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Abstract: Despite the importance of computing soil pore water electrical conductivity (σp) from soil
bulk electrical conductivity (σb) in ecological and hydrological applications, a good method of doing
so remains elusive. The Hilhorst concept offers a theoretical model describing a linear relationship
between σb, and relative dielectric permittivity (εb) in moist soil. The reciprocal of pore water electrical
conductivity (1/σp) appears as a slope of the Hilhorst model and the ordinary least squares (OLS)

of this linear relationship yields a single estimate (1̂/σp) of the regression parameter vector (σp) for
the entire data. This study was carried out on a sandy soil under laboratory conditions. We used
a time-varying dynamic linear model (DLM) and the Kalman filter (Kf) to estimate the evolution
of σp over time. A time series of the relative dielectric permittivity (εb) and σb of the soil were
measured using time domain reflectometry (TDR) at different depths in a soil column to transform
the deterministic Hilhorst model into a stochastic model and evaluate the linear relationship between
εb and σb in order to capture deterministic changes to (1/σp). Applying the Hilhorst model, strong
positive autocorrelations between the residuals could be found. By using and modifying them to
DLM, the observed and modeled data of εb obtain a much better match and the estimated evolution
of σp converged to its true value. Moreover, the offset of this linear relation varies for each soil depth.

Keywords: electrical conductivity; relative dielectric permittivity; time domain reflectometry; kalman
filter; dynamic linear model

1. Introduction

Salinization reduces crop productivity, decreases profitability, and causes land scarcity [1].
Thus, it decreases the world’s agricultural productivity and causes a global income loss of US$
12 billion per year [2]. Extracting soil solution by suction or using saturated paste conductivity
measurements are the common methods to determine the electrical conductivity of soil pore water (σp)
as an indicator of the soil salinity; however, they are labour- and cost intensive. There is no evidence
that all ions are collected in the sample extract [3]. For soil salinity assessment, it is important to look
for practical methods that evaluate the soil salinity state temporally and spatially. These methods help
to correctly evaluate soil salinity evolution and reasonably predict its values [4–9]. In recent times, soil
electromagnetic sensors have been used to estimate bulk electrical conductivity (σb). Then, methods
are required to transform σb to σp [3,6,10].
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According to Wyllie and Southwick [11], three conductance pathways, see Figure 1, contribute to
the σb of a soil: (i) solid phase pathway through soil particles that are continuous contact with one
another, (ii) liquid phase pathway through dissolved ions in the soil water inhabiting the large pores,
and (iii) a liquid–solid interphase pathway through exchangeable cations like surfaces of clay minerals.
Electrical conductivity (EC) in the liquid phase (σp) is used to estimate the soil salinity, a high EC refers
to a high concentration of soluble salts, and vice versa. The σp could be estimated if the relationship
between σp, σb, and water content (θ) is fixed [12–14]. The discovered linear correlation between the
soil relative dielectric permittivity (εb) and σb values [15] enabled Hilhorst [3] to convert σb to σp by
using a theoretical model. According to Hilhorst, σp can be determined from the equation:

σp =
εpσb

εb − εσb=0
(1)

