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Abstract: This paper is concerned with the filtering problem caused by the inaccuracy variance
of measurement noise in real nonlinear systems. A novel weighted fusion estimation method of
multiple different variance estimators is presented to estimate the variance of the measurement
noise. On this basis, a hybrid adaptive cubature Kalman filtering structure is proposed. Furthermore,
the information filter of the hybrid adaptive cubature Kalman filter is also studied, and the stability
and filtering accuracy of the filter are theoretically discussed. The final simulation examples verify
the validity and effectiveness of the hybrid adaptive cubature Kalman filtering methods proposed in
this paper.

Keywords: nonlinear system; hybrid adaptive filtering; weighted fusion estimation; square-root
cubature Kalman filter; information filter

1. Introduction

In recent decades, nonlinear filtering has been widely used in military and civil fields such as
target tracking, navigation, positioning, and intelligent manufacturing [1,2]. The theory and method of
nonlinear filtering has became one of the most important research issues in the signal processing field,
and has attracted increasing attention from researchers.

There are two main kinds of nonlinear filtering methods. The representative of the first kind
of nonlinear filter is the extended Kalman filter (EKF), which linearizes the system model by Taylor
expansion, holds the first order term, and ignores the second- and higher-order terms. The second
kind of nonlinear filtering approximates the statistics of the system state, with examples being the
unscented Kalman filter (UKF) and the cubature Kalman filter (CKF). Due to the model error of
the linearization of the nonlinear system, the accuracy of the EKF is slightly lower, even leading
to filtering divergence. Based on the unscented transformation to approximate the statistics of the
system state, UKF was presented in [3]. Further, the cubature Kalman filter algorithm was proposed
by Ienkaran in [4]. The CKF algorithm uses a third-degree spherical-radial cubature rule based
on a Gaussian filtering framework. The algorithm has higher numerical stability and a smaller
amount of calculation. Its excellent performance has made it widely used in various nonlinear system
scenarios. Many advantages of CKF have attracted scholars to conduct in-depth research on it,
considering that the traditional nonlinear filters often need to overcome the filtering divergence caused
by high-dimensional operational errors. Drawing on the idea of square root filtering in the Kalman
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filter, Ienkaram and Haykin proposed the square-root cubature Kalman filter (SCKF) [5], which further
improved the accuracy and stability of filtering. However, the traditional nonlinear filtering method
requires knowledge of the mathematical model and the prior statistical information of noise when in
practical application. Additionally, the statistical characteristics of noise in actual systems are usually
indeterminate, which leads to a decline in the filtering accuracy.

For the problem of unknown statistical characteristics of measurement noise in real
applications [6,7], Sage and Husa [8,9] proposed an excellent Sage–Husa suboptimal unbiased
maximum a posteriori (MAP) estimator. Many scholars also adopted adaptive filtering techniques to
improve the performance of the estimation algorithm, such as sliding window method [10], fading
factor adjustment (FFA) [11–13], maximum a posteriori (MAP) estimator [14,15], and the variational
Bayesian (VB) method [16–19], etc. Different methods for estimating the statistical characteristics of
system noise are usually designed under different estimation criterions. How to use these methods to
estimate the statistical characteristics of system noise is still an open issue.

For a class of nonlinear stochastic systems with inaccurate or unknown measurement noise
variance (i.e., the priori measurement noise variance is not a precise value), an adaptive filtering
algorithm based on SCKF is designed in this paper. Firstly, a novel fusion approach is proposed to
estimate the measurement noise variance on the basis of the MAP and VB methods. Then, we use
FFA to adjust the part of the variance matrix of the SCKF algorithm to obtain a hybrid adaptive
SCKF algorithm (HASCKF) and the corresponding information filter (recorded as HASCIF). This is
beneficial to reduce the effects on the adaptive filtering algorithm performance that may be caused by
the estimation deviation of noise fusion. At the same time, the performance of the adaptive filtering
algorithm is analyzed from two aspects based on the established HASCKF algorithm: the stability of
the adaptive filtering algorithm and the filtering accuracy.

