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Abstract: Wireless smart sensors (WSS) have been proposed as an effective means to reduce the
high cost of wired structural health monitoring systems. However, many damage scenarios for civil
infrastructure involve sudden events, such as strong earthquakes, which can result in damage or even
failure in a matter of seconds. Wireless monitoring systems typically employ duty cycling to reduce
power consumption; hence, they will miss such events if they are in power-saving sleep mode when
the events occur. This paper develops a demand-based WSS to meet the requirements of sudden event
monitoring with minimal power budget and low response latency, without sacrificing high-fidelity
measurements or risking a loss of critical information. In the proposed WSS, a programmable
event-based switch is implemented utilizing a low-power trigger accelerometer; the switch is
integrated in a high-fidelity sensor platform. Particularly, the approach can rapidly turn on the
WSS upon the occurrence of a sudden event and seamlessly transition from low-power acceleration
measurement to high-fidelity data acquisition. The capabilities of the proposed WSS are validated
through laboratory and field experiments. The results show that the proposed approach is able
to capture the occurrence of sudden events and provide high-fidelity data for structural condition
assessment in an efficient manner.

Keywords: sudden event monitoring; wireless smart sensors; demand-based nodes; event-triggered
sensing; data fusion

1. Introduction

Many civil infrastructure damage scenarios involve sudden events, such as natural disasters
(e.g., earthquakes) and human-induced hazards (e.g., collisions, explosions, acts of terrorism).
The occurrence of these events is generally unpredictable, and the consequences can be catastrophic.
A typical example of catastrophic sudden event is found in the accidental collision between barges
and a piling of railroad bridge in Mobile, Alabama, in 1993 [1]. As a result, the railroad bridge was
damaged and gave way 20 min later when an Amtrak train crossed, killing 47 people. If this collision
had been detected immediately and timely structural assessment of the bridge made, then the deaths
of these individuals may have been prevented.

To mitigate the consequences of sudden events, the development of monitoring systems is of
great importance. Traditional monitoring systems use wired sensors [2-5]. These monitoring systems
not only enable sudden event detection but can also facilitate rapid condition assessment of civil
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infrastructure. Such wired monitoring systems require line power to operate and can be expensive for
many large-scale structures, due primarily to high installation costs [6], often ranging from $5 K to
$20 K per channel (e.g., the Bill Emerson Memorial Bridge monitoring system cost a total of $1.3 M for
86 sensors [4,7]).

High-fidelity wireless sensors offer tremendous opportunities to reduce costs and realize the
promise of pervasive sensing for structural condition assessment. However, sudden event detection
using wireless sensors remains elusive. For example, the monitoring system installed on the Golden
Gate Bridge was unable to detect the three earthquakes that occurred during the three-month
monitoring deployment [8]. Two main challenges to detect sudden events are apparent:

(i) Limited power. Most wireless sensors are duty-cycled to preserve limited battery power;
as a result, wireless sensors will miss the occurrence of sudden events when they are in
power-saving sleep mode. Because the duty cycle is typically below 5% [9], this scenario is
quite likely to occur.

(ii) Response latency. Response of wireless smart sensors (WSS) from sleep mode to data acquisition
may take over a second, resulting in the loss of critical information in short-duration events
(e.g., earthquakes and collisions). Moreover, even if awake, sensors may be busy with other tasks
(e.g., data transmission); therefore, they will be unable to respond immediately to the occurrence
of sudden events, and hence miss the short-duration events.

Addressing these challenges is critical to realizing a WSS for sudden event detection.

One intuitive strategy is to provide sustainable power for WSS to enable continuous monitoring of
structures subjected to sudden events, emulating traditional wired monitoring systems. For example,
in 2011, Potenza et al. [10] installed a wireless structural health monitoring (SHM) system consisting of
17 WSS on a historical church, which was damaged during the 2009 L'Aquila earthquake. The nodes
were powered by the existing electrical lines, which guaranteed the continuity of operation and
successfully detected several earthquakes over a 3-year monitoring period. Their strategy of using
electrical lines to power WSS does not retain the inherent advantages of cable removal, and thus
is not practical for other sudden event monitoring applications using WSS. Energy harvesting and
wireless power transfer technologies also do not provide an efficient solution. Although technologies
such as solar and wind energy harvesting have been developed and validated to power WSS for
periodic monitoring [11-13], the challenge is that energy harvesting from the ambient environment is
intermittent and time-varying, which is not reliable to support continuous monitoring of structures.
Radio frequency (RF) energy transfer and harvesting is another wireless power technique in which
WSS convert the received RF signals into electricity. The energy can be transferred reliably over
a distance from a dedicated energy source to each node, or dynamically exchanged between different
nodes [14]. However, the energy harvesting rate is on the order of micro-watts with low efficiency [15]
and is insufficient for high-power high-fidelity monitoring of sudden events.