where σp is the pore water electrical conductivity (dS/m); εp is the relative dielectric permittivity of the
soil pore water (dimensionless), εb is the relative dielectric permittivity of the bulk soil (dimensionless,
relative dielectric permittivity is dimensionless since it is a ratio of permittivity of medium to the
permittivity of free space), σb is the bulk electrical conductivity (dS/m), εσb=0 is the relative dielectric
permittivity of the soil when the bulk electrical conductivity is 0 (dimensionless). However, εσb=0
appears as an offset of the linear relationship between εb and σb. The Hilhorst model [3] concluded that
his method could be validated for water contents between 0.10 and saturation and for a conductivity
of the pore water up to 0.3 S m−1. He found that εσb=0 depends on soil type and varies between
1.9 and 7.6. He recommended using 4.1 as a generic offset. Many studies applied the deterministic
Hilhorst model [3] in their experiments to convert σb into σp but they did not use the same offset to
achieve their study objective. For example, some studies concluded their work by using different
offsets (within the range of 3.67 to 6.38) according to the soil type [10]. The producer of capacitance soil
moisture sensors 5TE [16] recommends the use of an offset εσb=0 of 6 while another study found that
an offset εσb=0 = 6 does not present a good linear relationship between εb and σb [17]. The WET sensor
(Delta-T Device Ltd., Cambridge, UK) is a frequency domain dielectric sensor. It has been designed to
estimate the σp based on the Hilhorst model [3] and incorporate the standard offset εσb=0 = 4.1 of the
model in the software of the device. By applying the Hilhorst model [3] in a saline gypsum-influenced
soil, the accuracy of the WET sensor in predicting σp was very poor when using the offset model
=4.1 [18]. Another study used a WET sensor for experimental measurements in the laboratory using
four different soils (sand, sandy loam, loam, and clay) [9] and found that the offset depends on both
soil type and σp, where it becomes larger for larger σp. Moreover, oscillator frequency and sensor
circuitry could affect the estimation of εb and water content (θ) [19].
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There are three elementary causes responsible for why the deterministic system and control
theories do not produce a totally sufficient means of performing this analysis and design:

(i) many effects are left unknown since the objective of the model is to represent the main modes of
system response,

(ii) deterministic models are driven not by only our own control inputs but also disturbances which
we can neither control nor model deterministically, and

(iii) sensors do not offer exact readings of chosen quantities but present their own system dynamics
and distortions as well and these devices are noise corrupted [20]. Despite the importance of
computing σp from σb, a good method for doing so remains elusive (Campbell [16], personal
communication).

Solute transport and water flow in the unsaturated zone are normally derived from the classical
Richards equation and the convection–dispersion equations. Deterministic explanations of these
equations are important aspects of research; due to soil heterogeneity at a variety of spatial scales, these
equations for predicting actual field-scale processes are being increasingly questioned [21]. Therefore,
some researchers working on soil heterogeneity concluded that for the evolution of soil water and
solutes, it is more desirable to use stochastic models rather than constant values, where the parameters
of stochastic transport models are treated as random variables with discrete values assigned according
to a given probability distribution [21–26]. Among stochastic models, many studies used Kalman
filtering in hydrological applications. A Kalman filter is an optimal recursive data processing algorithm
that recursively couples the most recent measurements into the linear model to update the model state
output [27]. Under the assumption that the linear system is a stochastic process with Gaussian noises,
it produces the best estimation with minimum mean square error and it has been widely used in
hydrological models to optimally merge information from the model simulations and the independent
observations with appropriate modeling [28–32].

In previous work, we installed frequency domain reflectometry (FDR) sensors (5 TE), which are
commercially available from METER Group, Inc. USA, in field conditions at different depths where
the soil is heterogeneous to estimate σp [22]. We used εb and σb observations to modify the Hilhorst
deterministic model [3] to a stochastic model using a time-varying dynamic linear model and Klaman
filter before studying the linear relationship between them.

In this study, we used Time Domain Reflectometry (TDR) sensors (FP/mts), which are
commercially available from Easy Test, Poland, to measure εb and σb in laboratory conditions where
the soil is homogeneous. Then, we tried to use the Hilhorst model [3] to convert σb to σp. Later,
we could show the weakness of applying the deterministic Hilhorst model [3] even in homogeneous
soils. Thus, we are aiming to adapt this approach to a stochastic model under laboratory conditions.
Thus, we used one homogeneous soil type to accurately estimate the changes in σp over time and to
conclude whether the model offset is constant or if it changes in one soil profile.