This paper is organized as follows: Section 2 formulates the nonlinear stochastic system and
describes the problem of the inaccuracy of the the measurement noise variance. In Section 3, a novel
noise variance fusion estimation algorithm HASCKF and the corresponding information filter are
proposed based on the idea of weighted fusion. In Section 4, two simulation examples are utilized to
display and verify the performance of the proposed algorithms. Section 5 provides the conclusions of
this work.

2. Problem Description

Considering a class of discrete nonlinear stochastic systems, the state space model is described as
follows [1]:

x(k + 1) = f (x(k)) + w(k), (1)

z(k) = h(x(k)) + v(k), (2)

where x(k) ∈ Rn is the state of the target, z(k) ∈ Rm is the measurement, f : Rn → Rn is the evolution
process of the nonlinear state, and h : Rn → Rm is the corresponding nonlinear measurement mapping.

The process noise w(k) ∈ Rn is a Gaussian white noise with zero means and variance Q(k).
The measurement noise v(k) ∈ Rm is a Gaussian white noise with zero means and variance R(k).

Hypothesis 1. The process noise w(k) and measurement noise v(k) in the model are mutually
statistically independent.

Hypothesis 2. The initial state of the system is x(0), with mean x0 and variance P0, and it is uncorrelated
with v(k) and w(k).

Hypothesis 3. The process noise variance Q(k) is known, but the measurement noise variance is only with an
inaccuracy prior state R0.
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For the nonlinear system described in (1) and (2), assuming that at the time k, we have the optimal
estimation x̂(k− 1|k− 1) and the square root matrix of the error variance matrix S(k− 1|k− 1). Then,
the state estimate x̂(k|k) and the square root of the variance matrix S(k|k) can be calculated according
to the standard SCKF algorithm.

For nonlinear systems with determined noise variance, the SCKF algorithm has better estimation
performance. However, when the priori value of the measurement noise variance is inaccurate, the final
estimation x̂(k|k) and S(k|k) will have large errors.

3. Hybrid Adaptive SCKF Algorithm (HASCKF)

In order to improve the adaptive filtering accuracy for an inaccurate modeling system with
unknown measurement noise variance, and to let the estimated noise variance be closer to the true
noise variance, in this paper, a novel noise variance fusion estimation algorithm HASCKF is proposed
based on the idea of weighted fusion.

3.1. Estimation Method of Measurement Noise

Theorem 1. Assume that the measurement noise variance estimated by MAP and VB methods at time k are
denoted as R̂1(k) and R̂2(k), respectively. Then, the weighted fusion estimation of the measurement noise
variance R̂g(k) is

R̂g(k) = R̂1(k) + [T1(k)− T12(k)][T1(k) + T2(k)−2T12(k)]−1[R̂2(k)− R̂1(k)], (3)

where 
T1(k) =

∥∥R̂g(k− 1)− R̂1(k)
∥∥2

F ,
T12(k) = tr[(R̂g(k− 1)− R̂1(k))(R̂g(k− 1)−R̂2(k))T ],

T2(k) =
∥∥R̂g(k− 1)− R̂2(k)

∥∥2
F .

(4)

In the above equation, ‖ · ‖F represents the Frobenius norm of the matrix, and the initial value of the fusion
estimation R̂g(0) = R0.

Proof. The weighted fusion estimation of the measurement noise variance R̂g(k) can be expressed as
the following linear combination:

R̂g(k) = a1(k)R̂1(k) + a2(k)R̂2(k). (5)

Under the condition a1(k) + a2(k) = 1 , we minimize the performance criterion:

J(k) = tr
{
[(R(k)− R̂g(k)][(R(k)− R̂g(k)]T

}
From a1(k) + a2(k) = 1, we can get a1(k) = (1− a2(k)), then substituting it into formula (5),

we obtain
R̂g(k) = R̂1(k) + a2(k)[R̂2(k)− R̂1(k)]. (6)

Then, the overall estimation error is

R̃g(k) = R(k)− R̂g(k)
= a1(k)R̃1(k) + a2(k)R̃2(k)
= [1− a2(k)]R̃1(k) + a2(k)R̃2(k).
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So, we can get

J(k) = tr[R̃g(k)(R̃g(k))T ]

= [1− a2(k)]2tr[R̃1(k)(R̃1(k))T ] + [1− a2(k)]tr[R̃1(k)(R̃2(k))T ]a2(k)
+a2(k)tr[R̃2(k)(R̃1(k))T ][1− a2(k)] + a2

2(k)tr[R̃
2(k)(R̃2(k))T ].

