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Abstract: Limited-angle iterative reconstruction (LAIR) reduces the radiation dose required for
computed tomography (CT) imaging by decreasing the range of the projection angle. We developed
an image-quality-based stopping-criteria method with a flexible and innovative instrument design
that, when combined with LAIR, provides the image quality of a conventional CT system. This study
describes the construction of different scan acquisition protocols for micro-CT system applications.
Fully-sampled Feldkamp (FDK)-reconstructed images were used as references for comparison to
assess the image quality produced by these tested protocols. The insufficient portions of a sinogram
were inpainted by applying a context encoder (CE), a type of generative adversarial network, to
the LAIR process. The context image was passed through an encoder to identify features that were
connected to the decoder using a channel-wise fully-connected layer. Our results evidence the
excellent performance of this novel approach. Even when we reduce the radiation dose by 1/4, the
iterative-based LAIR improved the full-width half-maximum, contrast-to-noise and signal-to-noise
ratios by 20% to 40% compared to a fully-sampled FDK-based reconstruction. Our data support that
this CE-based sinogram completion method enhances the efficacy and efficiency of LAIR and that
would allow feasibility of limited angle reconstruction.

Keywords: context encoder (CE); limited-angle iterative reconstruction (LAIR); generative adversarial
network (GAN)
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1. Introduction

Limited-angle iterative reconstruction (LAIR) is an image reconstruction method developed
for to compensate incomplete data acquisition [1]. LAIR provides new acquisition flexibility and
innovative instrument design that is not restricted by the size of the object [2] and also mitigates
the high radiation dose required for computed tomography (CT) imaging [3]. In fact, the trade-off
between image quality (IQ) and angular-sampling (related to radiation exposure) remains an ongoing
issue in CT research. To date, three options exist toward managing this issue: (1) reduced X-ray
exposure, (2) sparse reconstruction (extend sampling interval from a projection with full-coverage) and
(3) limited-angle (LA) reconstruction (new acquisition flexibility and innovative instrument design, for
example, the rotation-type tomosynthesis system). However, LA reconstruction confers insufficient
angular coverage in CT acquisitions with incomplete projection data. The frequency spectrum is
truncated, resulting in artifacts and difficulties in obtaining high-quality reconstructed images. This
problem arises when a limited angular range is necessary for various reasons; it results from intensity
inhomogeneity and streaking artifacts in the image domain.

The LAIR method is basically a sinogram recovery system for missing data in the projection
domain. In our research group, we try to recover the full sinogram from an incomplete LA sinogram.
Many benefits from deep learning-based algorithms have been successfully applied to the field of
medical image processing, promising considerable improvements in image understanding tasks
including computer-aided diagnosis [4]. Here we would like to apply a semi-supervised automatic
inpainting method: context encoder (CE) [5] to recover the missing data in a sinogram.

Based on compressive sensing (CS), the prior information involving sparse properties has attracted
attention to the area of CT image reconstruction. Inspired by the theory’s success in signal processing,
CS-based algorithms have been used to reconstruct images from reduced projection data [6]. The
total-variation (TV) regularization method removes noise while preserving edges using an energy
function [2,7]. However, this algorithm is object-dependent and no general stopping criteria are
suitably applicable to every situation, especially for iterative reconstruction (IR) algorithms. Recent
efforts have focused on using prior knowledge to recover signals from incomplete measurements. If
the image is sparse in a domain, which has little coherence in the sampling domain, then the image
can be almost entirely recovered with a few samplings whose number is proportional to the amount of
non-zero entries in the sparse representation. The signal can be recovered precisely if the restricted
isometry property (RIP) exists. Due to the fact that medical images are usually edge-sparse, TV
minimization is often used to rectify incomplete data issues in tomography [8,9].

The appropriate knowledge-based method has to be retrieved from the well-reconstructed data
(i.e., the training set) and used during the reconstruction of the target image (i.e., the testing set) to
enable difference minimization. Dictionary learning divides images into patches to train over-complete
basis and incorporates a sparse constraint into the dictionary during reconstruction [10]. The entire
structure of the image as a prior during reconstruction minimizes the L2-norm-based principal
component used as a penalty term, otherwise, prior geometrical information is adopted. Inspired by
the fact that an image can be approximately represented by a principal components analysis of the
training set, a novel feature-constrained CS algorithm is proposed for CT image reconstruction. An
additional constraint is applied to the relationship between the image and the feature space during
reconstruction, which is a sparse representation of the target image. Since the structural information
is introduced into reconstruction, our method boosts the performance of traditional incomplete data
reconstruction methods, especially for LA problems.

Applying deep learning-based method to improve IQ is a new approach for dealing with low-dose
CT [11]. Some researchers proposed a residual encoder-decoder convolutional neural network
(RED-CNN) for low-dose CT imaging, including vendor-specific sinogram domain filtration and
iterative reconstruction algorithms. But this method is only suitable for improving the image quality
with a little artifact or noisy data and it cannot be used for reconstruction of insufficient sinogram
data. An approach to incorporate deep learning within an iterative image reconstruction framework to
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reconstruct images from severely incomplete measurement data is presented by Kelly’s group [12].
They used a convolutional neural network (CNN) as a quasi-projection operator within a least squares
minimization procedure. The ill-posed inverse problems without necessarily linear forward operators
is provided by Jonas’s group. These problems summaries in classical regularization theory and recent
advances in deep learning to perform learning while making use of prior information about the inverse
problem encoded in the forward operator, noise model and a regularizing function [13] and it is used
in conjunction with the clinical cone-beam CT system by Elekta (Stockholm, Sweden). These methods
involve the direct use of deep learning to map and recover projections in reconstruction mapping.
However, our case does not take this approach because of different algorithm architecture we used.