2. Material and Methods

2.1. The Column Experiment

To achieve the objective of this study, we used two soil columns with a height of 55 cm provided
by a sprinkler, see Figure 2. The lower boundary was controlled using a vacuum pump at a constant
pressure head of −30 hPa. The columns were packed with a density of 1.4 g/cm3. The substrate was
sand, 80% of which was fine sand. The water content during packing was approximately 4 m3/m3.
The TDR and soil temperatures sensors were installed in four depths: 7, 21, 35, and 48 cm. Since the soil
is sand, the soil relative dielectric permittivity (εb), bulk electrical conductivity (σb), and temperature
were measured every 5 min to obtain enough observations for modeling.
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Additionally, porous suction cups for taking soil solution samples were installed at each depth
to validate the results of our model. The lower boundary of the column uses a membrane to let the
water drain. Drainage water was collected in a bottle under −30 hPa vacuum, which is supplied in
the range from −20 to −30 hPa. The sprinkler is 5 cm above the soil surface and allows water to drop
through small nozzles. Five irrigation events using KCl solution with different electrical conductivities
were applied. The first three events were irrigated with 20 dS/m of KCl, then the fourth, and fifth
events with 30 dS/m of KCl. The flux was approximately 1 l/h. The columns were free of salt at
the beginning and before the irrigations events started. The TDR probes are FP/mts commercially
available from Easy Test, Poland, and have been calibrated in air and deionized water. The temperature
probes are Thermistors of the type 2k252 (type Fenwal UUA 32J3) with a range of −20 up to 60 ◦C.
Soil temperature data (Tsoil) were used to estimate the relative dielectric permittivity of the soil pore
water directly (εp):

εp = 80.3− 0.37(Tsoil − 20) (2)

To apply the dynamic linear model and the Kalman filter, a time series of the variable of interest
is needed [27]. In our study, time series of εb, σb, and εp are required to estimate σp. Therefore, we used
five irrigation events with two levels of KCL solution to obtain the variation of these variables over
time for each depth. In total, 289 observations were made of σb, εp, and εb for each soil depth and these
were used to estimate both the offset εσb=0 of the modified Hilhorst model [3] and the evolution of σp

at its corresponding depth, of which 144 observations were used to validate their forecasts.

2.2. Time-Varying Dynamic Linear Model

In general, the state space model is identified by two assumptions, (i) there is a hidden or latent
process xt called the state process. The state process is assumed to be a Markov process, where past
and future values of xt are independent, conditional on the present xt, ({xs, S > t}, and {xs, S< t} are
independent on the xt), (ii) the observations, yt are independent given the states xt. This means that
the dependence among the observations is generated by states. The dynamic linear model (DLM)
or linear Gaussian state space model, in its simple form, employs a first-order, p-dimensional vector
autoregression as the state equation:

xt = xt−1 + wt wt ∼ N (0, Wt) (3)
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We do not observe the state vector xt directly, but only a linear transformed version of them with
noise added, say:

yt = Atxt + vt vt ∼ N (0, Vt) (4)

yt is an m-dimensional vector, representing the observation at time t, At is a q × p measurement or
observation matrix. Equation (4) is called the observation equation, in which vt, wt are the Gaussian
white-noise errors. The evolution variances are Vt, Wt and can be estimated from available data using
maximum likelihood or Bayesian techniques.

In this study, we modified the deterministic Hihlorst model (1) to a stochastic one. The model
(1) has the variables σb, εp, σp, εb, and εσb = 0. The σp and εσb = 0 are unobserved and they need to
be estimated by the state Equation (3) as xt, while σb, εp, and εb are observed by the sensors (εp is
calculated from Equation (2) using soil temperature sensor data) and represented by observation
Equation (4) as yt.

The R [33] package, dlm [34], provides an integrated environment for Bayesian inference using
DLM, and the package includes functions for Kalman filtering and smoothing, as well as for maximum
likelihood estimation.

