an image with good radiometric
quality as the reference image, and then the IRMAD method was used to determine the PIFs between
the image to process and the reference image one by one. The confidence parameter for IRMAD is
95%. Obviously, only the PIFs selected by all groups can serve as the final PIFs for time-series image
radiometric normalization, which can be expressed as follows:

GS =
∣∣G1 ∩ G2 ∩ ...∩ Gg

∣∣, (22)

where Gi, i = 1, 2, .., g represents the PIFs selected by the image pair of group i; g indicates the group
number of the image pair, which is one less than the image number; and Gs is the PIFs selected by all
groups. However, the number of pixels in Gs is as small as 10 for both experiment 1 and experiment 2.
The small number of obtained pixels indicates that the PIFs selected by the IRMAD method presents
considerable uncertainty when used for long time-series PIF selections, especially with a large number
of groups. Thus, sufficient PIFs cannot be obtained across all groups using the IRMAD method.

5.2.2. Evaluation of Normalization Strategy

To contrast normalization strategy, we adopted two strategies. The first strategy was to select one
reference image and then to normalize other images to the reference image one by one (the contrasting
method 1). Rather than selecting one image from the time-series images, the second strategy was to use
a synthetic image composited of the mean gray-scale value of the selected PIFs [34] (the contrasting
method 2), which could avoid the difficulty of reference image selection. Then, according to the
obtained PIFs using our method, we carried out radiometric normalization using either our method or
the two contrasting methods and evaluated the overall residual of the radiometric normalization.

To evaluate the optimized strategy, we calculated the root mean squared error RMSE(Xi, Xj)

between image Xi and image Xj, which can be expressed as

RMSE(Xi, Xj) =

√
1
m ∑

s∈S

∣∣∣ f (xs
i )− f (xs

j )
∣∣∣2, (23)

where S represents the set of PIFs, m represents the number of PIFs, f (xs) represents the gray-scale of
pixel xs after correction. Smaller values correspond to a better correction effect for two scenes in the
images and vice versa.

We also statistically analyzed the average and standard deviations of the RMSE to evaluate our
method and its contrasting methods in general, and these parameters were calculated as follows:

µ(RMSE) =
1
n2

n

∑
i=1

n

∑
j=1

RMSE(Xi, Xj), and (24)

σ(RMSE) =

√√√√ 1
n2

n

∑
i=1

n

∑
j=1

(RMSE(Xi, Xj)− µ(RMSE))2, (25)
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where n represents the image number in the time-series. Because the shared PIFs selected by the
IRMAD method in both experiments were too few and the representativeness was insufficient, the
experiment used the PIFs selected by our method.

It is worth noting that the parameters’ adjustment process in step 4.4 affected the calculated RMSE.
If the stretch parameter of 1/kmin was used, the new RMSE (i.e., with parameter adjustment) was
proportional to the original RMSE (i.e., without parameter adjustment) with proportionality coefficient
of 1/kmin. Additionally, by comparing different results from experiments 1 and 2, we found that it
was equivalent to normalize other images to the first image and the previously corrected image with
a stretch process, and the coefficient 1/kmin was close to 1. The error variation due to the parameter
adjustment was small. Despite this fact, we set kn = 1 to avoid its negative effect on error variation
induced by parameter adjustment.

The error matrices measured by the RMSE of our method and the contrasting methods are shown in
Figure 9. In the figure, as the color changes from yellow to blue, the RMSE gradually decreases. This figure
shows the following. (1) The error of contrasting method 1 on the row or column of the reference image
(marked by a red edge) is obviously smaller, which occurs because the optimization objective of contrasting
method 1 is to minimize the residual between the correction results of various scenes of the image and the
results of the reference image, whereas in our method, the error is larger because our method begins with
the maximum standard variation. (2) The error of the contracting methods between various scenes is
larger than that of our method, and many yellow mosaics are observed. (3) The error distribution for
our method is smoother, and the error distribution for the entire scene of the image is more uniform,
indicating that our method has more homogeneous correction results.
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Figure 9. Error matrices of the Root Mean Squared Error (RMSE) using the proposed method and
the two contrasting methods. As the color transitions from yellow to blue, the residual gradually
decreases. (a) Error matrix of our method for experiment 1; (b,c) represent error matrices of the two
contrasting methods for experiment 1; (d) error matrix of our method for experiment 2; (e,f) represent
error matrices of the two contrasting methods for experiment 2.

