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Abstract: In 3D pedestrian indoor navigation applications, position estimation based on inertial
measurement units (IMUs) fails when moving platforms (MPs), such as escalators and elevators,
are not properly implemented. In this work, we integrate the MPs in an upper 3D-simultaneous
localization and mapping (SLAM) algorithm which is cascaded to the pedestrian dead-reckoning
(PDR) technique. The step and heading measurements resulting from the PDR are fed to the SLAM
that additionally estimates a map of the environment during the walk in order to reduce the remaining
drift. For integrating MPs, we present a new proposal function for the particle filter implementation
of the SLAM to account for the presence of MPs. In addition, a new weighting function for features
such as escalators and elevators is developed and the features are learned and stored in the learned
map. With this, locations of MPs are favored when revisiting the MP again. The results show that the
mean height error is about 0.1 m and the mean position error is less than 1 m for walks with long
distances along the floors, even when using multiple floor level changes with different numbers of
floors in a multistory environment. For walks with short walking distances and many floor level
changes, the mean height error can be higher (about 0.5 m). The final floor number is in all cases
except one correctly estimated.

Keywords: indoor navigation; pedestrian dead reckoning; simultaneous localization and mapping;
FootSLAM; moving platform detection

1. Introduction

In order to solve the 3D indoor pedestrian navigation problem, there exist various approaches.
Infrastructure based solutions usually apply additional transmitters or receivers as it is the case
when using, e.g., ultra wideband (UWB), iBeacons, radio frequency identification (RFID) or global
navigation satellite system (GNSS) repeaters. An overview of indoor navigation solutions can be
found in [1–4]. A promising infrastructure-free solution for navigation in GNSS-denied areas such as
indoors, tunnels, urban canyons or even mines is pedestrian navigation solely based on inertial sensor
units. They only collect data from the agent itself, and therefore are no subject of privacy concerns
such as vision. The fact that they operate without pre-installed infrastructure makes them suitable
for special applications such as fire fighters rescuing, policemen supervision, industrial inspections,
or monitoring of elderly people. For instance, in the case of a fire, it would be desirable for the fire
station to know the state and position of an injured fire fighter in operation in order to rescue him. In
this case, cameras cannot be used due to the fact that fire fighters enter a smoky environment when
there is a fire. The infrastructure might be destroyed by fire, so that fire fighters cannot rely on solutions
based on signals of opportunities from pre-installed transmitters. Therefore, a solution solely based on
inertial sensor units is advantageous.

PDR techniques provide the step and heading displacement estimations of the pedestrian’s walk
either by applying a strapdown system [5,6] or a step and heading system (SHS) [7]. Strapdown
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systems can be used when the sensor is mounted on the foot whereas SHSs are applied when the
sensor is mounted at other locations of the human body. However, a disadvantage of a PDR technique
is that the trajectory is affected by a remaining drift (rather a heading drift than a drift in the step
length). To reduce or correct the drift a SLAM algorithm [8,9] can be applied, which originally
was developed for robots and where landmarks or features are learned. In the meantime, different
kinds of SLAM algorithms have been investigated during the last decades. Examples among them are
EKF-SLAM (extended Kalman filter SLAM) [8] , FastSLAM [10], GraphSLAM [11], SemanticSLAM [12],
SignalSLAM [13], ActionSLAM [14], or VisualSLAM [15]. In this work, we apply FootSLAM, a SLAM
algorithm based on step and heading measurements of inertial sensors originally mounted on the foot,
that was developed at the German Aerospace Center (DLR) [16,17]. FootSLAM can provide accurate
positioning in many structured environments, where no GNSS signal is available. FootSLAM’s main
principle is that walkable areas of the whole environment, instead of distributed landmarks, are learned
during tracking a pedestrian online. The advantage of FootSLAM is that revisiting any area—not only
specific landmarks—will lead to drift correction and that it is very robust applying inertial sensors only.
This is of particular interest for professional use cases that are the focus of this work. The positioning
of FootSLAM can further be enhanced by applying the learned FootSLAM map information as prior
information for future walks.

FootSLAM itself is not restricted to use the step and heading information from the sensor
mounted on the foot. Instead, it can be applied for any odometry provided by a PDR. For instance,
FootSLAM was already successfully used with the sensor mounted in the pocket or at the upper leg
(PocketSLAM [18]). In the following, we will further name the developed SLAM algorithm FootSLAM
despite the fact that this is misleading to be restricted to sensors mounted on the foot. By using
the original naming we want to distinguish between other SLAM algorithms and the FootSLAM
method itself.

However, MPs such as escalators and elevators are not yet addressed inside the FootSLAM
algorithm. The term MP denotes any (indoor) transportation platform, such as elevators, escalators, or
moving sidewalks. In future pedestrian navigation applications (indoor and outdoor), the term MP
can also include multimodal transportation such as driving a car or using public transport. In order
to get the step and heading information from the inertial data, a PDR is applied where either the
velocity is reset when the foot is still and stable, i.e., during stance phases of the gait (zero velocity
update (ZUPT) [5], sensor mounted on the foot), or the steps are counted which are of much higher
dynamics than the acceleration of an MP (SHS, sensor mounted at another location of the body).
Unfortunately, with these constraints MPs would be ignored because constant velocity phases of the
platform are overlooked. In this paper, we focus on the integration of MPs in the FootSLAM algorithm.
After having detected the MP, the heading and velocity of the platform are estimated and with them
the displacement due to the MP is estimated inside FootSLAM. In addition, the event of a floor
transition via an MP is stored as a feature in the map in order to enhance the positioning and the time
of convergence of the FootSLAM map. By doing so, special features such as elevators or escalators can
be marked inside the FootSLAM map and the location of such environmental features can be learned
during the walk. These scientific findings can also be adopted for multimodal transportation scenarios.