Our proposed method is an integration of a smart sinogram completion method and an
iterative reconstruction (IR) framework with image-quality-based stopping criteria to perform LA
mode reconstruction. The stopping criteria consisted of some objective evaluation, such as peak
signal-to-noise ratio (PSNR) and universal image quality index (UIQI) [14–16]. We also used structure
similarity (SSIM), a UIQI-like index, to handle the completion of the sinogram [17,18]. Additionally,
we also included the relative total-variation (rTV) between the reference and reconstructed images in
our stopping-criteria calculations, to observe the convergence of the constraint. We hypothesize that
there are significant IQ differences between the LA mode algorithm and the full-CT mode with the
analytical Feldkamp (FDK) algorithm [19]. Using the proposed LAIR technique, we can significantly
improve the IQ so that there are negligible differences in IQ between the LA and full-scan CT modes.

2. Materials and Methods

2.1. Context-Encoder-Based Sinogram Completion

CE is a type of generative adversarial network (GAN) architecture [5]. It is a convolutional neural
network or an asymmetric auto-encoder that shares similar encoder-decoder architecture. The CE
inpainting model was trained to generate the contents of an arbitrary image region conditioned by its
surroundings. The context image is passed through the encoder to obtain features that are connected
to the decoder using the channel-wise, fully-connected layer. The decoder then produces the missing
regions in the image. In our case, we train the CE model by regressing to the ground truth content of
the missing region.

In this model, the reconstruction loss (applied L2 distance of the mask region loss) is responsible
for capturing the overall structure of the missing region, consistent with its context (in our case, the
context information presented as the known pixels in the sinogram data).

The adversarial loss tries to make the generated prediction region look like the full-sinogram
data. Thus, it has the effect of picking a particular mode from the distribution of the specific sinogram
data. Here, we applied a stochastic gradient descent solver, Adam, for optimization purpose. It is an
extension of the stochastic gradient descent that has recently been broadly adapted for deep learning
applications in computer vision and natural language processing.

Here we chose leaky rectified linear units (ReLU) as our activation function defined by f(x) ={
αx, x < 0
x, x ≥ 0

, where α is a small constant. The slope in the negative region can also be made into a

parameter for each neuron. We normalized the activations of the previous layer of each batch and
applied a transformation that maintains the mean activation close to 0 and its standard deviation close
to 1.

Our CE architecture included a four-layer CNN for the encoder and a four-layer CNN for the
decoder. A three-layer CNN was used as the discriminator. All of the CE model and computing
architecture is presented in Table 1. The convolution kernel size for all of the architecture is 3 × 3. For
the encoder and discriminator, down-sampling was applied layer-by-layer. We choose our activated
function (leaky ReLU) with a slope of α = 0.2. The momentum for the moving mean and the moving
variance of the normalized batch is 0.8. The decoder structure is the inversed encoder and vice
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versa [20]. To balance the different pixel numbers between the input image and output compensated
region, we transferred two fully-connected layers. In each epoch, to obtain an achievable training
model, there are 32 randomly-selected sinograms for training and 16 sinograms for validation from
the training sets. We train these models using three different epoch numbers (1000, 5000 and 10,000)
and batch size of 32. It spent 1.4 s in training and validation per epoch. After model saving, it only
needs 180 s to generate one set of completed sinograms. Finally, we also used PSNR, UIQI and SSIM
to validate the results of the CE inpainted sinograms from the testing sets prior to LA reconstruction.

Table 1. The architecture of the generative adversarial-based context encoder model on the
Keras platform.

Generator
Discriminator

Encoder Decoder

3 × 3, d = 2, conv, ↓,
LeakyRELU(0.2), BN(0.8) 34 × 17, d = 16, fully-connected 3 × 3, d = 64, conv, ↓,

LeakyRELU(0.2), BN(0.8)
3 × 3, d = 4, conv, ↓,

LeakyRELU(0.2), BN(0.8)
3 × 3, d = 16, conv, ↑, RELU,

BN(0.8)
3 × 3, d = 128, conv, ↓,

LeakyRELU(0.2), BN(0.8)
3 × 3, d = 8, conv, ↓,

LeakyRELU(0.2), BN(0.8)
3 × 3, d = 8, conv, ↑, RELU,

BN(0.8)
3 × 3, d = 128, conv,

LeakyRELU(0.2), BN(0.8)
3 × 3, d = 16, conv, ↓,

LeakyRELU(0.2), BN(0.8),
Drop(0.5)

3 × 3, d = 4, conv, ↑, RELU,
BN(0.8) 104,448 fully-connected

21,696 fully-connected 3 × 3, d = 2, conv, ↑, RELU,
BN(0.8) 1 fully-connected, sigmoid

3 × 3, d = 1, tanh

LeakyRELU: leaky rectified linear units, RELU: rectified linear units, Drop: dropout layer, ↓: 2 × 2 down-sampling,
↑: 2 × 2 up-sampling, d: depth of the filtered image, BN: batched normalization.