On the other hand, power consumption can be reduced by employing various energy-saving
mechanisms, which help to mitigate, but do not fully address the challenge of limited power
for WSS. For example, Jalsan et al. [16] proposed layout optimization strategies for wireless
sensor networks to prolong the network lifetime by optimizing communication schemes without
compromising information quality. Other examples of energy-saving mechanisms include data
reduction, radio optimization, and energy-efficient routing. More detailed discussion can be found
in Reference [17]. Most of these strategies are designed to reduce power consumption for wireless
transmission, which does not help energy conservation for continuous sensing, because most of the
power draw comes from the always-on sensor.

Recent developments in event-triggered sensing present both opportunities and challenges
to realize sudden event monitoring using WSS. In event-triggered sensing, WSS only initiates
measurement in response to signaling of events, which helps to save both energy and memory
resources, and thus prolong the lifetime of WSS. Research has been conducted to implement low-power
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components (sensors and radios) that enable continuous operation and triggering mechanisms inside
each sensor node. Lu et al. [18] designed the TelosW platform, which is an upgrade of the TelosB
platform [19], by adding ultra-low power wake-on sensors and wake-on radios. The wake-on
sensor is able to wake up the microcontroller (MCU) on occurrence of events with a predetermined
threshold. Additionally, the wake-on radio can wake up the MCU when a triggering radio message is
received. Similarly, Sutton et al. [20] presented a heterogeneous system architecture which included
a low-power event detector circuit and low-power wake-up receivers. Although these two technologies
achieve low power consumption, they do not satisfy the high-fidelity requirement of sudden event
monitoring for civil infrastructure. For example, the TelosW’s analog to digital converter has only
12-bit resolution. Event-triggered sensing is also developed and implemented to facilitate railway
bridge monitoring, because strain cycles and vibrations induced by trains are the most important data
for bridge condition assessment (e.g., fatigue), but the arrival time of trains is generally unpredictable.
Bischoff et al. [21] deployed a wireless monitoring system which provided strain measurement and
fatigue assessment of the Keraesjokk Railway Bridge. Each node was triggered independently by
a low-power microelectromechanical systems (MEMS) accelerometer which operated continuously and
detected an approaching train. Bias due to the transient start-up nature of the strain gage was removed
by a post-processing technique. Liu et al. [22] developed an on-demand sensing system, named
ECOVIBE, to monitor train-induced bridge vibrations. In each wireless node, a passive event detection
circuit was designed to monitor bridge vibration with no power consumption, and another adaptive
logical control circuit powered off the node once the designated tasks were finished. While effective for
some applications, all the aforementioned approaches will lose critical data between the occurrence of
the event and the time that data begins to be collected. Conversely, response times of wireless sensors
from a cold boot to data acquisition are typically well over a second, making this problem particularly
acute for short-duration sudden events (e.g., impacts can last only fractions of a second).

Moving the triggering mechanism to outside the sensor nodes provides a solution to address
the challenge of data loss. In general, a separate trigger node or system is used to monitor the events
continuously and notify of events to sensor nodes which are in power-saving mode most of the time.
The trigger node/system is required to send notifications with a certain amount of time before the
arrival of events at the structure, compensating the response latency of other sensor nodes. For example,
an event-driven wireless strain monitoring system was implemented on a riveted steel railway bridge
near Wila, Switzerland [23]. Two trigger nodes, referred to as sentinel nodes, were placed at 50 and
85 m away from the bridge, detecting approaching trains and sending alarm messages using a reliable
flooding protocol to wake up sensor nodes on the bridge, before the train arrived. In a 47-day
deployment, the system successfully detected 99.7% of train-crossing events. Likewise, in order to
detect earthquakes and initiate seismic structural monitoring, Hung et al. [24] developed an intelligent
wireless sensor network embedded with an earthquake early warning (EEW) system which was
able to detect P-waves before earthquakes arrived. In addition, each sensor node was implemented
with a wake-on radio which supported ultralow-power periodic listening of wake-up commands,
while the main sensor node was in deep sleep mode. Once the P-wave was detected, the gateway
node, integrated with the EEW system, sent wake-up commands to sensor nodes approximately 2 s
ahead of earthquakes. Subsequently, sensor nodes started measurement with a latency time of only
229 ms. Despite successful detection of train-crossing and seismic events, the aforementioned methods
do not provide a universal solution to address the challenge of data loss for many other sudden events,
e.g., bridge impact by over-height trucks and ships which can hardly be detected ahead of impacts.