(7)

Let
∂J(k)
∂a2(k)

= 0 , and after simplification, we can get

a2(k) = [T1(k)− T12(k)][T1(k) + T2(k)− T12(k)− T21(k)]−1, (8)

where 

T1(k) = tr[R̃1(k)(R̃1(k))T ]

= tr[(R(k)− R̂1(k))(R(k)− R̂1(k))T ]

=
∥∥R(k)− R̂1(k)

∥∥2
F ,

T12(k) = tr[R̃1(k)(R̃2(k))T ]

= tr[(R(k)− R̂1(k))(R(k)− R̂2(k))T ],
T21(k) = tr[R̃2(k)(R̃1(k))T ]

= tr[(R(k)− R̂2(k))(R(k)− R̂1(k))T ]

= T12(k),
T2(k) = tr[R̃2(k)(R̃2(k))T ]

= tr[(R(k)− R̂2(k))(R(k)− R̂2(k))T ]

=
∥∥R(k)− R̂2(k)

∥∥2
F .

(9)

Since the measurement noise variance R(k) is uncertain, Equation (9) cannot be directly calculated.
For this reason, we replace R(k) with fusion estimated value R̂g(k − 1) of the measurement noise
variance at time (k − 1). Obviously, the initial value satisfies R̂g(0) = R0, then substituting it to
Equations (9), (8), and (6), respectively, we can get Equations (3) and (4).

Note 1 In the above theorem, since the measurement noise variance R(k) is uncertain, we replace
R(k) with fusion estimate R̂g(k− 1) of the measurement noise variance. This approximate substitution
has certain rationality, especially for the case of constant noise variance and slowly varying noise
variance. From Theorem 1, the physical meanings of T1(k) and T2(k) are equivalent to the estimated
error variance of the two noise variance estimation methods, and T12(k) and T21(k) are similar to their
cross-variance.

Inference 1. If we do not consider the correlation between the estimation error of noise variance, that is
T12(k) = T12(k) = 0, then the weighted fusion estimation of measurement noise variance R̂g(k) is

R̂g(k) = [T−1
1 (k) + T−1

2 (k)]−1T−1
1 (k)R̂1(k)

+[T−1
1 (k) + T−1

2 (k)]−1T−1
2 (k)R̂2(k),

T−1(k) = T−1
1 (k) + T−1

2 (k).
(10)

It can be directly derived according to the principle of simple convex combination fusion [1].

Note 2 Obviously, the result of inference 1 is easy to generalize to the case where the number
of noise variance estimators Ne ≥ 3 . Assume that the error variance of the ith estimator Ti(k) =
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∥∥R̂g(k− 1)− R̂i(k)
∥∥2

F . Assuming that the estimation errors of various estimation methods are not
related to each other, the fusion estimation of noise variance is

R̂g(k) =

[
Ne
∑
j

T−1
j (k)

]−1
Ne
∑
j

T−1
j (k)R̂j(k),

T−1
g (k) =

Ne
∑
j

T−1
j (k),

(11)

where Tg(k) can be regarded as the error variance of noise variance fusion estimation. Since Ti(k) ≥ 0,
Tg(k) ≤ Ti(k), which indicates that the estimated noise variance after fusion is superior to that of any
single noise variance estimator.

3.2. HASCKF Algorithm

Based on Theorem 1, combined with the fading factor adjustment technique [11], we propose the
hybrid adaptive SCKF algorithm (HASCKF). The principle block diagram is shown in Figure 1.

image

Figure 1. Principle block diagram of the HASCKF algorithm.