2.2. Derivation of Image-Quality-Based Stopping-Criteria for IR Reconstruction Algorithms

The first step of IR is the construction of a system matrix that serves as the mapping between the
object and its projections on the detector. The dimensions of the detectors are Nh (h denotes height)
and Nw (w denotes width). We assume that the forward projection process follows the linear-system
model p = Af, where f = <fi>, i = 1, 2, . . . , N is an object data vector with a size of N = Nh × Nw

2 and
p = <pj>, j = 1, 2, . . . , M is the projection vector with a size of M = Nh × Nw. A = aij is the effective
intersection length of the projection line j with pixel i. The general IR framework can be represented in
the form of the constrained optimization problem.

f∗ = argmin
f

(U(f) + λV(f)), s.t. |f∗ − f| < ε, f∗ ≥ 0 (1)

where f is a non-negative factor, λ is the relaxation parameter that balances the two iterative processes
between U(f ) and V(f ) and ε is the relative error. The first term U(f ) is the data fidelity term, which
enforces the fidelity of the f with the measured projection vector p. The second term V(f ), which is used
to regularize the objective function, constrains the convergence of the X-ray attenuation coefficient
using prior anatomical information. The final calculated f* must be non-negative. In this paper, we
applied two optimizers, the adaptive-steepest-descent projections onto convex sets (ASD-POCS) [8,21]
and TV-constrained expectation-maximization methods (EM-TV) methods [22,23], to modify and
implement in this study. The regularized term is to minimize the TV-norm, which is used for both of
the IR frameworks such that

‖f‖TV =
Nh

∑
k=1

Nw

∑
j=1

Nw

∑
i=1

√
(∇f)2

i + (∇f)2
j + (∇f)2

k (2)
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where ∇ is the gradient operator and the notations i, j and k represent the unit vectors in the x, y and
z directions. In cases where both algorithms are needed for the full-projection data to complete the
sinogram, we have to apply the comparison step in iterations.

However, in the real world, we could not achieve the ideal noise-free data suitable for realistic
CT scanning. Subjective evaluation is usually inconvenient, time-consuming and expensive when we
consider that the accurate physical environment includes the shape of an object, the characteristics of
the primary photon beams, the scatter distribution of the beams and the true attenuation from voxel
to voxel. Therefore, we changed the stopping criteria from Equation (1) and applied the result from
Equation (1) and the following to the objective function as follows:

f∗ = argmin
f

(U(f) + λV(f)),

f∗∗ = argmax
f∗

(UIQI(f∗, f)− rTV(f∗, f))
, s.t. f ≥ 0, f∗ ≥ 0, f∗∗ ≥ 0, PSNR(f∗∗, f) > k (3)

where k = 35 dB for our experiments. The second objective function uses IQ as the stopping criteria to
early stop the iterative algorithms while maintaining their IQ. This objective function is used instead of
the pixel differences, |f∗ − f| in Equation (1), because IQ contains more information such as luminance,
contrast, structure similarities and the shape of boundary. These properties are included in merits like
PSNR, UIQI and rTV.

The PSNR-value, an IQ measurement based on the maximum possible pixel difference between
the reference image f (refers to a full scan in a digital phantom experiment and reconstructed image by
recovered sinogram in real-world scanning) and the iteratively estimated image f**, which represents
a boundary condition used to maintain sufficient IQ. In addition, [24] suggests that PSNR over 44 dB
yields acceptable IQ, PSNR below 35 dB loses some signal characteristics and PSNR-value below 30 dB
are unacceptable. 

PSNR(f∗∗, f) = 10× log
(

max(f∗∗, f)2/MSE(f∗∗, f)
)

MSE(f∗∗, f) =
N
∑

i=1
(f∗ − f)2/N

(4)

where the notation max (f**, f ) denotes the maximum possible pixel values of the two images f and f**
and MSE (f**, f ) is the mean-square-error of the f and f** pixel by pixel calculation to cover over N
pixels. The UIQI and rTV-values are also calculated from the same images as well as the PSNR-value
in Equation (3).

The UIQI is used to evaluate the degree of similarity between f and f*. The dynamic range of
UIQI is from 0 to 1.0, where 1.0 is the ideal value, achieved when f and f* are equal for all pixels, which
is defined in Equation (5).

UIQI(f∗, f) =
4µfµf∗σf∗f

(µ2
f + µ2

f∗)(σ
2
f + σ2

f∗)
(5)

where µf and µf∗ denote the mean values of these images, σf and σf∗ denote their standard deviations,
respectively, and σf∗f is the covariance of both images [17]. Another similar item is SSIM, which is
defined in Equation (6).

SSIM(f∗, f) =
(2µfµf∗ + c1)(2σf∗f + c2)

(µ2
f + µ2

f∗ + c1)(σ
2
f + σ2

f∗ + c2)
(6)

The coefficient of c1 = (0.01× L)2 and c2 = (0.03× L)2 are regularization constants for the
luminance, contrast and structural terms, specified as a three-element vector of non-negative real
numbers, L is the maximum value of the dynamic range between f* and f . Here we followed the
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default setting from MATLAB. The rTV formula evaluates the shapes between the reconstruction
results f** and the reference image f and is defined as:

rTV = ‖f∗‖TV/‖f‖TV (7)

2.3. Micro-CT System and Experiment Design

Figure 1 shows the laboratory-designed micro-CT system that provides 50–80 kVp characteristic
X-ray beams (NS-081505 X-ray Generator, NanoRay Biotech. Co., Taipei, Taiwan) and its corresponding
spectrum, which was measured using a commercial X-ray spectrometer (X-123 Completed Amptek
Inc., Bedford, MA, USA) [25]. Raw projections were acquired from a flat panel detector (864 × 1536
with 75-µm pixel size; Dexela1207, Perkin Elmer Inc., Waltham, MA, USA). The distance from the
source to the rotation-center (SOD) of the object is 299 mm and the source to the detector (SID) is
325 mm. The intrinsic field of view (FOV) of each projection is nearly 64.4 mm under this geometric
condition. The reconstructed volume (in virtual space) FOV is 59.2 mm × 59.2 mm × 106.2 mm. In real
space, the object needs to be smaller than a 25-mm radius cylindrical area to avoid critical component
collision and damage during scanning.
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50–80 kVp X-ray spectrum.