3. Results and Discussion

3.1. Deterministic Model

The offset of the Hilhorst model [3] can be calculated from Equation (1):

εb =
(
1/σp

)
εp × σb + εσb=0 (5)

We derived the offset (εσb = 0) from this linear model after using measurements of εb and σb. For
example, applying the ordinary least squares (OLS) on measurements of εb and σb obtained from soil
column 2 data during the third irrigation at a depth of 21 cm, Table 1 shows that the offset of the linear
relationship between εb–σb is 9.41. Further, the single estimate of the slope (1̂/σp) of the regression
parameter vector (1/σp) for the entire data set is very small. Thus, the estimated soil pore water
electrical conductivity (σp ) is too high compared with the EC meter value, see Table 2. Afterward,
we applied the Durbin–Watson test in order to test if there was any autocorrelation between the
residuals of the regression. Table 3 shows that there is an extremely strong and positive autocorrelation,
meaning that the result of that regression is not valid.

Table 1. Estimated parameters gained from the linear regression analysis.

Estimate Std. Error t Value Pr (>|t|)

εσb = 0 9.411 8.591 × 10-3 1095.4 <2 × 10-16 ***
1/σp 6.963 × 10-4 4.461 × 10-6 156.1 <2 × 10-16 ***

Significance: *** p < 0.001.

Table 2. Electrical conductivity of the soil solution (dS/m) according to soil column number, irrigation
event, and depth (cm); it is collected by porous suction cups and measured by an electrical conductivity
(EC) meter device.

Soil Column 1 Soil Column 2

Irrigation Event 3 Irrigation Event 4 Irrigation Event 3 Irrigation Event 4

Depth:
21 cm

Depth:
35 cm

Depth:
21 cm

Depth:
35 cm

Depth:
21 cm

Depth:
35 cm

Depth:
21 cm

Depth:
35 cm

15.96 18 21.89 22.35 18.61 14.97 25.67 22
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Table 3. Durbin–Watson test for linear regression εb-σb.

Lag Autocorrelation D-W Statistic p-Value

1 0.852 0.278 0

For each irrigation event, we obtained one solution sample at each depth by using porous
suction cups. Unfortunately, some samples did not have enough solution to measure their electrical
conductivity using the EC meter device. Table 2 shows the values of EC measured by the EC meter
device. The table shows eight EC values from the EC meter according to the depth and irrigation event
number for each soil column. Due to the variability in the water flow in unsaturated soil, we observed
in our experiment a variation in the time needed to collect the solution sample. More time was required
to collect enough solution for the EC meter device when a greater number of ions gathered in the
sample resulting in a high EC value of the sample. Therefore, there is a difference in the EC values
between the soil columns at the same depth, see Table 2. We applied a modified Hilhorst model on the
eight time-series data corresponding to Table 2 (depth, irrigation event, and soil column) to compare
our finding of σp obtained from our modified model to the values of σp obtained by the EC meter
device, see Table 2.

The reason for choosing 1 l/h for the irrigation rate and 5 min for the irrigation interval is
visualized in Figure 3. At each depth, we could see how the bulk electrical conductivity responds to
the irrigation event.
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3.2. Time-Varying Linear Dynamic Model (LDM)

The deterministic Equation (5) can be modified into the time-varying DLM for observation and
unobservable (state) models. In this case, the observation data are the soil relative dielectric permittivity
(εb), bulk electrical conductivity (σb), and the relative dielectric permittivity (εp), while the unobservable
data are the offset (εσb=0) and pore water electrical conductivity (σp). Equation (4) can be modified to
the time-varying DLM as follows:

• The observation equation can be obtained by modifying the Hilhorst model [3] (written in
Equation (5)) into a stochastic equation, in accordance with Equation (4) as follows:

(εb)t =
(
εσb = 0

)
t +
(
εp ∗ σb

)
t

(
1

σp

)
t
+ vt

vt ∼ N
(
0, σv

2) (6)
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• The state equation (unobservable data) in Equation (3) is εσb = 0, and the slope, 1/σp. They can be
converted to the unobservable state equation of the time-varying DLM according to Equation (3).
The unobservable state equation can be arranged as follows:{

(εσb = 0)t = (εσb = 0)t−1(
1

σp

)
t
=
(

1
σp

)
t−1

+ wtwt ∼ N(0, (σw)
2
t )

(7)

Here, we consider εσb = 0 as a constant. The actual value is related only to its past value. The slope
1/σp changes over time and its actual value is related to its past value plus the Gaussian white-noise
errors (wt). We applied the equation in reverse order to estimate the state variables (εσb = 0 and σp) at
all time points from a complete series of the soil relative dielectric permittivity (εb). This process is
known as smoothing.