Figure 10 shows the means and standard deviations of the RMSE of our method and the
contrasting methods. The results show that the means of the RMSE of our method (17.39 and 13.87) in
both experiment 1 and experiment 2 are smaller than those of contrasting method 1 (22.97 and 17.73)
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and contrasting method 2 (20.16 and 14.54), which indicates that the normalized gray-scales of our
method are more tightly distributed. In addition, the standard deviations of our method (5.93 and 4.51)
are smaller than those of contrasting method 1 (8.51 and 6.12) and contrasting method 2 (7.00 and 7.05)
in experiment 1 and experiment 2, which indicates that the error distribution for our method is more
uniform and the obtained time-series’ gray-scale curve is smoother. These features indicate that our
method can overcome the steep rise and steep fall in the profiles of the gray-scale value.
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5.2.3. Comparison with the Reflectance

Because the time-series of radiometrically normalized images do not have the same physical
meaning as those that we have regularly used, such as radiance or reflectance, how to interpret the
radiometric normalized result remains a challenge. It’s a good choice to compare our result with
the bottom-of-atmosphere (BOA) reflectance, which has removed atmospheric distortion. However,
we lack the parameters required for carrying out atmospheric correction and obtaining the BOA
reflectance. Thanks to the fact that the Landsat images are distributed with an improved metadata
file, which includes parameters for transforming a digital number (i.e., gray-scale value) into
top-of-atmosphere (TOA) reflectance [35]. Due to its easy availability, the parameters have been
widely used for remote sensing applications, so we used the TOA reflectance as a baseline to evaluate
our method and contrasting method 1.

Because the time-series gray-scale value and TOA reflectance have different physical units, it is
difficult to use an absolute measure to qualify their difference. The correlation coefficient CC describes
the linear correlation between two variables with different measures, which indicates the reliability
that one can estimate one variable with the other variable using a linear equation. Therefore, we
used a correlation coefficient to evaluate the performances of our method and contrasting method
1. Let f (Xl

O) =< f (xl
O1), f (xl

O2), ..., f (xl
On) > and f (Xl

C) =< f (xl
C1), f (xl

C2), ..., f (xl
Cn) > represent

the normalized time-series gray-scale values of the lth pixel obtained by our method and contrasting
method 1, respectively, f (Yl) =< f (yl

1), f (yl
2), ..., f (yl

n) > indicates the time-series TOA reflectance;
then, we calculated the correlation coefficients CC( f (Xl

C), f (Yl)) and CC( f (Xl
O), f (Yl)), respectively.
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We randomly selected 1000 PIFs and 1000 non-PIFs (such as vegetative or land-cover changed
pixels) to compute the correlation coefficient, and the results are shown in Figure 11. We found
that the correlation coefficient CC( f (Xl

O), f (Yl)) was larger than CC( f (Xl
C), f (Yl)) in most cases; the

means for exp1 and exp2 by our method reached 0.781 and 0.793, respectively, whereas the means
for the contrasting method for exp1 and exp2 were 0.508 and 0.562, respectively. The statistical value
demonstrated that the results of our method were more highly correlated with the TOA reflectance,
which indicates that our result can be transformed to the TOA reflectance using a linear equation with
a high confidence. Additionally, the results indicate that our method can provide a comparable result
with the TOA reflectance, which provides an alternative method for radiometric correction under the
situation that the absolute radiometric correction parameters cannot be obtained.
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and the longitudinal axis indicates the correlation coefficient between the time-series TOA reflectance
and the normalized gray-scale value obtained by our contrasting method 1.

6. Discussion

Our method for the radiometric normalization of long time-series Landsat images has the
following innovations.

The identification of inliers (namely, normal observation values with good acquisition conditions)
and outliers (namely, abnormal observation values caused by noise such as clouds and cloud shadows)
in time-series of observation values for various pixels forms the basis for the radiometric normalization
and further applications. As the number of images used for long time-series is very large, cloud
detection is a time- and labor-intensive process. We captured the distinctive feature that variations in
the gray-scale values of a clear pixel are concentrated in a narrow range, whereas the variations in
the gray-scale values of outliers are much larger than those of clear pixels. We introduced the IBCD
method for outlier identification, which alleviates the time and labor costs and obtains an acceptable
result. Similarly, we selected clear-sky PIFs according to a novel measurement, namely, the slope of
the clear line segment in the sorted time-series profile, which can exclude the negative effect of noisy
pixels. This method can consider all the observations in the time-series images instead of just a small
number of pixels, which increases the robustness of our method for undetected noise.

One objective of the time-series analysis is to maintain consistency among the observation
values obtained at different times while reducing rapid up-and-down fluctuations between adjacent
observations. The traditional correction method reduces the residual between the reference image and
the image to be corrected, without constraining the residual between other images to be corrected.
Our method, which is a typical greedy algorithm, takes all the corrected images as a reference
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for the images to be corrected, thus minimizing the residual for correction after adding each new
image. The results also indicate that the residual obtained by our method is smaller than that of the
contrasting method, and the observation values of the time-series are also smoother, which indicates
the effectiveness of our method.