All developed reconstruction programs for CT run on a workstation (Precision T5600, Dell Inc.,
Taipei, Taiwan), which consists of two CPUs (Xeon E5-2620, 2.0 GHz, Intel Co., Taipei, Taiwan) and
one GPU (Tesla C2075, NVIDIA Co., Taipei, Taiwan). The CUDA-based architecture uses parallel
computing, applied on a development platform (MATLAB® ver. R2017b, Terasoft Inc., Taipei, Taiwan),
except the CE-based sinogram completion method. The reconstruction time using the FDK algorithm
is nearly 0.3 s per slice. The iterative algorithm needs are based on the iteration number, in general,
system matrix creation requires 30 s per projection. The iteration method spent an average of 300 s per
slice to achieve acceptable IQ.

The CE algorithm was developed on a high-performance server in a powerful GPU (Tesla
K40C, NVIDIA Co., Taipei, Taiwan) and CPU (Xeon E5-2620 v.3, 2.4 GHz, Intel Co., Taipei, Taiwan)
environment. For easy implementation, we did CE processing using the Keras platform, a high-level
neural network application and programming interface, written in Python and capable of running on
top of TensorFlow, Computational Network Toolkit and Theano. Furthermore, we used a GPU to help
speed up the training process.

2.4. Manipulation of the Limited Angle Sinogram

In the simulation, we used a reconstructed CT image and executed a forward projection to create
a reference sinogram. The standard sampling rate is 1◦ within full 360◦ coverage. Before LAIR
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reconstruction, we want to recover 90◦ LA reconstruction by applying CE inpainting. Owing to
sinogram repeating after 360◦, we copied the first 90◦ of sinogram information to extend our sinogram
to be a 450◦ covered sinogram as the reference sinogram. The LA sinogram was made using the
reference sinogram, which was replaced by 0 during the 90–359◦ region.

The training set consists of four full-sinogram sets and their corresponding LA sinograms; two
LA sinogram sets were used as the testing data. The details of the sinogram recovered from the CT
image are described in Table 2 and illustrated in Figure 2. To expand the data variability, we were
given a total of 5000 sinograms in our training data from a generated digital cylinder phantom, 2D
Shepp-Logan phantom, MOBY digital mouse phantom and MINST digit numbers (from 0 to 9). The
other 5000 sinograms, including 3D digital Shepp-Logan phantom, four types of quality assurance
phantoms (QRM GmbH. Co., Moehrendorf, Germany) and other six mice, were served as the testing
set. Table 3 describes the Monte Carlo simulation using random numbers to decide the initial image
state including the direction, reflection, inversion, initial slice selection or even phantom generations
from the training image used to build-up the sinograms. Table 3 also describes how we use the
testing dataset for validation and evaluation of the IQ. The testing sets use data from simulated digital
phantoms, physical phantoms and mice. The main concept and flowchart is illustrated in Figure 3 to
describe that (1) how to generate limited-angle sinogram for training, (2) to build the CE completion
model to recover sinogram data, (3) to use analytical or iterative algorithm to reconstruct the image
and (4) to evaluate the recovered sinogram and reconstructed image.

Table 2. Simulation methods of image pre-processing to manipulate the LA sinogram before CE
inpainting on the MATLAB platform.

Pre-Processing Procedure Dimensions (voxel) Voxel Size (um)
Sinogram Radial

Sampling
(degree)

CT reconstructed image 864 × 864 × 1536 69.00

Slice selection (air region rejection) 864 × 864 × 500 69.00

Binning 2 × 2 432 × 432 × 250 138.00

ROI selection and isotropic air
region rejection for training data,
with flip, random rotation to do

data argumentation)

380 × 380 × 250 138.00

Forward projection to create
sinogram data (replaced by 0 from
the 90–359◦ region and repeated

0–89◦ information after 360–449◦)

541 × 450 × 250 75.00 1.00

Resizing of the sinogram to meet
the input size of the CE

architecture
544 × 448 × 250 74.586 1.004

The CE inpainted sinogram 544 × 448 × 250 74.586 1.004

Reconstruction to image domain
with bilinear interpolation 864 × 864 × 500 68.61
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Table 3. The random number generated events according to method.

Type of Object
(Training) Random Number Generated Events Number per Slice Total Sinograms

Generated

Digital cylinder phantom

Number of cylinders (1–4), center of
cylinder (initial x, y position), cylinder

radius (from 10 to 20 pixel), initial phantom
rotated angle (in degrees), reflection
(yes/no), reversed rotation (yes/no)

250 random build per
slice 1.250

2D Shepp-Logan
phantom

Initial phantom rotated angle (in degree),
reflection (yes/no), reversed rotation

(yes/no)

250 initial random
rotated per slice 1.250

MOBY digital mouse
phantom

Slice number (1–208 in axial direction),
initial rotated angle (in degree), reflection

(yes/no), reversed rotation (yes/no)

125 slices from MOBY
phantom (208 slices) 1.250

MINST dataset
(Digit numbers 0–9) Randomly select 125 images per digit Numbers 0–9, total 10

sets 1.250

3D Shepp-Logan
phantom

Center 200 from 500 slices (remove air
region) 200 200

QRM quality assurance
phantom

Select 450 from 500 slices, from 4 phantoms
(wire phantom, contrast, water phantom

and hydroxyl-appetite)
450 × 4 phantoms 1.800

Animal data Use total 500 slice data from 6 mice
(covered from head to pelvic region) 500 × 6 mice 3.000
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Figure 3. The flowchart of two-step reconstruction of the CT image by LA sinogram inpaint
based method.