Firstly, the variance of measurement noise is estimated by the MAP estimator and VB method
respectively. Then, the weighted fusion technique is introduced to fuse the two noise variance
estimators. Finally, the variance matrix of the SCKF measurement update is adjusted by the fading
factor adjustment technique to obtain the final state estimation and the root-mean square error (RMSE)
variance matrix. The detailed implementation of HASCKF is described in the following Theorem 2.

Theorem 2. Consider a class of nonlinear system as described in (1) and (2). Under the condition of Hypotheses
1–3, if the optimal estimate x̂(k− 1|k− 1) and the square-root matrix of the estimation error variance S(k−
1|k− 1) have been obtained, the state estimate x̂(k|k) and the square-root matrix of the estimation error variance
S(k|k) can be calculated according to the following steps:

Step 1: Time Update

xi(k− 1|k− 1) = S(k− 1|k− 1)ξ i + x̂(k− 1|k− 1), (12)

x∗i (k|k− 1) = f (xi(k− 1|k− 1)) , (13)

x̂(k|k− 1) =
1

Nx

Nx

∑
i=1

x∗i (k|k− 1). (14)
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In (12)–(14), i = 1, 2, · · · , Nx, Nx = 2n. The parameters ξ i are given below (εi is an n-order
unit vector):

ξ i =

{ √
Nx/2 · εi , i = 1, 2, · · · , n,
−
√

Nx/2 · εi−nx , i = n + 1, n + 2, · · · , Nx.

Calculate the square root of the variance matrix:

S(k|k− 1) = Tria([X∗(k|k− 1) SQ(k)]), (15)

where Tria(·) represents a triangular operation. SQ(k) represents the square-root of the new process
noise variance Q(k), that is, Q(k) = SQ(k)ST

Q(k), and

X∗(k|k− 1) =
1√
Nx

[x∗1(k|k− 1)− x̂(k|k− 1) , x∗2(k|k− 1)− x̂(k|k− 1), · · · , x∗Nx
(k|k− 1)− x̂(k|k− 1)

]
.

Step 2: Measurement Update

(1) According to Equations (16)–(18), we can calculate the predicted value ẑ(k|k− 1).

xi(k|k− 1) = S(k|k− 1)ξ i + x̂(k|k− 1), (16)

zi(k|k− 1) = h(xi(k|k− 1)), (17)

ẑ(k|k− 1) =
1

Nx

Nx

∑
i=1

zi(k|k− 1). (18)

(2) The measurement noise variance R̂1(k) of the MAP estimator is calculated by using Lemma 1 (19)
or Lemma 2 (20).

Lemma 1 ([14]). When the measurement noise variance is constant, the suboptimal MAP estimate R̂(k) of
noise variance R(k) can be obtained by the recursive calculation:

R̂(k) =
1
k
[(k− 1)R̂(k− 1) + z̃(k)z̃T(k)

−z(k|k− 1)zT(k|k− 1)],
(19)

where z̃(k) = z(k)− ẑ(k|k− 1) is the residual vector of measurement. The initial value R̂(0) = R0.

Lemma 2 ([15]). When the measurement noise variance is time-varying, the suboptimal MAP estimate R̂(k) of
noise variance R(k) can be obtained by the recursive calculation:

R̂(k) = [1− d(k− 1)]R̂(k− 1) + d(k− 1)[z̃(k)z̃T(k)

−z(k|k− 1)zT(k|k− 1)],
(20)

where d(k) = (1− b)/(1− bk+1). b is the forgetting factor, and its value range is usually between 0.95
and 0.99.

(3) Using the following Equation (21), combined with Equations (16)–(18), (22), (25), (26),
and (23)–(32), we can iteratively compute the measurement noise variance estimation R̂2(k) of the
VB method.