Beside using inertial sensors only, it is possible to fuse other sensor measurements or other
information in the particle filter of FootSLAM like magnetometers (MagSLAM [19], Wireless Fidelity
(WiFi) (WiSLAM [20]), marked places (PlaceSLAM [21])), GNSS, UWB, etc. In this work, we apply
only the pure FootSLAM for showing results in infrastructure-free environments for professional
applications such as fire fighters rescuing or policemen supervision, and for presenting the effects of
the new proposed technique without having any influence of other fused signals.

The paper is organized as follows. In Section 1.1 an overview of the FootSLAM system is presented
and in Section 1.2 the related work regarding moving platform detection (MPD) and handling MPs in
a SLAM-algorithm is described. The Bayesian derivation of the FootSLAM system including features
is introduced in Section 2. For including MPs in FootSLAM, a reliable MPD algorithm is needed.
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The MPD algorithm applied in this paper will be examined in Section 2.3. Experimental results are
presented in Section 3. Finally, Section 4 is devoted to conclusions and future work.

1.1. System Overview

The FootSLAM hierarchy consists of two cascaded estimators. First, the step length and heading
information is calculated from the raw inertial measurements in an unscented Kalman filter (UKF) [6].
These odometry measurements obtained from the lower UKF are then fed to the upper FootSLAM
algorithm. The FootSLAM algorithm builds on a Rao-Blackwellized particle filter (RBPF) [22],
implementing the principle of FastSLAM factorization [10]. The FootSLAM algorithm represents
a likelihood particle filter, where the proposal is based on the measurement likelihoods and the
weighting is based on the movement model, which exploits probabilistic constraints in conformity
with the environment. Each particle represents the estimated position of the pedestrian and stores its
own map of the environment. FootSLAM’s particle map is based on a hexagonal prism grid for 3D
environments and the hexagonal prism edge transitions are counted during the walk and stored in the
map. Following the FootSLAM principle, particles that revisit similar transitions are rewarded. In 3D
environments, transitions that lie on top of each other are preferred in order to handle buildings that
naturally are of repetitive structure over various floors. With the introduction of hexagonal prisms,
floor transitions via stairs are handled in the 3D-FootSLAM algorithm [23].

1.2. Related Work

For integrating MPs, a reliable MPD is needed. In this section, we will first recapitulate related
work on MPD techniques and after that give an overview of the related work regarding handling the
MP in an indoor navigation algorithm.

MPD is a decisive part in the area of activity recognition. For instance, in the so called
SemanticSLAM algorithm [12] the escalators and elevators are detected via a binary decision tree,
which was also proposed for classification by [24]. A state machine was used in [25]. The authors of [26]
tracked the pattern of the elevator ride by integrating the z-acceleration. A combination of consulting
the integrated z-acceleration, the disturbances of the earth magnetic field and the barometric signal
was proposed in [27]. Another acceleration phase tracking based on the detection of the acceleration
and deceleration peaks was proposed in [12,25,28], where in [25,28] the velocity is corrected during
the constant velocity phase.

Beside this, machine learning approaches can be used to classify MPs. A dynamic Bayesian
network is consulted with a sensor in [29], that is trained before classification. Different statistical,
energy, and time- and frequency-domain features are investigated in [30–32]. Feature selection
was based on the information gain, the correlation based feature selection, and the decision tree
pruning in [31], and on the correlation based feature selection and ReliefF feature selection techniques
in [32]. The decision tree classification was used in [30], where [31,32] used additionally decision tree,
decision tables, naive Bayes, k-nearest neighbor, logistic regression and multilayer perceptron (MLP)
classification algorithms. In [31], escalators and elevators are used in a static way, where the features
are based on the three axes acceleration data measured with a smartphone held in the left or right
hand in front of the body. The authors claim that only few features in combination with MLP are
necessary to reach a good accuracy. In [32], the investigations were performed with respect to short
response times. It turned out that statistical features of the accelerometer and magnetometer signals
in combination with random forest and k-nearest neighbor performed best for fast response times.
Finally, in [33] pose invariant features of the accelerometer signals are consulted in combination with
statistical features of the barometer signal. This is specially designed for smartphones for allowing the
detection of elevators independently of the sensor’s location and orientation.

In this paper, we used the detection technique of [28] because it provides a very good performance
in terms of precision and recall. In addition, with this technique, the velocity of the MPs is provided.
This is needed for the implementation in FootSLAM and it will not be provided directly by the machine
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learning approaches. The use of classifier algorithms as in [32] is foreseen for future work. The main
focus of this work is the correction of the missing movement during MP rides in the FootSLAM
algorithm and the declaration of MPs as features in order to learn the positions in a common map.

Handling MPs in PDR can only be found in few 3D indoor navigation systems using inertial
sensors in the literature. In [25,34], the MP is detected and the ZUPTs are suspended. In the so called
activity map matching (AMM), the PDR system is re-calibrated by matching activities to prior known
locations. In [35], the PDR uses AMM in order to reduce the drift of the estimated position with
the knowledge of vertical links like staircases and elevators in a map. The features are calculated
based on the raw acceleration measurements and fused by a support vector machine (SVM). Similarly,
in [36], AMM is used in combination with fuzzy associative classifiers. The authors of [37] provide
a mismatch probability of AMM. In [24], a method was proposed that uses activities in order to
match them to an indoor road network based on an indoor map. This network is used to help to
reduce the drift in pedestrian indoor navigation. A hidden Markov model (HMM) is used as the map
matching method in this case. The scheme matches turning at corners, turning around, stairs, elevators
and escalators. Known landmark positions mainly based on stairs and escalator positions are used
in [38]. In the GraphSLAM [33] approach, landmark positions are collected in advance via training of
their WiFi visibility (landmarks: stairs and elevators). In [39], the authors distinguish between seed
landmarks and organic landmarks. Seed landmarks like stairs and elevators force the users to behave
in predictable ways which results in a signature of a sensor. Organic landmarks are signatures such as
WiFi and magnetic signatures which are dependent on the environment. These landmarks are used to
correct the path estimated by the PDR. In our approach, we do not use any known building layout or
trained landmark position, instead of it we learn the landmarks or feature positions during the walk.
In addition, we do not use WiFi positioning having in mind professional use cases like fire fighters
rescuing and policemen supervision.