In addition, some progress has been made in addressing the challenge of response latency to
sudden events, when WSS are awake but not in sensing mode. Cheng & Pakzad [8] proposed
a pulse-based media access control protocol. When an earthquake occurs, a trigger message with
high priority is propagated from an observation site across the WSS network to preempt current tasks;
sensors will be forced to conduct measurement to capture the structural response under the earthquake.
Dorvash et al. [25] developed the Sandwich node to reduce the response latency for unexpected events.
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A smart trigger node continuously measures the structural response; it will broadcast a proper message
across a network of Sandwich nodes in the case of occurrence of events. Sandwich nodes keep listening
to the trigger message; they will preempt current tasks once the trigger message is received. Response
delay of Sandwich nodes is around 8 ms to the occurrence of events. Although response delay is
reduced in these two strategies, the wireless sensor’s radio must always be on to listen for messages
from a trigger node. Unless employing an ultralow-power wake-up radio, these strategies will result
in a significant power draw.

This paper proposes a new approach for monitoring civil infrastructure subjected to sudden
events, aimed at detecting sudden events of any duration and capturing complete transient response
of any length. A demand-based wireless smart sensor (WSS) is developed that can capture data during
the sudden event that is suitable for rapid condition assessment of civil infrastructure. As opposed to
periodic monitoring, the demand-based WSS only wakes up and initiates sensing in response to specific
conditions, such as sudden events. The results of laboratory experiments and a field experiment show
that our proposed approach can capture the occurrence of sudden events and provide high-fidelity
data for structural condition assessment in a timely and power-efficient manner.

2. Demand-Based WSS

As discussed in the previous section, the primary issues that must be overcome to use wireless
sensors to monitor civil infrastructure subjected to sudden events are: (i) the sensor must operate
on battery power, (ii) high-fidelity data appropriate for SHM application must be obtained, (iii) data
surrounding the occurrence of sudden events must not be lost, and (iv) the WSS node must have
sufficient computational power to translate the data collected into actionable information. This section
describes a demand-based WSS system that can address these issues.

2.1. Ultralow-Power Trigger Accelerometer for Continuous Monitoring

To ensure that the occurrence of sudden events is not missed, the monitoring system must be
continuously in an on state. A wireless node that is always on would quickly deplete its battery.
Therefore, the solution proposed herein is to use an ultralow-power trigger accelerometer that
can continuously monitor the vibration of structures; the data from the accelerometer is stored in
a First-In-First-Out (FIFO) buffer. When an event occurs, the data in the FIFO buffer will be frozen,
and the sensor triggers an interrupt signal to wake up the main sensor platform and start sensing.
Such a trigger accelerometer should have low power consumption to enable continuous monitoring
for several years, good sensing characteristics, including a high sampling rate and adequate resolution,
and a large FIFO buffer to ensure data is not lost after the triggering event.

Trigger accelerometers in the market today were compared and the candidates that satisfied the
basic needs of sudden event monitoring are listed in Table 1. The power consumption reported in the
table correspond to the ultralow-noise mode of each sensor. More specifically, the ADXL362, developed
by Analog Devices, consumes much less power than the other trigger accelerometers. The ADXL372,
an updated high-g version of ADXL362, has a larger sampling rate and measurement range, but with
a sensing resolution of only 100 mg. The LIS3DSH from STMicromechanics has high resolution of
0.06 mg, but it has a high-power draw and an inadequate FIFO buffer. Finally, the MPU6050 developed
by InvenSense features a large FIFO buffer and high resolution, but it consumes substantial power.

In sum, based on application needs, the ADXL362 has been selected for this study (Figure 1);
it integrates a three-axis microelectromechanical systems (MEMS) accelerometer with a temperature
sensor, an analog-to-digital converter, and a Serial Peripheral Interface (SPI) digital interface.
The ADXL362 consumes only 13 uA in ultralow-noise mode at 3.3 V, which theoretically could
work continuously for over two years on a single coin-cell battery. A sampling rate up to 400 Hz and
a resolution of 1 mg is supported, satisfying many SHM applications. The large FIFO buffer allows
the sensor to save up to 512 samples, which corresponds to 1.7 s for all three axes sampled at 100 Hz.
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Moreover, it has built-in logic for acceleration threshold detection; a detected event can be used as
a trigger to wake up the primary sensor node.

Table 1. Comparison of trigger accelerometers in the market [26-29].