Estimation of prediction parameters of measurement noise variance by VB method:{
ζ(k|k− 1) = ρ · ζ(k− 1),
η(k|k− 1) = ρ · η(k− 1),

(21)
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where “·” represents the point operation in Matlab. ρ = [ρ1, · · · , ρm]T , ζ(k) = [ζ1(k), · · · , ζm(k)]T ,
η(k) = [η1(k), · · · , ηm(k)]T . ζi(k) and ηi(k) are two parameters of the inverse gamma distribution.
ρi ⊂ (0, 1) is the predictive weighting factor. It reflects the degree of correlation between the noise at
the last moment and the noise at the current moment. When the difference between the measurement
noise variance at the last moment and the measurement noise variance at the current moment is small,
a larger ρi value should be used. Conversely, ρi should take a smaller value.

The square-root of the variance matrix:

Szz(k|k− 1) = Tria([z(k|k− 1) SR(k)]), (22)

where SR(k) represents the square root of measurement noise variance R(k) (namely, R(k) =

SR(k)ST
R(k)) and

z(k|k− 1) =
1√
Nx

[z1(k|k− 1) − ẑ(k|k− 1)

z2(k|k− 1) − ẑ(k|k− 1)
· · · zNx (k|k− 1) − ẑ(k|k− 1) ] ,

Pxz(k|k− 1) = x(k|k− 1)zT(k|k− 1), (23)

where
x(k|k− 1) =

1√
Nx

[x1(k|k− 1)− x̂(k|k− 1)

x2(k|k− 1)− x̂(k|k− 1)
· · · xNx (k|k− 1)− x̂(k|k− 1)] .

Then, the VB method gets R̂(k) through M iterations:
Iterative initialization: let t = 1, for a given number of iterations M, we have{

ζ(k) = [1/2, 1/2, · · · , 1/2]T + ζ(k|k− 1),
x̂1(k|k− 1) = x̂(k|k− 1).

(24)

Calculating the estimate of the measurement noise variance:

R̂t(k) = diag(ηt(k)·
/

ζ(k)), (25)

where diag(A) represents a diagonal matrix composed of matrix A diagonal elements.
Use Equations (16) and (32) to calculate the t-th iteration state estimate x̂t(k|k) and the root of its

mean square error matrix St(k|k) . If t < M, update the parameter ηt(k).

ηt(k) = η(k|k− 1) + (z(k)− ẑt(k|k− 1))·2/2 + diag{Pt
zz(k|k)}/2. (26)

Let t = t + 1, x̂t(k|k− 1) = x̂t−1(k|k), return to the beginning of the iterative.
When t = M, end the iteration, we can get{

η(k) = ηM(k)
R̂(k) = R̂M(k)

,

{
x̂(k|k) = x̂M(k|k)
S(k|k) = SM(k|k) . (27)

(4) Calculate the fusion estimation R̂g(k) of the measurement noise variance according to
Equation (3).

(5) According to Equations (28) and (29), Szz(k|k− 1) and Pxz(k|k− 1) are adaptively adjusted
using the FFA fading factor.

Szz(k|k− 1) = Tria
(
[z(k|k− 1)

/
,
√

τ(k) SR(k)]
)

(28)
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Pxz(k|k− 1) =
1

τ(k)
x(k|k− 1)zT(k|k− 1), (29)

where τ(k) is the adaptive factor, 0 < τ(k) ≤ 1, and it is calculated by the following Lemma 3.

Lemma 3 ([11]). For nonlinear systems with unknown measurement noise variance, the adaptive fading factor
is determined by the following equation:

τ(k) =


1 , tr[z̃(k|k− 1)z̃T(k|k− 1)] ≤ tr[Szz(k|k− 1)ST

zz(k|k− 1)],

tr[Szz(k|k− 1)ST(k|k− 1)]
tr[z̃(k|k− 1)z̃T(k|k− 1)]

, tr[z̃(k|k− 1)z̃T(k|k− 1)] > tr[Szz(k|k− 1)ST
zz(k|k− 1)].

In the above equation, tr denotes the trace of the matrix, z̃(k|k− 1) = z(k)− ẑ(k|k− 1) is the measurement
residual error vector.

(6) The following Equations (30)–(32) are used to obtain the updated estimation x̂(k|k) and the
root of its mean square error variance S(k|k).