Learning landmarks’ positions during the walk including MPs can also be found in the literature
in the so called SemanticSLAM algorithm [12] and in the 3D-ActionSLAM [14] algorithm. In the
SemanticSLAM, seed landmarks (stairs, elevators) as well as organic landmarks (WiFi, magnetic
and inertial sensor landmarks) are learned in order to correct the position when revisiting it.
In 3D-ActionSLAM further activities such as sitting, standing, stair climbing as well as wall-constrained
walking patterns (corners, corridors) are considered as landmarks. Both algorithms rely on the
FastSLAM approach. In this paper, we integrated landmarks (referred to as features) in the FootSLAM
algorithm. The novelty of this paper is the new proposal function in the particle filter framework for
correcting the position in the case of MPs and the integration of features into the FootSLAM estimation
procedure while storing them in a common map. The advantage of using the FootSLAM algorithm
compared to other SLAM algorithms is that, alongside the feature map (FM), a map of walkable areas
is learned during the walk. With the learned features we are able to mark the features in that map and
use them to refine the estimated path. These additions to the FootSLAM algorithm are generally valid
and not restricted to a sensor mounted on the foot.

2. Bayesian Derivation

2.1. Dynamic Bayesian Network Representation

In order to derive the optimal Bayesian estimator, we formulate the positioning problem as a
dynamic Bayesian network (DBN). We extend the FootSLAM DBN by a feature map based on our MP
model. The resulting network is shown in Figure 1.

The pedestrian is considered as an integral part of the system, who navigates in a map M that
embodies moving constraints through walls, doors, obstacles, and characteristic features like elevator
and escalator position. The human relies on visual cues Vis to identify the environment and forms
intentions Int where to go next. To reduce setup complexity, we employ no means to observe the
human perception and intentions, instead we hitchhike on resulting steps Uk at time k with odometry
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measurements Zk, e.g., obtained by the ZUPT-aided inertial navigation system (INS) described in [6].
In addition, we learn the map of the environment that influences the human intentions and restricts
the possible human motion. Since the map of walkable areas is learned during the walk, changes in
the map will also be learned after a while. It is assumed that those changes happen only rarely.

In the real world, the odometry measurements are affected by measurement noise and correlated
errors Ek. Pk describes the pose, and changes in this position from time step k − 1 to time k are
represented by the pedestrian displacement vector Uk = Pk − Pk−1.

Additionally, there are specific features or landmarks, which guide the pedestrian when they
intend to perform a certain location-related activity such as changing the floor in a multistory building.
We propose to mark such locations through feature identifiers Fk that will be stored in a FM F.

For incorporating MPs into this system, we interpret Uk as superimposed displacements from
stepped locomotion UU

k and external locomotion through MPs UF
k . This simplification suggests that the

platform adds a motion to the pedestrians without preventing them from stepping within the influence
area of the MP. With an IMU mounted on the foot, we can only reliably measure the continuous
movement of the platform during stance phases, but we can detect its occurrence by detecting features,
that are elaborated in [27,28,32] and reviewed in Section 2.3. From these features, we can propagate a
belief about the platform and mark the occurrences in the new introduced FM F. Given the platform
detection output, we can either use the estimated velocity (see Section 2.3) if available or sample an
assumed velocity vector VF that superimposes the MP displacement within one update interval.

The underlying thought is to interpret the MPs as a characteristic of the map. Our
justification is its temporal stability—in normal operation mode the elevator or escalator moves with
manufacture-dependent (factory-dependent) constant (absolute) velocity—and the moving constraints
enforced by the car size or width between handrails. In case the platform superimposes a movement
on the pedestrian, the external velocity can be perceived by the MPD (Section 2.3) and an association
is made. In case the MP is out-of-order and in rest, no such velocity is detected and no association
is triggered.

Our goal is to estimate the hidden states of the MPs at any time instance, which requires
to compute the joint posterior p

(
P0:kU0:kE0:k, F, M|ZU

1:kZF
1:k
)
, where Uk = UU

k + UF
k = Pk − Pk−1.

According to the FastSLAM approach [10] the joint posterior can be factorized as follows:

p
(

P0:kU0:kE0:k, F, M|ZU
1:k, ZF

1:k

)
= p (M|P0:k) · p (F|P0:k)︸ ︷︷ ︸

mapping problem

· p
(
{PUE}0:k|ZU

1:k, ZF
1:k

)
︸ ︷︷ ︸

localization problem

(1)

which splits the estimation problem into a mapping and a localization problem. In this equation we
exploited the fact that given the history of poses P0:k, the transition map M as well as the FM F become
conditionally independent from the history of step vectors U0:k, measurements ZU

0:k and ZF
0:k, and

errors E0:k.
We can express the right hand side, i.e., the localization problem in Equation (1), recursively.

In accordance with the DBN structure in Figure 1 and similar to the derivation in [17], given the
relationship Uk = UU

k + UF
k = Pk − Pk−1 and assuming that human motion is independent from using

an MP the recursion formula becomes

p
(
{PUE}0:k|ZU

1:k, ZF
1:k

)
∝ p ({PU}k|{PU}0:k−1) pose transition probability

·p
(

EU
k |E

U
k−1

)
· p
(

EF
k |E

F
k−1

)
error state transitions

·p
(

ZU
k |U

U
k , EU

k

)
· p
(

ZF
k |U

F
k , EF

k

)
measurement likelihoods

·p
(
{PUE}0:k−1|ZU

1:k−1, ZF
1:k−1

)
recursive belief propagation (2)
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In our representation, we assume ZU to be independent from ZF. Since the velocity is reset
within each stance phase in the lower UKF, we can assume that this assumption holds. In addition,
we assumed that the error EU is independent from EF. Due to the fact that there are different error
sources the errors are independent from each other. On the one hand, the step length and heading
error resulting from the UKF represent the error sources for EU . On the other hand, either integration
of the acceleration sensor biases for calculating the elevator velocity during stance phases (or assuming
a predefined velocity in escalators) and additionally heading errors of the FootSLAM algorithm
(escalators) are the error sources for EF.