2.5. Scanning Protocol and Experiment Design

Laboratory scanned CT data were collected from four standard quality assurance phantoms:
25-µm wire, contrast-scale, water cylinder and hydroxyl-apatite (HA) phantom (QRM GmbH,
Moehrendorf, Germany) and one animal (BALB/c, Nude/SCID mouse, 19.75 g) using our
micro-FT/CT molecular imaging system. There are two protocols to evaluate the two types of LAIR
algorithms: the LA (1◦/projection with 90◦ coverage) and the loosely-sampled-full-coverage (LSFC;
5◦/projection with 360◦ coverage) modes. LSFC is used to simulate sparse sampling cases.

2.6. Performance Evaluation by Physical Phantoms

For comparison, the FDK method was used in densely-sampled-full-coverage mode (DSFC;
1◦/projection with 360◦ coverage) as a reference for the IQ assessments. The insufficient projection
data needs to be recovered using the CE method before the reconstruction step. The Pearson correlation
coefficient between the standard HA values and measured intensities of the five chosen ROIs from the
tomographic images was determined to evaluate linearity, each of ROI is the same size as for the SNR
and CNR measurements.

Figure 4 illustrates the procedure used to image the four performance phantoms to ensure our
concept can be implemented on a real system. The reconstructed image from the 25-µm wire can
be used to assess the spatial resolution in the radial direction of our micro-CT system. This requires
two wires (one located at the center and the other at the peripheral of the phantom) to observe the
spatial resolution by calculating the full-width half-maximum (FWHM) values. The contrast-scale
factor allows for the evaluation of the contrast-to-noise ratios (CNRs) and we chose five 3 × 3 mm2

regions-of-interest (ROIs) including the upper, lower, left and right regions around the HA core
and the final one at the central core to determine the CNRs. We used the same ROIs to calculate
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the signal-to-noise ratios (SNRs) of the water phantom. The CNR and SNR are calculated using
Equations (8) and (9), respectively:

CNR =

∣∣∣µsig − µbg

∣∣∣√
σ2

sig + σ2
bg

(8)

SNR = µROI/σROI (9)
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=
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Figure 4. The procedure and evaluation method of the test phantom: (a) 25-μm wire phantom,  
(b) contrast-scale phantom, (c) water phantom and (d) Hydroxyl-apatite (HA) phantom. The dashed-
block areas are the regions for calculating the contrast-to-noise ratio (CNR), signal-to-noise ratio 
(SNR) and linearity. The size of the phantom unit is in mm. R here means the correlation coefficient. 

2.7. Real Animal Application and Dose Evaluation 

A mouse injected with a contrast-agent (Discover ExiTron Nano-12000, nano-PET Pharma 
GmbH., Berlin, Germany) was scanned to validate the system’s performance in a realistic in vivo 
animal setting (a total of 80 μL was injected). The contrast-agent allows hepatic visualization for 
several hours after injection and helps enhance the cardiac and celiac trunk in the mouse [26,27]. We 
measured the radiation dose using an electrometer (CNMC Model 206 Electrometer, Best Healthcare 
Inc., Monroe, NY, USA) and a 0.6 c.c. Farmer chamber before the animal scan to evaluate dose 
reduction. The dose was calculated using the conversion factor validated by the International Nuclear 
Energy Council of 0.404 × 107 cGy/C. The average dose was obtained by repeating the measurement 
method at least 10 times and we used a 20 × 20 × 35 mm3 poly-methyl methacrylate box to simulate 
the animal’s body. 
  

Figure 4. The procedure and evaluation method of the test phantom: (a) 25-µm wire phantom,
(b) contrast-scale phantom, (c) water phantom and (d) Hydroxyl-apatite (HA) phantom. The
dashed-block areas are the regions for calculating the contrast-to-noise ratio (CNR), signal-to-noise ratio
(SNR) and linearity. The size of the phantom unit is in mm. R here means the correlation coefficient.

2.7. Real Animal Application and Dose Evaluation

A mouse injected with a contrast-agent (Discover ExiTron Nano-12000, nano-PET Pharma GmbH.,
Berlin, Germany) was scanned to validate the system’s performance in a realistic in vivo animal setting
(a total of 80 µL was injected). The contrast-agent allows hepatic visualization for several hours
after injection and helps enhance the cardiac and celiac trunk in the mouse [26,27]. We measured the
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radiation dose using an electrometer (CNMC Model 206 Electrometer, Best Healthcare Inc., Monroe,
NY, USA) and a 0.6 c.c. Farmer chamber before the animal scan to evaluate dose reduction. The dose
was calculated using the conversion factor validated by the International Nuclear Energy Council of
0.404 × 107 cGy/C. The average dose was obtained by repeating the measurement method at least 10
times and we used a 20 × 20 × 35 mm3 poly-methyl methacrylate box to simulate the animal’s body.