ADXL362 ADXL372 LIS3DSH MPU6050
Manufactures Analog devices  Analog devices ~ STMicroelectronics InvenSense
Supply voltage (V) 1.6-3.5 1.6-3.5 1.7-3.6 2.4-35
Power consumption (uA) 13 33 225 500
Sampling rate (Hz) 12.5~400 400~6400 3.125~1600 4~1000
Measurement range (g) +2, +4, +8 +200 +2, +4, +8, +16 +2, +4, +8, +16
Resolution (mg) 1mg 100 mg 0.06 mg 0.06 mg
Spectral noise (nug/+/Hz) 175-350 5300 150 400
Buffer size (samples) 512 512 32 512
Vs Voowo
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Figure 1. ADXL362: (a) sensor chip; (b) Functional block diagram [26].

(a)

2.2. High-Fidelity Sensor Platform for Sudden Event Monitoring

To provide high-quality measurement data and enable rapid condition assessment of structures
subjected to sudden events, the sensor platform should have following features: (i) sensors and a data
acquisition system that can obtain high-quality data at a high sampling rate for the event; (ii) powerful
microcontroller to acquire and analyze sensor data in near real time. Other important features include:
reliable communication, open-source software, and efficient data and power management.

A summary of the most advanced wireless sensor platforms available in the market currently
is given in Table 2. The Xnode, developed by Embedor Technology, has a 24-bit Analog-to-Digital
Converter (ADC), which is the best in its class. The microprocessor unit (MCU) of Waspmote (Libelium,
Zaragoza, Spain) is not able to support rapid processing of large amount of data. The MCU information
for the AX-3D (BeanAir, Berlin, Germany) and the G-Link-200 (LORD Sensing, Williston, VT, USA)
is unavailable, and the operating systems of these platforms are proprietary. Note that several
high-performance wireless sensor platforms (e.g., Imote2) are no longer commercially available,
and hence not compared herein.

Table 2. Comparison of most advanced wireless sensor platforms in the market [30-34].

Martlet AX-3D Waspmote G-Link-200 Xnode
ADC resolution (bits) 12 16 16 20 24
Sampling rate (Hz) up to3M 35k 05-1k 04k 0-1.6k
MC(E: f‘gz‘;“cy 80M NA 32k NA 204M
LOS range (m) 500 650 1.6k 2k 1k
Operating system State-machine Proprietary Proprietary Proprietary FreeRTOS
Data memory 32GB 1 million data points 16 GB 8 million data points 4GB
Internal power source dry cell battery lithium-ion battery lithium-ion battery dry cell battery Ithium-ion battery
External power source NA primary cell /8-28 V DC 7V DC NA 5V DC
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Because of its high sensing resolution, high sampling rate, powerful microprocessor,
and open-source software, the Xnode Smart Sensor [34] has been selected as the host wireless
sensor platform in this study. The standard Xnode consists of three modular printed circuit boards
(PCB): (i) the processor board, (ii) the radio/power board, and (iii) the sensor board (Figure 2).
In particular, it employs an 8-channel, 24-bit ADC (Texas Instruments ADS131E8), allowing a maximum
sampling rate up to 16 kHz and an NXP LPC4357 microcontroller operating at frequencies up to
204 MHz, which can be used to execute data-intensive on-board computation. Moreover, it implements
open-source middleware services [35], which facilitates custom application development. In addition,
it possesses two SPI controllers, making it possible to communicate with the selected trigger
accelerometer, the ADXL362.

® |Radio/power board

Figure 2. Xnode: (a) stacked modular boards; (b) weather-proof enclosure [34].
2.3. Integration of Wake-up Sensor and High-Fidelity Sensor Platform

To capture the entire event without loss of critical information, the ADXL362 accelerometer and
the Xnode must be carefully integrated to build a demand-based WSS. This integration is discussed in
the remainder of this section, in terms of hardware, software, and digital signal processing.

2.3.1. Hardware Consideration

To address the challenge of physical integration of the ADXL362 accelerometer into the Xnode,
a programmable event-based switch was designed and implemented on the radio/power board of the
Xnode in the demand-based WSS.

When a sudden event occurs, and the vibration exceeds a user-defined threshold, an interrupt pin
in the ADXL362 generates a triggering signal. This signal is connected to a MOSFET to flip its state,
turning on the Xnode and initiating high-fidelity sensing. When the event ends (lack of acceleration
above a threshold), the other interrupt pin in the ADXL362 generates a signal to notify the Xnode to
stop high-fidelity sensing. After data acquisition is completed, the triggering signal is cleared, and the
MOSFET turns off the Xnode. The communication of control messages between the ADXL362 and the
Xnode is carried out via SPI bus through a four-wire connection. In addition to enable event-triggered
sensing, the proposed switch should be designed to retain traditional functionality for periodic
monitoring. Specifically, sensor nodes are operated on low duty cycles, and the base station can access
the network of nodes at random to initiate operations or measurements in the network. To achieve
this goal, a real time clock, DS3231, is employed in the proposed switch. When a user-defined period
passes or at a specific time of day, the DS3231 sends a triggering signal which flips the MOSFET
switch and turn on the Xnode. Then the node remains awake for a short period of time to listen for
messages from the base station. Once a command is obtained, the node carries out the required task
(e.g., sensing, battery check). The communication of control messages between the DS3231 and the
Xnode is conducted through the 12C bus.