M, F 

E 

Z𝑈 

U𝑈 

U 

P 

U𝐹  

Z𝐹 

Vis Int 

k 

E 

Z𝑈 

U𝑈 

U 

P 

U𝐹  

Z𝐹 

Vis Int 

k-1 

Figure 1. Extended dynamic Bayesian network (DBN) for FootSLAM with transportation platform
support showing two time slices. M represents the environmental map, F the feature map, P the pose,
U the odometry, Z the measurement random variable and E models the error. Environmental features
influence the pedestrian’s visual impression Vis and intention Int. U is interpreted as a superimposed
displacement from stepped locomotion UU and external platform locomotion UF.

In the original FootSLAM approach, the map is divided into a regular grid of adjacent uniform
hexagonal prisms and the transitions stored are the transitions over hexagonal prism edges. In the
proposed extension to FootSLAM, we additionally store the feature properties as additional parameters
to the hexagonal prisms. In our implementation, a new feature vector is added that only needs to be
stored once per hexagonal prism of the original transition map. The complexity reduced FootSLAM
approach presented in [40] remains the same except that we additionally store the feature vector in
each hexagonal prism.

In the following, we look closer at the first term of Equation (2), which is the pose transition
probability and where the transition map as well as the FM play a role (see DBN, Figure 1). Assuming
that the transition map M, as well as the FM F, are statistically independent for simplicity and that
the pose and the true step {PU}k are only dependent on the previous pose Pk−1 and on the respective
map, we marginalize this term over the transition map M and the FM F and obtain:

p ({PU}k|{PU}0:k−1)

=
∫

F
p ({PU}k|Pk−1, F) · p(F|P0:k−1)dF︸ ︷︷ ︸

IF

·
∫

M
p ({PU}k|Pk−1, M) · p(M|P0:k−1)dM︸ ︷︷ ︸

IM

(3)
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where we defined IF and IM to be the integrals marginalizing over F and M, respectively. Note that
both maps are not fully independent, since an MP constraints the possible transitions in the map.
On the other hand, the pedestrian may also walk on the platform, so that other directions than the
platform direction (e.g., up and down in an elevator) are still possible. The feature vector is restricted to
contain the position, velocity and direction of the platform and not the step displacement and heading
of the pedestrian. With the assumption of independent maps we can handle both maps independently
and are able to calculate the weights separately.

Since the transition map is a set of hexagonal prisms M = M0, M1, ..., Mi, ..., MNh−1 with Nh
hexagonal prisms, the conditioned probability of the transition map can be expressed as:

p(M|P0:k) =
Nh−1

∏
h=0

p(Mh|P0:k) (4)

In the same way, the FM is a set of hexagonal prisms F = F0, F1, ..., Fi, ..., FNh−1 with Nh hexagonal
prisms. Note that the FM consists of the same hexagonal prisms as the transition map due to the fact
that we rely on the same history of poses. Therefore, the number of hexagonal prisms in the FM is
equal to the number of hexagonal prisms in the transition map. The conditioned probability of the FM
can be expressed as:

p(F|P0:k) =
Nh

∏
h=0

p(Fh|P0:k) (5)

With this assumption, the integral IF becomes:

IF =
∫

Fh

p ({PU}k|Pk−1, Fh) · p(Fh|P0:k−1)dFh (6)

In [16] it has been shown that the weight update for each particle m in the original FootSLAM
approach is equal to the last particle weight times the integral: wm

k = wm
k−1 · I

m
M. In a similar derivation

the same can be proven for the weight update including both maps—the transition map and the FM,
therefore we obtain:

wm
k = wm

k−1 · I
m
M · Im

F (7)

Following this equation, we can handle the weight updates depending on the transition map and
depending on the FM separately.

2.2. Particle Filter Implementation

The FootSLAM framework builds on a RBPF to simultaneously address the mapping and
localization problem, and estimates the full posterior of the DBN in Figure 1. It is implemented as a
likelihood particle filter, according to [41], which samples from a likelihood-based density conditioned
on the most recent measurement. Figure 2 shows the extended particle filter implementation including
the MP proposal function and weighting with the FM. In the following, the proposal functions and the
particle weighting process are described.
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Particle propagation 

FootSLAM 

proposal 

MP 

proposal 

FootSLAM 

weight 

update 

Feature 

weight 

update 

Weight update 

Resampling 

PDR 

[𝐏, 𝜔]𝑘 

MP 

detection 

Figure 2. Extended particle filter implementation including the moving platform proposal function
and weighting with the feature map.

2.2.1. Proposing Particle State Propagation

The particle position is intuitively propagated twice, accounting for the superposition of stepped
locomotion and external displacement from MPs. For any particle where an MP is detected we sample
a second time based on the feature.

In the original FootSLAM algorithm the particle m is propagated by sampling from the FootSLAM
proposal density p

(
Ek|Em

k−1

)
· p
(
Uk|ZU

k , Em
k
)
, which is conditioned on the step vector measurement

ZU
k provided by the underlying PDR-system [16,19].

The actual step taken consists, in our case, of two components Uk = UU
k + UF

k , which are
statistically independent. With this, the proposal function can be decomposed into two components,
which are described next.

FootSLAM Proposal Density

Each particle m is proposed from the proposal density function only dependent on the step
measurements and step measurement errors: p

(
EU

k |E
U,m
k−1

)
· p
(

UU
k |Z

U
k , EU,m

k

)
.