3. Results and Discussion

3.1. Evaluation of Completed Sinogram by CE

Figures 5 and 6 show the CE inpainted results between one of the true sinograms and the images
from the testing data. All of the sinograms used for the testing and validation of CE inpainting were
acquired from six reconstructed mouse cone-beam CT images. The fixed gray-level is 0 to 80 for the
sinograms domain in Figure 5 and 0 to 0.2 for the reconstructed images in Figure 6. The gray-level
represent the summation of the product by each voxel from CT image and their penetrated length of
the specific X-ray tracing with unit of mm−1.
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Figure 6. Evaluation of the reconstructed images by testing the completed LA sinograms. (a) The true 
sinogram reconstructed using the Feldkamp (FDK) algorithm (reference image). The LA sinogram 
without completion was directly reconstructed by (b) FDK and (c) TV-constrained expectation-
maximization methods (EM-TV) algorithm (100 iterations). The CE inpainted sinogram reconstructed 
CT image by (d) FDK, (e) EM-TV algorithm (20 iterations) and  
(f) EM-TV algorithm + IQ-based stopping criteria (only nine iterations). The (g) to (k) show the 
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Figure 5. Evaluation of the completed LA sinogram results from the sinograms and their reconstructed
images. (a) True sinogram, (b) Simulated LA sinogram and (c) CE inpainted sinogram from the testing
set. (d) The difference of the sinogram (a) subtracted by (b) and (e) is the difference of the sinogram (a)
subtracted by (a) and (c).
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Figure 6. Evaluation of the reconstructed images by testing the completed LA sinograms. (a) The
true sinogram reconstructed using the Feldkamp (FDK) algorithm (reference image). The LA
sinogram without completion was directly reconstructed by (b) FDK and (c) TV-constrained
expectation-maximization methods (EM-TV) algorithm (100 iterations). The CE inpainted sinogram
reconstructed CT image by (d) FDK, (e) EM-TV algorithm (20 iterations) and (f) EM-TV algorithm +
IQ-based stopping criteria (only nine iterations). The (g–k) show the difference between (b–f) compared
to the reference image (a). The display is in the range of [0, 0.02].
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We found that the CE-based method can recover nearly the entire missing region of the sinogram
(Figure 5c). From the results, we can observe not only the sinogram-domain but also the image-domain,
which revealed excellent output image performance between the recovered sinogram and the true
value. There are three figures-of-merit (FOMs) used to evaluate the completed sinograms and their
reconstructed images: PSNR, UIQI and SSIM. The value for PSNR needs to be as high as possible. The
optimal values of UIQI and SSIM are close luminance, contrast and structure [11,12].

Table 4 contains the quantitative results from Figures 5 and 6 and describes an excellent image
performance. In the sinogram domain, the proposed method improves the PSNR from 10.1623 dB to
40.2738 dB and UIQI and SSIM from 0.3095 to 0.9993, which indicates that almost all of the missing
data were recovered. Next, we use the FDK and EM-TV algorithms to reconstruct the sinogram with
and without applying the CE completion method.

Table 4. Figures-of-merit for limited angle sinogram completion in sinogram and image
domain evaluation.

Domain Type Sinogram Domain Image Domain

Items LA
Figure 5b

CE
Figure 5c

FDK (LA)
Figure 6b

EM-TV (LA)
Figure 6c

FDK (CE)
Figure 6d

EM-TV (CE)
Figure 6e

EM-TV (CE+IQ)
Figure 6f

PSNR (dB) 10.1623 40.2738 13.9891 14.0356 24.1986 25.1891 26.6432
UIQI 0.3095 0.9993 0.5066 0.5109 0.8865 0.9023 0.9106
SSIM 0.3095 0.9993 0.8107 0.8123 0.9552 0.9612 0.9813

LA: limited-angle, CE: context-encoder, FDK: Feldkamp algorithm, EM-TV: TV-constrained expectation-
maximization algorithm, IQ: image-quality-based stopping-criteria method applied, PSNR: peak signal-to-noise
ratio, UIQI: universal image quality index, SSIM: structure similarity.

Only applying the EM-TV algorithm without using the completed sinogram data does not work
for LA reconstruction. As seen in Figure 6b,c, the images still diverge after the EM-TV algorithm.
Conversely, when we apply the CE completion, the reconstructed images are similar to the reference
image. When we use the FDK method, the PSNR increased from 13.9891 dB to 24.1986 dB, the UIQI
value elevated from 0.5066 to 0.8865 and the SSIM improved from 0.8107 to 0.9552. If we apply the
general form of the EM-TV method to reconstruct the completed sinogram, it generates much better
results than the FDK method (PSNR = 25.1891 dB, UIQI = 0.9023 and SSIM = 0.9612).

Applying our proposed IQ-based stopping-criteria method (Equation (3)) generates a slightly
improved IQ (PSNR = 26.6432 dB, UIQI = 0.9106 and SSIM = 0.9813) compare to the original
EM-TV algorithm.

3.2. Numerical Reconstruction Evaluation

Here we use one Shepp-Logan phantom to evaluate the performance of three algorithms. Figure 7
is the ground truth value compared with the FDK, ASD-POCS and EM-TV algorithms. Here, the IR
algorithms were proposed as stopping criteria in Equation (3). Each of the following cases included the
LA, DSFC and LSFC modes. Four types of artifact patterns (unsmoothed-shape edge, curved-ripple
pattern, streak-artifact and radiative-pattern) were used to evaluate the IQ. In Figure 7, the limitations of
the FDK algorithm are apparent. Despite its compact sampling size and computation speed, the quality
of the LA reconstruction is unacceptable due to insufficient information for only 90◦ of projection
data. In terms of the LSFC data, although the sampling coverage is sufficient, the large sampling
interval amplifies some streak artifacts outside of the object. While the FDK method generates artifacts,
both the ASD-POCS and EM-TV algorithms reduce the appearance of artifacts to produce acceptable
images. These data were reconstructed using the IR method because they lack adequate information
for reconstruction using the conventional FDK method. Although some artifacts cannot be removed
entirely, these IR methods can reconstruct an image where the IQ is similar to that of the ground truth
image. These results provide evidence in support of implementation in a real-world system.
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Figure 7. Numerical results for 3D Shepp-Logan phantom: (a) True image. (b) FDK with LA mode 
(1°/projection with 90° coverage), (c)FDK with DSFC (1°/projection with 360° coverage) mode,  
(d) FDK with LSFC (5°/projection with 360° coverage) mode. (e) ASD-POCS + CE inpainting + IQ-
based stopping criteria for LA mode, (f) DSFC and (g) LSFC mode. (h) EM-TV-based algorithm + CE 
inpainting + IQ-based stopping criteria for LA, (i) DSFC and (j) LSFC mode. Arrows point to the four 
types of artifact patterns: (1) unsmoothed shape edge (2) curved-ripple pattern (3) streak-artifact and 
(4) radiative-pattern. 