K(k) =
(

Pxz(k|k− 1)/ST
zz(k|k− 1)

)
/Szz(k|k− 1), (30)

where the symbol “/” indicates the matrix right divide operation (e.g., A/B = AB−1)

x̂(k|k) = x̂(k|k− 1) + K(k)[z(k)− ẑ(k|k− 1)], (31)

S(k|k) = Tria ([x(k|k− 1)−K(k)z(k|k− 1) K(k)SR(k)]) . (32)

Proof: We can directly derive Theorem 1 and Lemma 3 by Lemma 1, omitted here.
Note 3 Theorem 2 only shows the hybrid adaptive filtering algorithm when the number of noise

variance estimators Ne is 2. Obviously, when Ne > 2, we first use various noise variance estimators
to estimate R̂j(k) and then calculate the fused estimate R̂g(k) of the measurement noise variance
according to Equation (11). In other words, only steps (2)–(4) in Theorem 2 need to be adjusted.

3.3. HASCIF Information Filter

Compared with traditional filtering, the information filter may not require prior information
when it is initialized, and thus has better numerical performance. In addition, the use of an information
filter to design a fusion algorithm is also simpler. In the information filter, the state estimate and
its estimation error variance matrix are replaced by information vector and information matrix,
respectively. Subsequently, we give its corresponding information filtering form (HASCIF) on the basis
of HASCKF. According to the literature [20,21], we can obtain the implementation process of HASCIF
as follows:

Step 1: Time update [20,21]

ŷ(k|k− 1) = Y(k|k− 1)x̂(k|k− 1), (33)

Y(k|k− 1) = P−1(k|k− 1) = [S(k|k− 1)ST(k|k− 1)]−1, (34)

where ŷ(k|k− 1) and Y(k|k− 1) are the predicted information vector and the predicted information
matrix, respectively. x̂(k|k− 1) and S(k|k− 1) can be calculated according to Equations (14) and (15).
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Step 2: Measurement update

ŷ(k|k) = Y(k|k)x̂(k|k)
= ŷ(k|k− 1) + Y(k|k− 1)Pxz(k|k)[R̂g(k)]−1{z̃(k|k− 1) + PT

xz(k|k)YT(k|k− 1)x̂(k|k− 1)}
∆
= ŷ(k|k− 1) + θ(k),

(35)

Y(k|k) = Y(k|k− 1) + Y(k|k− 1)Pxz(k|k)[R̂g(k)]−1(k)PT
xz(k|k)YT(k|k− 1)

∆
=Y(k|k− 1) + Θ(k).

(36)

In Equations (35) and (36), the information state vectors ŷ(k|k) and Y(k|k) are the information
vector and information matrix of the state estimate, respectively. θ(k) and Θ(k) are the information
contribution vector and the information contribution matrix. R̂g(k) is determined by formula (3),
and the cross-variance matrix Pxz(k|k) can be calculated by Formula (29).

3.4. Performance Analysis of HASCKF

References [22–24] proposed the bounded convergence theorem of the UKF algorithm,
and Reference [14] extended its theorem to the adaptive cubature Kalman filter (ACKF). In this section,
the CKF bounded convergence theorem proposed in Reference [14] and the Cramer–Rao lower bound
(CRLB) [25] are used to analyze the convergence of the HASCKF algorithm.

3.4.1. Stability Analysis

Assuming that the noise variances Q(k) and R(k) are known accurately, and considering the
nonlinear systems (1), (2), and the standard CKF algorithm [4], the corresponding state error variance
matrix can be written as [14,22,24]:

P(k|k− 1) = x(k|k− 1)xT(k|k− 1) + Q(k− 1)
= A(k)P(k− 1|k− 1)AT(k) + δP(k|k− 1) + Q(k− 1)
= A(k)P(k− 1|k− 1)AT(k) + Ξ(k),

(37)

Pzz(k|k− 1) = z(k|k− 1)zT(k|k− 1) + R(k)
= G(k)P(k|k− 1)GT(k) + δPzz(k|k− 1) + R(k)
= G(k)P(k|k− 1)GT(k) + Σ(k),

(38)