In the error model different kinds of errors are intuitively considered: additive white translational
noise, white noise on the heading change and coloured heading noise [16,19] based on a random
walk process of order 1. Additionally, the error of the z-component of the odometry is modeled by an
auto-regressive integrated moving average (ARIMA) process [23]. The pose is proposed based on the
incoming measurements and finally the error is added to the proposed pose (position and heading).

Moving Platform Proposal Density

Similarly to the FootSLAM proposal process in case of an MP event each particle m is additionally
propagated from the following proposal density function: p

(
EF

k |E
F,m
k−1

)
· p
(

UF
k |Z

F
k , EF,m

k

)
.

Different MPs transport the user with varying velocities and inclinations. Therefore, in addition
to the estimated velocity we used legal regulations for elevator and escalator construction to restrict
the range for the angle of inclination and the speed of the MP. For instance, in Europe, the angle of
inclination is restricted to be less or equal to 35◦ and the nominal speed is restricted to be less than
or equal to 0.75 m/s for escalators, whereas the angle of inclination of elevators is 0◦/180◦ and the
nominal speed of elevators is defined to be between 0.5 m/s and 4 m/s [42].

For the velocity of elevators, we directly used the estimated velocity and considered an additive
white noise error for it. In case of escalators, we might miss the beginning of the acceleration phase
during the gait phases due to perturbing accelerations while stepping on the platform. Therefore,
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it turned out to be better to propose the platform motion vector from a prior distribution that takes
into account velocities and inclinations from escalators usually built in Germany.

The platform heading for elevators is assumed to be 0◦ or 180◦ depending on the sign of the
z-component of the velocity of the platform. The platform heading for escalators is drawn from a
normal distribution with mean corresponding to the previous step heading and a small variance.
This is based on following intuitive observation: a pedestrian has to walk onto the escalator on her
own. The entry for an escalator is guided by the two handrails in parallel to the direction of movement.
Consequently, the last step with a horizontal distance of more than the length of a foot, is more or less
aligned with the escalator heading.

2.2.2. Computing Particle Weights

FootSLAM Weight Update

The displacement likelihoods are assigned by the step direction probability that is derived from
the hexagonal prism map M. A detailed description can be found in [17].

Feature Weight Update

For computing the feature weight update, a new feature vector Fh is added to each particle’s
transition map. The feature vector consists of NF different features where each value represents a
feature counter for each feature, i.e., the number of times the feature is recognized. The FM F stores for
each hexagonal prism of our map the feature counters Fh in order to obtain an estimation of the FM.
In our case we used the following NF = 3 features: Escalator, up, Escalator, down, Elevator. Adding
new features or changing the features is possible, e.g., the feature stairs is foreseen for future work.
Since the location of the elevator in our hexagonal prism map usually does not depend on the direction,
we have added only one value for being in an elevator. For the escalator, we distinguish between the
locations for an escalator going up and an escalator going down because the locations of the escalator
mostly differ depending on the direction, and the differentiation will make it more reliable in terms of
positioning accuracy assuming enough distance between both locations. This includes also escalators
that do not differ in the location for going up or down due to the fact that they are able to change the
direction. Then, both features are counted in the same hexagonal prism.

Similar to the approach that p(Mh|P0:k−1) in FootSLAM follows a Dirichlet distribution [43],
we assume that p(Fh|P0:k−1) follows a Dirichlet distribution. Hereby, we assume that learning the FM
is based on Bayesian learning of multinomial distributions using Dirichlet priors [44].

In the FM, we distinguish between NF different features at each hexagonal prism h. Each time
the hexagonal prism is crossed we count the number of times the feature is recognized. The Dirichlet
distribution represents the belief that the probabilities of the NF events, i.e., features are
{p(F0

h|P0:k−1), p(F1
h|P0:k−1), ..., p(FNF−1

h |P0:k−1))} under the assumption that each of the events—in
our case each of the features—was observed ui times, where ui represent the so called parameters of
the Dirichlet distribution that are positive real numbers.

The feature counters represent the counters of the occurrences of each feature. An initial prior
distribution is assumed to be uniform and of low value. The NF parameters ui

h of the Dirichlet
distribution are therefore the feature counters f i

h plus an additional prior value αi
fh

and the parameter
vector uh can be written as:

uh = fh + α fh
= { f i

h + αi
fh
} ∀ i = 0, ..., NF − 1

with

uh = fh + α fh
=

NF−1

∑
i=0

( f i
h + αi

fh
)
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The Dirichlet distribution can be written as:

D(p(F0
h|P0:k−1), ..., p(FNF−1

h |P0:k−1); f 0
h + α0

fh
, ..., f NF−1

h + αNF−1
fh

) (8)

=
1

B( fh + α fh
)

NF−1

∏
i=0

p(F0
h|P0:k−1)

fh+α fh
−1 ,

where

B(u) =

NF−1

∏
i=0

Γ(ui)

Γ(
NF−1

∑
i=0

ui)

is the Beta function and Γ(x) =
∫ ∞

0
e−ttx−1dt is the gamma function.

In order to obtain the weights for each particle, we have to calculate the integral IF of Equation (6)
with the assumption that p(Fh|P0:k−1) follows a Dirichlet distribution. Since the probability of the
feature Fi

h is proportional to the probability p ({PU}k|Pk−1, Fh) the integral IF can be solved to [44]:

Im
F ∝

{
f i
h + αi

fh

fh + α fh

}m

(9)

With this equation, we are able to calculate the weights of the particles by multiplying the original
FootSLAM weights with the new feature weighting function. The prior values are set to αi

fh
= 0.8 in

order to be consistent with the FootSLAM approach and not to favor particles because of their feature
vector at the beginning. It should be noted that weighting with the FM is only performed when a
feature is detected.

2.3. Moving Platform Detection

During the static phases of the sensor the acceleration phase of an MP can be detected via
integrating and thresholding the velocity. However, small bias mismatches will accumulate in
the velocity estimate leading to detection failures and velocity estimation errors. Therefore, a new
acceleration phase tracking method based on the estimation of the acceleration during the phases
when the sensor is declared as static was proposed in [28]. It allows to correct the velocity estimate
during the constant velocity phase of the MPs.