3.3. Physical Phantom and Animal Micro-CT Image Evaluation 

The substantial improvement to IQ is apparent from several FOMs, including spatial resolution, 
CNR, SNR and linearity (Figure 8). The proposed stopping criteria, which were similarity, signal 
preservation and noise reduction, were required for both the EM-TV and ASD-POCS algorithms with 
less than 10 iterations. The better the radial spatial resolution, the lower the FWHM value. 

Figure 7. Numerical results for 3D Shepp-Logan phantom: (a) True image. (b) FDK with LA mode
(1◦/projection with 90◦ coverage), (c) FDK with DSFC (1◦/projection with 360◦ coverage) mode, (d)
FDK with LSFC (5◦/projection with 360◦ coverage) mode. (e) ASD-POCS + CE inpainting + IQ-based
stopping criteria for LA mode, (f) DSFC and (g) LSFC mode. (h) EM-TV-based algorithm + CE
inpainting + IQ-based stopping criteria for LA, (i) DSFC and (j) LSFC mode. Arrows point to the four
types of artifact patterns: (1) unsmoothed shape edge (2) curved-ripple pattern (3) streak-artifact and
(4) radiative-pattern.

3.3. Physical Phantom and Animal Micro-CT Image Evaluation

The substantial improvement to IQ is apparent from several FOMs, including spatial resolution,
CNR, SNR and linearity (Figure 8). The proposed stopping criteria, which were similarity, signal
preservation and noise reduction, were required for both the EM-TV and ASD-POCS algorithms with
less than 10 iterations. The better the radial spatial resolution, the lower the FWHM value.
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(d) HA phantom. The display’s dynamic range was set to the maximum for each different phantom 
image and the same scale between different algorithms automatically. For details of image analysis, 
please refer to Figure 4. The standard deviation of the fitted Gaussian function was calculated as 
21.739 μm under the geometry of SID of 211.1 mm and SOD of 49 mm conditions to measure the radial 
spatial resolutions. The 3 × 3 mm2 ROIs were applied to the CNR, SNR and linearity measurements. 

For the real application, we changed the geometry of the SID to 211.1 mm and the SOD to  
49 mm, which changed the voxel size to 17.4088 μm. The FWHM width measurement using the FDK 
method is 52 μm from the central wire and 58.39 μm measured from the peripheral wire. Comparing 
the FWHMs of the different algorithms revealed that the proposed LAIR technique yields much 
better IQ than the DSFC mode using the FDK algorithm. 

In both IR-reconstructed images, we improved the central spatial resolution by nearly 1.38 to 
1.43-fold relative to the FDK method. The FWHM from the peripheral wire image is wider than at 
the center. The proposed LAIR methods provide 46.21 μm and 45.61 μm resolutions. 

In terms of the other FOMs, the proposed LAIR improves the CNR by 20–30% and the SNR by 
40%. Also, there is excellent linearity for all three algorithms. The correlation coefficient was 0.988 for 
the FDK method and almost 0.99 for both IR methods. In this article, we only discuss the contrast in 
high-contrast tissue because we are interested in osteoporosis applications. Most researchers are also 
very interested in low-density contrast to distinguish between tissue-like materials or similar-density 
objects. We shall address this issue in our future work with photon counting reconstruction. 
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tailored to demonstrate which type of IR algorithms can help improve IQ compared to using the 
traditional FDK algorithm. Using the fully-sinogram to reconstruct (DSFC and LSFC) and the LA 

Figure 8. The reconstructed images from the FDK method in DSFC mode and the proposed stopping
criteria included in the two LAIR algorithms (ASD-POCS and EM-TV) for four standard physical
phantoms including (a) 25-µm wire phantom; (b) contrast-scale phantom; (c) water phantom and (d)
HA phantom. The display’s dynamic range was set to the maximum for each different phantom image
and the same scale between different algorithms automatically. For details of image analysis, please
refer to Figure 4. The standard deviation of the fitted Gaussian function was calculated as 21.739 µm
under the geometry of SID of 211.1 mm and SOD of 49 mm conditions to measure the radial spatial
resolutions. The 3 × 3 mm2 ROIs were applied to the CNR, SNR and linearity measurements.

For the real application, we changed the geometry of the SID to 211.1 mm and the SOD to 49 mm,
which changed the voxel size to 17.4088 µm. The FWHM width measurement using the FDK method is
52 µm from the central wire and 58.39 µm measured from the peripheral wire. Comparing the FWHMs
of the different algorithms revealed that the proposed LAIR technique yields much better IQ than the
DSFC mode using the FDK algorithm.

In both IR-reconstructed images, we improved the central spatial resolution by nearly 1.38 to
1.43-fold relative to the FDK method. The FWHM from the peripheral wire image is wider than at the
center. The proposed LAIR methods provide 46.21 µm and 45.61 µm resolutions.