Figure 3a illustrates the design concept of the proposed switch. Five major components are
implemented, including a trigger sensor ADXL362 (U1), a real time clock DS3231 (U2), an AND gate
(U3), alatch (U4), and a MOSFET (U5). Interrupt pins from the ADXL362 and the DS3231 are connected
to the MOSFET through the AND gate. This circuit enables the MOSFET to be triggered by either the
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real time clock or the trigger sensor. In addition, a latch component is added between the AND gate
and the MOSFET, to keep the power supply stable. Figure 3b shows the realized PCB for the proposed
switch. The five major components, as well as companion resistors and capacitors, are all soldered
on the edge of top side. In some use cases such as downloading code to the board and debugging,
the sensor platform should always be on and therefore the designed switch needs to be bypassed.
To achieve this goal, a 2-pin jumper is added. When the two pins on the jumper are not connected,
the proposed switch works as designed, otherwise, it is bypassed.

Real time clock  Triggering sensor 2-pin jumper  Programmable event-based switch
() @)
MOSFET Latch Gate

(a) (b)
Figure 3. PCB design for the event-based switch: (a) design concept (b) realized PCB.

2.3.2. Software Consideration

In addition to hardware development of the prototype, an effective application framework is
required to control the behavior of demand-based WSS to realize event-triggered sensing.

Figure 4 shows a flowchart of the application framework for the demand-based WSS.
More specifically, when users turn on the physical switch of a main sensor platform, the Xnode
first initializes itself and sends commands which contain configuration parameters (e.g., threshold,
timers, and data buffer size) to the event-based switch discussed in the previous section. Once the
commands have been received, the switch completes configuration of the device settings. Subsequently,
the ADXL362 starts measurement in ultralow-noise mode, and the Xnode is turned off. If a sudden
event occurs and the acceleration obtained in the ADXL362 exceeds the user-defined threshold,
an interrupt pin, INT1 on the ADXL362 sends a trigger signal to turn on the Xnode. Concurrently,
the ADXL362 saves 512 data samples into its FIFO buffer surrounding the onset of the event and
waits for the Xnode to retrieve the data. The Xnode starts high-fidelity data acquisition using its
built-in high-power high-accuracy MEMS accelerometer. When the event stops and the acceleration
obtained in the ADXL362 is lower than a user-defined threshold for a certain period of time, the other
interrupt pin, INT2, in the ADXL362 is triggered. Subsequently, the Xnode stops high-fidelity sensing.
After sensing is completed, the Xnode reads data from the FIFO buffer of the ADXL362 and fuses it
with the Xnode data. In addition, when the Xnode is busy with other tasks (e.g., data transmission
of a previous event), but another sudden event occurs, the INT2 pin can be configured to interrupt
undergoing tasks and force the Xnode to start high-fidelity sensing immediately. In addition, timing
analysis results for each stage of a demand-based WSS are presented in the left of Figure 4.

For sudden events that are rare, e.g., earthquakes, the thresholds can be determined based on
priori information about the sudden events that are monitored. The a priori information can be
estimated by numerical analysis, the data in the history, or the measurement data in a preliminary
test. For some events that occur frequently, e.g., railway bridge impacts from over-height vehicles,
the thresholds can be determined adaptively, starting from a relatively low value during a “training
phase” and then adjusted until the detection errors are minimized. A more comprehensive research
regarding the triggering mechanism is the subject of future work to be addressed in the near future.
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Integrate data
Figure 4. Flowchart of demand-based wireless smart sensors (WSS) for event-triggered sensing.

2.3.3. Data Fusion of Trigger Sensor and Xnode Acceleration Record

The objective of the demand-based WSS is to obtain the data from before the trigger event occurs
until the structural accelerations stop. Specifically, the ADXL362 can record structural measurements
surrounding the onset of a sudden event, whilst the Xnode starts sampling the data approximately
0.9 s after being triggered. Therefore, the ADXL362 data and the Xnode data must be synchronized
and fused to produce a complete representation of the acceleration record. The following paragraphs
describe the challenges encountered in this process, along with the associated resolutions.