An example of the evolution of εb, εp, and σb data needed for the Hilhorst model [3] is shown
in Figure 4. By applying the Equations (6) and (7) using DLM and the Kalman filter on the eight
time-series data, we see in Figure 5 the observed and predicted time series of the soil relative dielectric
permittivity (εb). The predicted and observed values of εb agree reasonably well. The mean absolute
prediction error (MAPE) for the time series never exceeded 0.02.
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Figure 4. Known variables for the Hilhorst model (σb, εb, and εp); data from soil column 2, depth 35 cm
and irrigation event N◦4.

Since the prediction of the soil relative dielectric permittivity (εb) is valid, the estimation of the
electrical conductivity of pore water (σp) and the offset εσb = 0, see Equation (7), are also valid because
they are used in the prediction of the soil relative dielectric permittivity (εb) and have converged to
their true values. The evolution of σp over time obtained by DLM is presented in Figure 6; it shows
the importance of using DLM because it obtained all the changes of σp over time and not a single
value of σp for the entire data set. Another interesting aspect is that Figure 6 shows the changes in
the model offset for each irrigation event at each depth. This finding is very important since it shows
that the offset does not depend on the soil type [10,14–16] nor on the soil type and salinity [17] when
two columns with the same type soil are used, as in this study. Moreover, in Figure 6 we put the
corresponding value of σp measured by the EC meter device for each depth according the irrigation
event and soil column number.

Comparing the mean evolution of σp values obtained from our modified Hilhorst model,
see Figure 6, with the single corresponding EC value obtained from porous suction cups and measured
by the EC meter device, see Table 2, we found that they agree very well (R2 = 72%).
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From these results, three advantages are evident when using DLM and a Kalman filter to estimate
σp in two homogenous soil columns; first, we observed that the offset value of the Hilhorst model does
not depend on the soil type and σp and it changes in the same soil profile. Secondly, we obtained the
changes in the estimated σp over time and not just a single value as a coefficient for the entire data set.
Third, the estimated changes in σp occur instantly and save time and labor costs.
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Figure 6. Estimation of the unobservable data (εσb = 0 and σp) by applying the time-varying dynamic
linear model (DLM) and the Kalman filter on the data according to the soil column number (col.), depth
(dep.), and irrigation event (irg. Event), the corresponding of σp by EC meter device is given for each
estimated σp.
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4. Conclusions

In this study, we applied the εb-σb linear relationship to homogeneous soil column data obtained
from TDR sensors. We found an extremely strong positive autocorrelation between the residuals
of the regression analysis. When residuals are correlated, the least squares method is not the most
efficient model coefficient estimator. By modifying the regression by a time-varying dynamic linear
model (DLM), the match between the observed and modeled data of εb is significantly improved
and the estimated evolution of σp converges to its true value. Moreover, in this study, we used two
homogeneous soil columns with the same condition to show that the offset of the Hilhorst model [3] is
not constant, as suggested for all moist soil or, as others suggested, that it is soil-type-dependent [10,
14–16] or soil-type- and salinity-dependent [17]. We repeated the experiment to show that the offset
changes even in the same soil type and the same conditions. A dynamic linear model enables the
capture of the offset changes and it shows the importance of calculating it simultaneously when
estimating σp using the Hilhorst model. The next promising step would be programming and inserting
these models into the TDR software in order to estimate the soil pore water electrical conductivity (σp)
from senor records directly.
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