Since the acceleration phase tracking is very accurate in terms of timing and detection, in this
work we solely used the acceleration phase tracking and velocity estimation described in [28].
The classification of the platform is performed by comparing the maximum velocity measured in the
acceleration phase. The maximum velocity of an elevator is much higher than that of an escalator,
therefore, this classification is reliable. At the beginning of the platform before the calculated velocity
reaches the maximum in the acceleration phase we assume both possibilities, escalators or elevator
with equal probability, using the estimated speed. Combinations with other techniques such as proper
feature selection and applying classifier algorithms from the area of activity recognition [32] or the use
of other sensors like magnetometers and barometer [27] are foreseen for future work.

3. Experimental Results

3.1. Experimental Settings

To verify the proposed approach, we collected different walks in two different environments with
a sensor mounted on the foot of the pedestrian. In order to provide a quality comparison we crossed
predefined ground truth points (GTPs) available in each floor level of our office environment including
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floor changes between five different floor levels. The positions of the GTPs were measured with a laser
distance measurer (LDM, millimtere accuracy) and a tape measurer (sub centimeter range accuracy).
The GTPs serve as a reference. Figure 3 shows the different GTP locations in one floor. The same
GTP locations are used in the other floor levels. Two pedestrian—referred to as (1) and (2)—collected
data during four walks with different kinds of floor changes using the elevator and the stairs cases.
Whenever the pedestrian crossed the GTP, the pedestrian stopped for 2–3 s at this point and the
time of passing the GTP is logged. The pedestrians walked (37, 9, 10, 13) and (19, 9, 10, 15) min with
distances of (1540, 160, 335, 325) m and (773, 159, 314, 271) m as estimated by FootSLAM for walks 1–4
pedestrian (1)/(2), respectively, wearing an XSens MTw IMU mounted on the foot during the walk in
our office environment.

End of corridor

End of corridorStart/End Middle GTP

Elevator GTP

Stairs1

Stairs2

Elev.

0 68

17

0

x[m]

y[m]

Outdoor 
Walk

C1

C2

S

M

E

O

Figure 3. Building layout of our office building at Oberpfaffenhofen. The GTPs, the stairs and the
elevator are marked in different colors. The dotted line represents an outdoor transition.

The varying types of floor level changes of the four walks in our office building are summarized
in Table 1. These walks were performed twice by two different pedestrians. The first walk of one
pedestrian was additionally repeated twice in order to provide one long walk of 37 min. The GTPs
and stair cases used in these walks are given in Table 2 and the chronological order of the GTPs used
is given in Table 3. In the third walk, the pedestrian started outdoors, went in the building passing
two different floor levels (floor changes by the elevator and stairs), left the building again and walked
around the building before he entered the building at the opposite side of the building (see Figure 3) in
order to test the sensor in a different environment (magnetic and air pressure changes, uneven ground).
He took the elevator one last time to the second floor.

In addition to the walks performed in our office building, three same walks were performed in a
shopping center, where the pedestrian used the escalator, the stair cases, and the elevator as described
in Table 4. The pedestrian walked 4.6–4.8 min with distances of 215–224 m wearing an XSens MTX
IMU during the walk in the shopping center. Unfortunately, in these walks no GTPs were available in
order to provide a quality measure of the walks. Here, we compare the estimated maps in order to
provide a comparison of the results. These three walks show the convergence behavior when using
elevators and escalators as features.
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Table 1. Floor changes of the four different walks inside our office building.

Walk 1 Walk 2 Walk 3 Walk 4

Floor Level Next Floor Floor Level Next Floor Floor Level Next Floor Floor Level Next Floor
Change Change Change Change

2 elev. up 2 elev. down 0 elev. up 2 elev. down

3 stairs down 1 stairs up 2 elev. up 1 elev. up

1 elev. up 2 elev. up 3 stairs down 3 elev. down

4 stairs down 3 stairs down 0 elev. up 0 elev. up

2 elev. down 2 elev. up 2 4 elev. down

0 stairs up 4 elev. down

2 2 stairs down

0 elev. up

2

Table 2. GTPs and stairs used in the four walks inside our office building. S is the start/end, C the end
of corridor, M the middle, and E the elevator GTP.

GTP S GTP C GTP M GTP E Stairs 1 Stairs 2

Walk 1 x 1,2 x x x

Walk 2 x x x x x

Walk 3 x 1 x x x

Walk 4 x 1 x x

Table 3. Chronological order of the GTPs used in the four walks inside our office building. The first
letter is the level (0–4), the second letters are the GTPs: S (start/end), M (middle), E (elevator), C1 (end
of corridor 1), C2 (end of corridor2). O is the outdoor GTP in walk 3.

GTPs

Walk 1 2S, 2M, 2C2, 2M, 2C1, 2E, 3M, 3C1, 3M, 3C2, 1C2, 1M, 1C1, 1E
4C1, 4M, 4C2, 2M, 2C1, 2E, 0C1, 0M, 0C2, 2M, 2S

Walk 2 2S, 2E, 1M, 2E, 3M, 2E, 4M, 4E, 2M, 0M, 0E, 2M, 2S

Walk 3 O, 0E, 2M, 2C1, 2E, 3M, 3C1, 0M, 0E, 2S

Walk 4 2S, 2E, 1M, 1C1, 1E, 3M, 3C1, 3E, 0M, 0C1, 0E, 4M, 4C1, 4E, 2M, 2C1, 2S

Table 4. Floor changes of the three different walks in the shopping mall.