K(k) = P(k|k− 1)GT(k)[G(k)P(k|k− 1)GT(k)+Σ(k)]−1, (39)

where

δP(k|k− 1) = x(k|k− 1)xT(k|k− 1)−A(k)P(k− 1|k− 1)AT(k), (40)

δPzz(k|k− 1) = z(k|k− 1)zT(k|k− 1)−G(k)P(k|k− 1)GT(k). (41)

Each correlation matrix is defined as follows:
A(k) = β(k)F(k),
B(k) = α(k)H(k),
C(k) = I−K(k)α(k)H(k),

(42)

G(k) =

{
α(k)H(k)γT(k), n ≥ m,
γT(k)α(k)H(k), n < m,

(43)

{
Ξ(k) = δP(k|k− 1) + Q(k− 1),
Σ(k) = δPzz(k|k− 1) + R(k),

(44)
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where

F(k) =
∂f
∂x

∣∣∣∣
x=x̂(k−1|k−1)

, H(k) =
∂h
∂x

∣∣∣∣
x=x̂(k|k−1)

.

α(k), β(k), and γ(k) are auxiliary diagonal matrixes. Refer to Reference [22] for specific meanings.

Lemma 4 ([14]). Consider the nonlinear systems (1), (2), and the standard CKF algorithm. If ∀k ≥ 0,
both satisfy the following two assumptions:

(1) There are non-zero real numbers amin, amax, bmax, cmax, gmin, and gmax existing to let the following
formulas be established: 

a2
minI ≤ A(k)AT(k) ≤ a2

maxI, B(k)BT(k) ≤ b2
maxI,

g2
minI ≤ G(k)GT(k) ≤ g2

maxI, C(k)CT(k) ≤ c2
maxI,

[G(k)− B(k)][G(k)− B(k)]T ≤ (gmax − bmax)
2
I.

(45)

(2) There are positive real numbers pmin, pmax, qmax, rmax, Ξmin, Ξmax, and Σmin existing to let the
following forms be established:

pminI ≤ P(k|k) ≤ pmaxI, Q(k) ≤ qmaxI,
R(k) ≤ rmaxI, Ξ(k) ≤ ΞmaxI,
Ξ(k) > ΞminI, Σ(k) > ΣminI,

(46)

where 
Σmin = max(Σ1, Σ2),
Σ1 = a2

max(gmax − bmax)
2(pmax + p2

maxa2
maxΞ−1

min),
Σ2 = b2

max(a2
max pmax + Ξmax)− g2

max(a2
min pminΞmin).

Then, the standard CKF state estimation error will be mean-square bounded, that is, the algorithm is stable
and convergent.

Note 4 Lemma 4 shows that the statistical characteristics of noise are closely related to the stability
of the CKF algorithm. In addition, if Lemma 4 is established, the SCKF with known noise statistics is
also stable and convergent. This is because the theoretical framework of SCKF is consistent with that
of CKF. The mean square root matrix S(k|k− 1) and S(k|k) in CKF are only used when transferring the
error variance. The root mean square matrix in the SCKF algorithm is obtained through triangulation
of the matrix, thus avoiding the filter divergence caused by the non-positive definite variance matrix in
the numerical calculation, so it has better stability while ensuring the accuracy of estimation with CKF.

Theorem 3. If the standard SCKF algorithm is stable and convergent when the statistical characteristics of
noise are known accurately, the introduction of the noise variance fusion estimator and the adaptive fade factor
can ensure the stable convergence of the HASCKF algorithm.

Proof. When the measured noise variance matrix R(k) is inaccurate, other sufficient conditions in the
bounded convergence theorem can be satisfied, but the condition (46) will be affected.

(a) First only consider the influence of the weighted fusion noise estimator. Let ∆R(k) = R̂g(k)−
R(k), then formula (40) can be rewritten as follows:

^

Σ(k) = δPzz(k|k− 1) + R̂g(k)
= δPzz(k|k− 1) + R(k) + ∆R(k).