In terms of the other FOMs, the proposed LAIR improves the CNR by 20–30% and the SNR by
40%. Also, there is excellent linearity for all three algorithms. The correlation coefficient was 0.988 for
the FDK method and almost 0.99 for both IR methods. In this article, we only discuss the contrast in
high-contrast tissue because we are interested in osteoporosis applications. Most researchers are also
very interested in low-density contrast to distinguish between tissue-like materials or similar-density
objects. We shall address this issue in our future work with photon counting reconstruction.

The focus of this study is not the quantitative assessment of IR for a specific task; instead, it
is tailored to demonstrate which type of IR algorithms can help improve IQ compared to using the
traditional FDK algorithm. Using the fully-sinogram to reconstruct (DSFC and LSFC) and the LA
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mode, with our proposed stopping criteria and an appropriate TV regularization method, we can
precisely reconstruct high-quality CT images.

Figure 8 shows that for both different slices of the same object and different objects, the proposed
stopping-criteria selection is a robust method for the different IR algorithms used. While the
performance on a specific imaging task is dependent on the object, the proposed method can maintain
IQ without altering the parameters (e.g., image fidelity, regularization, relaxation, etc.) of each of the
different IR algorithms. By using a TV-constrained data discrepancy minimization process, LAIR can
efficiently and effectively reduce the artifacts introduced by LA.

The EM-TV algorithm incorporated the Poisson noise to match the realistic statistical model. We
found that the FOMs of the EM-TV-based LAIR algorithm are better than those of the algebraic type. In
this research, we focused on two factors for reducing artifacts in the FDK and IR methods: increasing
the angular sampling interval and reducing the projection coverage.

Figure 9 displays a cross-sectional image of the contrast-injected mouse after the FDK-based
reconstruction and proposed LAIRs were applied. It shows that the LAIR method represents an
excellent choice for reconstructing the liver, heart, abdomen and pelvis portion without changing their
shape forms and with high IQ. The results demonstrate that our IR methods are suitable for general
cone-beam CT system but there are still some artifacts present (ring-artifact and beam-hardening effect)
and we will resolve these in the near future (see Figures 8 and 9).
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Figure 9. The tomographic images of the contrast-injected mouse, which cross over into the liver (L),
heart (H), abdomen (A) and pelvis (P) regions, reconstructed using the conventional FDK and the two
LAIR algorithms. The display is in the range of [0, 0.02].

This result supports us to prove that combining our proposed stopping criteria with the LAIR
methods can automatically achieve optimal IQ similar to FDK reconstruction without deformation
in standard mode. Figure 8 presents some remnants of fading star-shaped artifacts in the FDK
reconstructed image. The IR methods can efficiently reduce most artifacts because they update the
difference from iteration to iteration. However, if there is inconsistent data, the artifacts will be
worse. The truncation artifact observed in Figure 9 may be caused by external-FOV data from the
binary classification process; the outside-of-FOV mask (indicated by arrows) used on the initial FDK
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image cause data inconsistencies when performing re-projections and artifact enhancement during the
forward-projection process in the IR methods.

3.4. Exposure Dose

Table 5 shows the average radiation dose required for each acquisition protocol. The dose was
repeatedly measured at least 10 times to obtain the average dose rate, which was 0.0027 ± 0.31% mGy
per second for each projection. Because the total dose using the step-and-shoot protocol is proportional
to the number of projections, there are 90 projections for the LA protocol, 360 projections for DSFC
and 72 projections for LSFC. The absorption doses are 0.2353 and 0.2005 mGy for the LA and LSFC
modes, respectively. These doses are roughly 1/4 and 1/5 of the dose required for the DSFC mode,
which is 0.9626 mGy. To summarize the dose reduction for the three different acquisition protocols by
comparing the absorption dose and absorbed dose rate for the projections, the ratios are 88, 360 and 75
for the LA, DSFC and LSFC protocols, respectively. These ratios are very close to the corresponding
projection number in each protocol. These data show that using either the LA or LSFC protocols can
reduce the required radiation dose proportionally to the projection views.

Table 5. Average absorption dose and dose equivalent from 10 measurements for three protocols: LA,
DSFC and LSFC modes.

Acquisition Protocol Dose Measurement

Absorption Dose (mGy) Effective Dose (µSv)

LA mode 0.2353 ± 0.30% 0.1093 ± 0.30%
DSFC 0.9626 ± 0.31% 0.4470 ± 0.31%
LSFC 0.2005 ± 0.28% 0.0931 ± 0.28%

Dose rate per projection in 1 s 0.0027 ± 0.31% 0.0012 ± 0.31%

LA: limited-angle, DSFC: densely-sampled-full-coverage, LSFC: loosely-sampled-full-coverage.

4. Limitations and Future Work

Our CE model is not applicable to variable-degree data recovery problems due to the size
dependency of the architecture. This paper only serves as proof of principle to handle the 90◦ LA
problem. An “auto-modulate” smart architecture for GAN that fits general purposes and can be widely
used for other manual protocols will be tackled in our future work.

5. Conclusions

In conclusion, we have investigated an IQ-based stopping-criteria method, which was
implemented in IR without IQ loss. Combining the proposed stopping criteria with the LAIR methods
can automatically achieve optimal IQ similar to FDK reconstruction without deformation. Even though
LAIRs confer many advantages, they still require the reference image to handle the convergence and
over-iteration occurs when the stopping criteria is applied. Hence, we propose a CE-based sinogram
completion method to solve this problem. Our data support that this method can effectively and
efficiently reduce artifacts arising from insufficient projection data. This study’s findings indicate
that our novel LA reconstruction method with CE-based sinogram completion can not only reduce
radiation dose but also improve IQ for small animal micro-CT imaging. Overall, this approach
represents a major step toward solving the issue of LA reconstruction that can potentially be applied
to digital tomosynthesis.
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