To fuse the two overlapping data streams, two main challenges should be addressed, including
(i) differences in the sampling rate between the ADXL362 and the Xnode, and (ii) synchronization
error between the ADXL362 data and the Xnode data. More precisely, the first challenge results from
the differences between the clock rates of the ADXL362 and the Xnode. The internal clock rate in
the ADXL362 has a standard deviation of approximately 3%. One approach might be to calibrate
the ADXL362 incorporated in each Xnode; however, this approach is not practical, as the clock rate
will change with temperature, invalidating the initial calibration. The second challenge is due to the
variance in start-up time of the sensing task on the Xnode. As a result, a random offset will exist
between the two data streams.

To tackle the challenges identified in the previous paragraph, the beginning of the Xnode data,
which is overlapped with the ADXL362 data, was utilized to calibrate the entire ADXL362 data stream.
Figure 5 shows a flowchart of this approach. More specifically, the ADXL362, acc,;,19, with a nominal
sampling rate of 100 Hz, were first up-sampled to f; (1000 Hz). The last 400 data points of the acc ;.9
were chosen as acc,i,1, which was assumed to be approximately overlapped with the beginning of the
Xnode data. In the meantime, the Xnode data, acc,,,,4.0, was sent through an 8-pole elliptic low-pass
filter with a cutoff frequency of 50 Hz, to have the same bandwidth with acc,;,9. The first 400 data
points of acc,yeq.0 Were considered as accyo401. Based on the datasheet of ADXL362 [26], the clock
frequency deviation from the ideal value was within the range of —10% and 10%. Therefore, to find the
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actual sampling frequency of acc,;,1, exhaustive search was applied from 900 Hz to 1100 Hz. For Step
i, the estimated sampling frequency (f.) of the ADXL362 data was set as,

fo = 1000 — df]i] 1)

where, df[i] = i—100, i € [0,200]. acc,gy;1 was resampled from f, to fs using resampling-based
approach [36]. Then, to estimate the synchronization error between acc,s1 and accy,ger,
the cross-correlation between the two data segments was calculated. The optimal offset, SE]i],
was obtained, for which the cross-correlation reaches its maximum value. Afterwards, acc,,1 Was
shifted by SE[i], and then the data fusion error (Err) was calculated as,

Err[i] = ||accagxin — aCCxnoder Hz ()

where, || ||, represents Euclidean norm. After completing these steps, the best estimations of sampling
frequency f; and synchronization error SE; were obtained in the step that achieves minimal Err.
Subsequently, f, and SE, were applied to calibrate the original data set, acc,yjo. Finally, acc 4,10 and
ACCypode0 Were combined and down-sampled to 100 Hz for ensuing analysis.

I ACCagyip |
| | Inactivity detection
| ADXT data (Event ends)
(fs=1boHz)
T »
o . : _ . Time
Activity detection Xnode d?fﬂ (f5=1000H:z)
(Event starts) \ |
[
ACCxnadan
(a)
ADXL362 data acc g0 Xnode data ace,,og00
Upsample data to f;=1000Hz Filter data f,=50Hz
acc ;= the last 400 points ACC.y040.; = the first 400 points

—»  dfli]=i-100; £=1000-df[1]

l y

Ind= argmin Erv[i]

Resample ace,qy; fromf to f;

| }

l Jo=1000-df[Ind);
SE, = SE[Ind]
Analyze correlation between acc,,q; and
ace,,,q0; 10 obtain optimal offset, SE[i] l
l Adjust ace 5, and
combine it with acc,,,,400
Shift ace,;,; by SE[i];
Calculate the error Er#[i]. l

Downsample the combined data to
100Hz

No » =

(b)
Figure 5. Post-sensing data fusion: (a) illustration of two data sources, (b) flowchart of data fusion strategy.
3. Validation of the Demand-Based WSS Performance

To validate the performance of the demand-based WSS, laboratory tests were carried out for data
fusion and earthquake monitoring. The detailed test setup and results are presented in this section.
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The performance of the demand-based WSS is discussed, in terms of power consumption, sensing
characteristics, and data quality for sudden event monitoring.

3.1. Validation of Data Fusion

A lab test was conducted to illustrate the challenge of data fusion between the ADXL362 data
and the Xnode data. Specifically, a demand-based WSS was located at 10th floor of an 18-story building
model shown in Figure 6. The ADXL362 was configured to capture samples at 100 Hz, starting at 0.2 s
before the triggered event and continuing until 1.5 s after the event. The event-triggering threshold
was set to 150 mg, at which time, the Xnode was turned on and 1000 Hz high-fidelity measurement
was started. To reduce false positives, two consecutive data points exceeding the threshold were
required to cause triggering. In addition, a wired piezoelectric accelerometer, model PCB353B33,
was installed on the same floor and sampled at a frequency of 128 Hz. The acceleration from these
sensors served as reference data. A sudden event was simulated by manually shaking the building
model in horizontal direction.