Our method can automatically determine the sequence of radiometric correction, which is very
important for radiometric correction. If the gray-scale value distribution of the reference image is
concentrated, while the gray-scale value distribution of the image to be processed is scattered, the
gray-scale resolution of the images to be processed will be compressed compared with that of the
reference image, and radiation information may be lost. However, in this paper, we developed a
method that sorts the standard deviations of the gray-scale values of the PIFs in descending order.
This approach guarantees that images with a wide gray-scale distribution are always corrected earlier
and images with a narrow gray-scale distribution are corrected later. The image corrected later is
stretched relative to that corrected earlier. The results of this strategy also indicate that the correction
slope obtained by our method is generally greater than 1 (i.e., is relatively stretched). Finally, for the
possible situation with a slope smaller than 1, we adjusted the parameters to ensure that the radiation
resolution maintained a relatively large gray scale without compressing any pixels.

Additionally, some uncertainty may induce a decrease in the time-series normalization
performance. Clouds and cloud shadows are important sources of noise in passive remote sensing
and identifying abnormal observation values from time-series observation data is the basis of various
applications. In this paper, according to the large fluctuation range of the gray-scale value caused by
clouds, we developed a method based on the IBCD method to automatically identify the inliers and
outliers to suppress the negative effect of contaminated pixels. Water bodies exhibit low reflectance in
the near-infrared band and separating them from cloud shadows may be difficult; similarly, dense
vegetation exhibits a high reflectance in the near-infrared band, and separating such vegetation from
clouds may be difficult. For the PIFs (such as bare land, buildings, and roads), the gray-scale values
in the near-infrared band are between those of low-reflectance water bodies and high-reflectance
vegetation. Our method can easily differentiate abnormal observation values when the land cover type
is PIFs. Therefore, the influence of these two deficiencies on the selection of PIFs is small.

From the image of the slope of the clear line segment, we can extract the PIFs using the threshold
segmentation. At present, identifying PIFs requires manual trial-and-error to adjust the threshold of
the slope, and they are evaluated and adjusted according to the obtained result. The unappropriated
threshold setting may lead to failure in PIF selection. The time interval of the time-series of remote
sensing images is long, and urban sprawl is dramatic in the research area. In a strict sense, no pixel is
free from any changes. A PIF is a variable that cannot be precisely defined but instead refers to a type
of pixel with a small variation magnitude.

Additionally, due to clouds, cloud shadows, and other noise factors, images have different
numbers of clear PIFs, which may induce uncertainty in radiometric normalization. In the worst case,
an image may not have sufficient PIFs to estimate a normalization equation, which will cause the
image to not be processed. However, images that cannot be processed have large proportions of clouds
or fewer clear pixels, and abandonment of these images will not result in a loss of much information.

Additionally, our method has certain drawbacks that may impede its application as follows:
(1) this method needs relatively invariant pixels in the research area and thus has poor application
potential in research areas that are completely covered by forests and farmlands; (2) in a region of
rapid urbanization, the PIFs also experience variations in various radiometric characteristics, and
many uncertainties are observed when there are changes in the entire time-series; (3) a long time-series
is required to present the gray-scale curve of the images, which is unsuitable for short time-series; and
(4) when one or more images have been accurately calibrated to reflectance, one intuitive method is to
normalize other images to the corrected images, which provides the explicit physical meaning to the
radiometric normalized result. However, our method cannot directly normalize the other images to
the corrected image.
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7. Conclusions

In this paper, we have proposed a radiometric normalization method for long time-series of
remote sensing images, which exhibits favorable merits such as automatic outlier exclusion, PIF
selection, and a novel strategy to minimize the RMSE between the image to be processed and the
previously corrected images. In addition, we tested the method using long time-series of remote
sensing data acquired by Landsat 5 TM for Hangzhou City. For experiments 1 and 2, the mean RMSEs
of the images in the time series dropped from 22.97 and 17.73 (by contrasting method 1) to 17.39 and
13.87 (by our method), respectively, the standard deviations dropped from 8.51 and 6.12 to 5.93 and
4.51, respectively, and the means of the correlation coefficients between the time series gray-scale
values increased from 0.508 and 0.562 (by contrasting method 1) to 0.781 and 0.793 (by our method),
respectively, reflecting a significant performance gain by our method.

Additionally, the result indicates that our method can effectively eliminate differences in radiometric
features between images and improve comparability between images. Moreover, the biophysical
information from image time-series is well preserved, showing a smooth gray-scale value curve after
radiometric normalization. The comparison between our method and the radiometric calibrated image
demonstrates that our method provides a promising alternative method for radiometric normalization,
especially when the parameters needed for absolute radiometric corrections are absent.
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