Walks 1–3

Floor Level Next Floor Change

0 stairs up

1 escalator down

0 elevator up

1 escalator down

0 stairs up

The data processed by the lower UKF [6] are used as input for the 3D-FootSLAM algorithm [17,23].
Beside this, we used the MPD algorithm described in [28]. The hexagon radius of the hexagonal prisms
was chosen to be r = 0.5 m and we used six hexagon prisms between each floor level. The number of
particles of the RBPF was Np = 10,000. Starting conditions (initial heading and position) are assumed
to be known. 3D-FootSLAM needs as input the height between the floor levels which was 3.5 m for the
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office building and 6 m for the shopping mall. For the shopping mall we estimated the height between
the floors to be the height of the first floor level change using stairs. In case of our office building
the xy-error (2D error) and z-error (height error) are calculated as the Euclidean distance to the GTPs
points, respectively.

3.2. Experimental Results

The 2D error for walks 1–4 performed by pedestrian (1) is given in Figures 4 and 5 for walk 1 and
walks 2–4, respectively. The corresponding height error is given in Figures 6 and 7. In the following,
we mark the results with a (1) and (2), respectively, following the walk name to distinguish the walks
of the two different pedestrians. In the Figures 4–7, the results are real time errors. They are given for
using the new elevator proposal function only, i.e., not weighting with the FM (no FM), and for using
additionally the FM (FM).

The results show that for the very long walk 1(1) a high accuracy can be reached. The mean 2D
error is below 1 m when calculating the Euclidean distance at the GTPs. In addition, the mean height
error is only 0.09 m. In this walk, long straight segments were passed, where FootSLAM was able to
converge to the correct 2D map and the correct heights. At the beginning FootSLAM searches for the
best direction of the path until convergence is reached. This is reflected in the high 2D error peak at
the beginning of the walk. All floor level changes performed via the elevator are handled correctly
also for different amplitudes of floor level changes. In addition, during one elevator ride (last elevator
ride of walk 1(1)) the elevator was going down before it went up to the requested floor level because
other people went in and chose the wrong floor level (real live situation). This floor level change was
also handled without errors.

Figure 4. 2D error at the GTPs for walk 1 performed by pedestrian (1). The results are shown with and
without weighting with the feature map (FM).
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Figure 5. 2D error at the GTPs for walks 2–4 performed by pedestrian (1). The results are shown with
and without weighting with the feature map (FM).

Figure 6. Height error at the GTPs for walk 1 performed by pedestrian (1). The results are shown with
and without weighting with the feature map (FM).

Figure 7. Height error at the GTPs for walks 2–4 performed by pedestrian (1). The results are shown
with and without weighting with the feature map (FM).
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The second walk in our office building was a more challenging walk because long, straight
segments were avoided. The results for the 2D error and the height error for the second walk in our
office building are given in Figures 5 and 7, respectively. They show that it is possible to detect all
different floor levels without performing long walks. The 2D error is below one meter and the height
error is on average below 0.5 m which makes us confident not to confuse floor levels. The threshold
would be in our case 1.75 m which is half of the floor level height. It should be noted that after the
elevator we directly passed the middle GTP, where only a short way from the elevator leads to it.
We observed that after the middle GTP the map converged to the correct level again after walking a
while on that level. Therefore, the height error is sometimes higher at the middle GTP. Due to the fact
that the elevator velocity is sometimes not correctly estimated, directly after the elevator the height
might be under or overestimated. This causes height errors which will be corrected afterward when
walking on the same floor due to preferring equal floor level heights inside the FootSLAM algorithm.

The 2D error of walk 3 in Figure 5 suggests that comparable long walks outdoors providing no
loop closures and without receiving GNSS are also challenging. In general, FootSLAM converges
faster when using the FM, which shows lower 2D and height errors (see end of walk 3, Figure 5).
Furthermore, without the FM it failed to converge in walk 3 (wrong elevator position). Moreover,
at the very end of the walk the pedestrian left the elevator and walked to the end point in the second
floor. This path was again very short so that the height was not yet corrected (see Figure 7).

Finally, Figures 5 and 7 show the errors for walk 4 of pedestrian (1). In this walk the pedestrian took
the elevator four times with different positions inside the elevator (at the four corners of the elevator).
Despite the different positions the performance of the walk was below one meter. The height error
arose once to ≈0.5 m when walking shortly from the elevator to the middle GTP. These peaks occurred
again when the elevator velocity was uncertain, e.g., if the beginning of the elevator was detected late.
After a while the estimator returned to the correct height again. It should be noted that the positions in
the elevator were distributed over two hexagonal prisms inside the FootSLAM map. Since the radius
of the underlying hexagons was 0.5 m and the elevator car is of rectangular form where each two
corners are very close to each other, the positions do not differ in terms of hexagon prisms.

Since the convergence behavior of the particle filter depends also on the seed of some random
generators, we used different seeds and simulated the walks ten times in order to verify the results.
Table 5 shows the mean 2D error and the mean height error for the four walks of the two pedestrians.
In addition to the real time performance the performance using the best estimated map as prior map is
given in the table. The offline performance (i.e., using the best prior map as input) is considered for
approximating the performance of the best particle since we do not store whole paths of all particles
in the FootSLAM states. Due to the fact that FootSLAM is only directed to the prior map but still
estimates the path including searching the direction of the walk, using the best particle map as prior
only provides a rough estimate of the path of the final best map. From the table we can see that
for walks 1, 2 and 4 similar performance can be reached with and without the FM. The 2D error
performance was below or close to 1 m except for walk 3. Especially for walk 3(1), the converged map
was sometimes slightly rotated due to a high heading drift from the beginning on, which is reflected in
the 2D error results. The correct floor number though is in all cases except one correctly estimated,
which is also reflected in the small height errors of Table 5. In the case of the failure in floor level
estimation, the velocity estimate was erroneous, and the walk was very short after the elevator and
ended before FootSLAM was able to detect a loop closure (end of walk 4(2)). Here, the particles are
distributed over different hexagonal prisms which may include different levels. In many cases the
height accuracy was below 0.1 m, and in some cases the mean height error was 0.5 m. For the walks
with such inaccuracies it was observed that FootSLAM returns in all cases (except one) after a while to
the correct height level. In future work we want to ensure the numbers of floors to be changed with
the inspection of the duration of constant velocity phase during the elevator ride. If the duration of the
the constant velocity phase for one floor level change is known, the duration of the constant velocity
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phase shows clearly the number of floors to be changed. The duration of a floor level change can be
learned during the walk for a particular elevator.