18 Story building model

Wired Sensor

Shaking table

Figure 6. Experiment setup for a demand-based WSS.

To make a direct comparison in the time domain, the Xnode data and wired sensor data were sent
through an 8-pole elliptic low-pass filter with a cutoff frequency of 50 Hz, as displayed in Figure 7.
The direction of acceleration measurement was the same with the vibration direction specified in
Figure 6. The vibration exceeded the threshold at 0.7 s, and the event-based switch turned on the Xnode.
The Xnode required 0.92 s for initialization. Fortunately, as shown in Figure 7b, acceleration data
stored in the FIFO bulffer of the ADXL362 was recorded during this period. Specifically, the ADXL362
data can be divided into three parts: (i) Part 1 is the pre-triggered data which is around 0.28 s in
length; (ii) Part 2 is the data that cover the time where the Xnode is initializing; (iii) Part 3 is where the
ADXL362 data overlaps with the Xnode data. The length of the data in Part 3 is approximately 0.6 s.
As shown in Figure 7b, the data obtained from the ADXL362 does not match well with the reference
data from the wired sensors, because the sampling frequency of the ADXL362 was slightly smaller
than 100 Hz, which illustrates the first challenge mentioned in the Section 2.3.3. In addition, the time
offset between the Xnode data (blue line in Figure 7a) and the ADXL362 data (red line in Figure 7b)
must be accurately estimated to fuse these two data streams, which illustrates the second challenge of
data fusion.
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Figure 7. Time history data comparison: (a) Xnode measurement, (b) ADXL362 data buffer.

The data fusion strategy discussed in the previous section is applied to the test data. Figure 8
shows a comparison of time history data between sensor data from wired sensors and the fused data
from the demand-based WSS. The excellent agreement demonstrates the ability of the proposed strategy
to seamlessly capture the structural response subjected to a sudden event.
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Figure 8. Results of data fusion: (a) time history data, (b) zoomed view (ADXL362 data).

3.2. Earthquake Monitoring

As a typical sudden event, an earthquake is transient and unpredictable, and the consequences
can be catastrophic. Continuous efforts are required to develop cost-effective earthquake monitoring
systems to mitigate the effect of earthquakes. Demand-based WSS have a significant potential to enable
earthquake detection and rapid condition assessment of civil infrastructure, which was validated
through a lab test in this section.

The test setup was the same with that in Section 3.1, as shown in Figure 6. The structure model was
mounted on a uniaxial shaking table. This shaking table can simulate earthquakes in one horizontal
direction, driving a 15 kg mass at 2.5 g with a maximum stroke of £7.5 cm. The El Centro earthquake
excitation was generated by the shaking table to represent a sudden event. The detection threshold
for the event-based switch in demand-based WSS was configured as follows: the onset of event was
detected when the acceleration was above 80 mg over 0.02 s, and the end of event was detected when
the acceleration was below 40 mg over 5 s. Other configuration parameters are the same with the test
in Section 3.1, such as sampling frequencies and filter parameters.

A segment of 90 s recorded time history is shown in Figure 9a. As can be seen in the zoomed
view of the time history data (Figure 9b,c), the ground motion started at 10.7 s, but the vibration in the
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beginning was very small. From 11.79 s to 11.80 s, two consecutive acceleration samples obtained by the
trigger accelerometer exceeded 80 mg. As a result, the event-based switch turned on the demand-based
WSS immediately and the WSS started high-fidelity measurement. The acceleration became smaller
than 40 mg after 54.50 s. Approximately 5 s later, the event-based switch stopped the high-fidelity
sensing. Furthermore, Figure 9d shows the power spectral density (PSD) in the frequency domain.
The excellent agreement between the results of wired sensors and the demand-based WSS in the both
time and frequency domain demonstrates the ability of the proposed WSS to detect the earthquake
and capture the accurate structural response during earthquakes in a timely and efficient manner.
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Figure 9. Test results of earthquake monitoring: (a) time history data, (b) zoomed view of time history
data for event start, (c) zoomed view of time history data for event end, (d) power spectral density
(PSD) data.

3.3. Evaluation and Discussion

In the lab tests described in previous sections, the attractive performance of the demand-based
WSS was successfully validated to detect sudden events and provide high-quality sensing data for
SHM analysis.