Since FootSLAM is robust in 3D environments when having loop closures—and the elevator
serves as a loop closure with same upper and lower face transitions—the advantages of using the FM
cannot directly be seen by those walks. For walk 3, however, for both pedestrians the performance
was more accurate when using the FM. Especially after long phases without any loop closure the FM
helped to converge faster and position accuracy is increased.

Table 5. Mean 2D error (2DE) and mean height error (HE) for walks 1–4 in our office building not using
the feature map (no FM) and using the feature map (FM). The real time error (RTME) is depicted first
following by the error performance using the best map as prior map (PM).

Walks 1–4(1) Walks 1–4(2)

No FM FM No FM FM

2DE (m) HE (m) 2DE (m) HE (m) 2DE (m) HE (m) 2DE (m) HE (m)

Walk 1 RTME 0.74 0.09 0.73 0.11 0.88 0.09 0.88 0.09

Walk 2 RTME 1.16 0.4 1.26 0.5 0.7 0.06 0.63 0.07

Walk 3 RTME 3.41 0.45 2.91 0.45 2.3 0.12 1.84 0.13

Walk 4 RTME 0.84 0.09 0.86 0.1 0.84 0.55 0.88 0.64

Walk 1 PM 0.73 0.08 0.74 0.09 0.75 0.08 0.83 0.09

Walk 2 PM 1.09 0.38 1.15 0.47 0.66 0.05 0.6 0.06

Walk 3 PM 2.33 0.41 2.12 0.41 1.54 0.1 0.84 0.09

Walk 4 PM 0.59 0.08 0.56 0.09 0.69 0.53 0.74 0.62

Finally, the resulting trajectory of walk 1 in the shopping mall is given in Figure 8. The escalator
is marked in blue, whereas the elevator is marked in green. One can see that the movements of the
MPs are reproduced, the two different floor levels are clearly distinguished, and the heading drift is
corrected. In this walk, the escalator is used twice where the FM comes into play. In order to compare
the convergence behavior of the three walks in the shopping mall, we depicted the final aggregated
posterior map, i.e., the sum of all weighted particle maps, in Figure 9 for the three walks not using
and using the FM, respectively. This walk is also challenging due to the fact that the shopping mall
contains wide areas without wall constraints and the pedestrian took the elevator only once (no loop
closure). The only loop closure based on features was the second escalator ride which was very late.
Figure 9 shows that the aggregated maps are more uncertain for the walks when not using the FM and
more certain when using the FM. This leads us to the conclusion that it is advantageous to use the FM
for a more reliable position and map estimation.
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Figure 8. Trajectory of walk 1 in the shopping mall. The elevator is marked in green and the escalator
in blue.

(a) Walk 1 no FM (b) Walk 1 FM

(c) Walk 2 no FM (d) Walk 2 FM

Figure 9. Cont.
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(e) Walk 3 no FM (f) Walk 3 FM

Figure 9. Accumulated posterior maps of walks 1–3 in the shopping mall. The aggregated posterior
maps are given for not using the feature map (no FM) and for using the feature map (FM). The posterior
for using the FM are more reliable than the posterior maps for not using the FM.

4. Conclusions

Moving platforms are not yet handled in many indoor navigation systems based solely on PDR.
In this paper, we provided an approach for integrating moving platforms in the so called FootSLAM
algorithm. A new proposal function is introduced when the pedestrian is on the platform. It is based
on the velocity estimate given by the moving platform detector. In addition, a feature indicator is
included in the FootSLAM map representation and a weighting function is added based on the feature
indicator. It has been shown that 3D FootSLAM robustly estimated the height of each floor level.
The system was able to handle varying floor level changes in multistory buildings. Finally, including
moving platforms as features in the FootSLAM map is beneficial especially in cases where the loop
closure is very far and it turned out that the resulting aggregated posterior map is more reliable.

Walking on escalators is not yet considered in the analysis and is foreseen for future research.
Here, the difficulty is to reliably detect the escalators and to estimate the displacement due to the
moving platform correctly. In addition, a confidence metric for the detection, classification, and velocity
estimation of moving platforms would be desirable in order to provide a probability of the goodness
of the detection, classification, and velocity estimate for the Bayesian estimator.

While the system presented in the paper is solely based on foot-mounted PDR, which is especially
interesting for professional use cases like fire fighters rescuing or policemen supervision, future work
should involve the migration to other or unrestricted sensor locations and the integration of further
combined sensor modalities like WiFi, RFID, or prior maps.
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Abbreviations

The following abbreviations are used in this manuscript:

DLR German Aerospace Center
DLR-KN Institute of Communication and Navigation at the german aerospace center
IMU inertial measurement unitt
INS inertial navigation system
PDR pedestrian dead-reckoning
GNSS global navigation satellite system
UKF unscented Kalman filter
MEMS micro-mechanical systems
SHS step-and-heading system
PF particle filter
RBPF Rao-Blackwellized particle filter
AMM activity map matching
ZUPT zero velocity update
ZARU Zero Angular Rate Updat
MARU Magnetic Angular Rate Update
HMM hidden Markov model
ISA International Standard Atmosphere—a norm for an atmospheric model used by the US Air Force
baro-IMU inertial measurement unit equipped with a barometric pressure sensor
MPD moving platform detection
SIR Sampling Importance Resampling
PDF probability density function
CDF cumulative distribution function
DBN dynamic Bayesian network
SLAM simultaneous localization and mapping
MP moving platform
FM feature map
MP(MPs) moving platforms
IMU(IMUs) inertial measurement units
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