(1) Power consumption tests showed that the proposed WSS has a current draw of only 365 pA
when no sudden event occurred, but the power consumption of the original Xnode sensor
platform is approximately 170 mA during sensing. Considering that sudden events are rare and
short-duration, most of the time the demand-based WSS deployed on a structure is in low-power
measurement mode. Therefore, if using a 3.7 V DC, 10,000 mAh, rechargeable lithium polymer
battery, employing the proposed WSS can extend the lifetime of always-on monitoring from
three days to over three years using a single lithium battery. This feature helps to successfully
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detect the occurrence of sudden events with minimal power budget in long-term monitoring.
In addition, the current draw in each operation associated with duration for a demand-based
WSS was determined experimentally and shown in Figure 10, in which the majority component
of power consumption is sensing.

(2) The data obtained from the demand-based WSS is high-quality, matching well with the data from
wired piezoelectric accelerometers. In particular, high-fidelity sensing enables 24-bit sensing
resolution and over 1 kHz sampling rates. This feature helps to conduct structural condition
assessments accurately under sudden events.

(3) The test results show that, when an event occurs, a seamless transition from the low-power
sensing to high-fidelity measurement is carried out, without losing any data about the event.

These three features demonstrate that the proposed WSS satisfies the demands of sudden
event monitoring.

v
Y

Deep Sleep " Sensing *  Data processing * Data transmission

* Currentdraw: 365 uA « Cuwrrentdraw: 170 mA  *  Current draw: 176 mA * Current draw: 280 mA

*  Duration: NA « Duration: dependson * Duration: dependson  * Duration: depends on
the duration of event sensing duration. E.g., sensing duration. E.g.,
it takes 15 s for 100 s it takes 6 s for 100 s
sensing duration sensing duration

Figure 10. Flowchart of event-triggered sensing regarding current draw and duration for each operation.
4. Field Application

To further validate system performance, a field test was conducted on a steel railroad bridge
north of Champaign, Illinois. Having vibration data while in-service trains traverse the bridge is
useful to assess the bridge condition [37]. Train events have similar features to sudden natural events,
e.g., unpredictability due to uncertain train schedules, but occur more frequently and therefore provide
a convenient test platform. A demand-based WSS was deployed on the bottom side of a bridge girder.
Simultaneously, wired sensors, model PCB353B33, were selected as reference sensors and deployed
close to the WSS (see Figure 11). A detection threshold was configured to be the same as the test in
Section 3.2. To avoid signal saturation, the measurement range of the trigger accelerometer was set
to the maximum value of 8 g. At 10:52:06 a.m. on 7 May 2019, an Amtrak passenger train passed by
the bridge.

Figure 11. Field application of the demand-based WSS.

Figure 12a—-d shows the raw acceleration data of the bridge in vertical direction. The train came
to the bridge at 121 s and left at 128 s. The event had a short duration of 7 s, and it was successfully
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detected by the demand-based WSS. Figure 12e shows the PSD data. Some slight discrepancies
between the data from two sensors are possibly due to the different locations of the sensors. In sum,
good agreement can be observed between the wired sensor and the demand-based WSS both in the time
and frequency domain, demonstrating that the new WSS can capture the sudden event and obtain
high-fidelity measurement in real applications.
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Figure 12. Test results on a railroad bridge: (a) time history data, (b) zoomed view of event starts
(ADXL362 data), (c) zoomed view of event data (Xnode data), (d) zoomed view of event ends (Xnode
data), (e) PSD data.
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5. Conclusions

This paper presented the design of demand-based WSS to meet the application requirements
of sudden event monitoring. The proposed WSS mainly consist of a unique programmable
event-based switch and a powerful high-fidelity WSS platform. In particular, the event-based switch
is built on a trigger accelerometer which allows the new WSS to measure the structural response
in ultralow-power in long term, so as not to miss sudden events. In addition, the software of
event-triggered sensing and data fusion is implemented. The performance of the proposed WSS
is evaluated through the lab tests of earthquake monitoring and a field application on a railroad
bridge. The test results show that the proposed WSS can continuously monitor structural response
with minimal power budget, and hence detect the occurrence of the sudden event with the smallest
delay. Besides detecting sudden events, the proposed WSS have the excellent features of high sampling
rates and sensing resolution, which finally helps to provide high-quality data in sudden events for
rapid condition assessment of civil infrastructure. Moreover, the proposed WSS are powerful and
versatile not only for sudden events (e.g., earthquakes), but also for autonomous monitoring of other
general events (e.g., bridge/highway overloads).

For large-scale structures, one demand-based WSS is not sufficient, and a network of nodes are
needed for a meaningful characterization of the structural response. When subjected to a sudden
event, each node may be triggered independently to initiate measurement at slightly different times
due to varying response levels in the structure. Future work will address the challenges encountered
for a network of demand-based WSS under sudden events. For example, one critical issue is to
synchronize data from different sensor nodes without introducing delay of event-triggered sensing.
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