(47)

When R̂g(k) ≥ R(k), then ∆R(k) ≥ 0, and
^

Σ(k) will become larger. Obviously, condition (46) still
holds and the HASCKF algorithm still converges steadily.
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When R̂g(k) < R(k), then ∆R(k) < 0, and
^

Σ(k) will become smaller. Now, condition (46) may
not be satisfied. However, the noise variance weighted fusion estimator R̂g(k) estimates and corrects
the inaccurate noise variance matrix in real time so that it gradually tracks the real value R(k), thus

making ∆R(k) → 0,
^

Σ(k) → Σ(k). In this way, ∆R(k) ≥ 0 is gradually satisfied to Equation (42) to
ensure stable convergence of the HASCKF algorithm.

(b) Further consider the effect of fading factors. According to Theorem 2, the variance matrix for
measuring residuals is

^

Pzz(k|k− 1) = Szz(k|k− 1)ST
zz(k|k− 1)

=
1

τ(k)
z(k|k− 1)zT(k|k− 1) + R̂g(k).

(48)

Then, Equation (41) is rewritten as:

δ
^

Pzz(k|k− 1) =
1

τ(k)
z(k|k− 1)zT(k|k− 1)−G(k)P(k|k− 1)GT(k)

= [
1

τ(k)
− 1]z(k|k− 1)zT(k|k− 1) + z(k|k− 1)zT(k|k− 1)−G(k)P(k|k− 1)GT(k)

= [
1

τ(k)
− 1]z(k|k− 1)zT(k|k− 1) + δPzz(k|k− 1)

∆
=∆Pzz(k|k− 1) + δPzz(k|k− 1).

(49)

Therefore, Equation (44) can be written as

^

Σ(k) = δ
^

Pzz(k|k− 1) + R̂g(k)
= δPzz(k|k− 1) + R(k) + ∆Pzz(k|k− 1) + ∆R(k)
∆
=Σ(k) + ∆Σ(k).

(50)

It is known from the definition of fading factor 0 < τ(k) ≤ 1, so we can get

∆Pzz(k|k− 1) = [1
/

τ(k)− 1]z(k|k− 1)zT(k|k− 1) ≥ 0. (51)

Similar to the analysis in (a), when ∆R(k) ≥ 0 and ∆Σ(k) ≥ 0, it is obvious that condition (46)
holds and the stability of the HASCKF algorithm remains. When ∆R(k) < 0, if ∆Pzz(k|k− 1) is large
enough, ∆Σ(k) ≥ 0 can still be satisfied, and condition (46) still holds, so the HASCKF algorithm
converges steadily. If ∆Pzz(k|k− 1) is not enough to guarantee ∆Σ(k) ≥ 0, the introduction of the
weighted fusion noise variance estimator can also make ∆R(k)→ 0, so that ∆Σ(k) ≥ 0 is established
stepwise to ensure stable convergence of the HASCKF algorithm.

In summary, the introduction of the noise variance fusion estimator and adaptive fading factor in
the HASCKF algorithm can ensure the stable convergence of the algorithm.

Note 5 This theorem combined with Note 2 shows that the noise variance estimation based on
weighted fusion is superior to the estimate of any single noise variance estimator. Therefore, the hybrid
adaptive HASCKF estimation algorithm has better stability than the adaptive SCKF using a single
noise variance estimation algorithm.

3.4.2. Filtering Accuracy Analysis

There is a lower bound on the minimum variance unbiased estimator of the state of the
nonlinear filtering algorithm. It is widely used to evaluate the performance of nonlinear estimation.
In practice, the lower limit of Cramer–Rao Lower Bound (CRLB) is commonly used. Denote



Sensors 2018, 18, 4335 12 of 20

X0:k = {x(0), x(1), · · · , x(k)} , Z0:k = {z(0), z(1), · · · , z(k)}, and p(Z0:k, X0:k) is the joint probability
density of (Z0:k, X0:k). x̂(k) is the unbiased estimation of x(k). Then, CRLB is defined as [25]:

P(k|k) ∆
= E{[x(k)− x̂(k)][x(k)− x̂(k)]T} ≥ J−1(k), (52)

where J(k) is the Fisher information matrix:

J(k) = E
[
−∂2 ln p(Z0:k, X0:k)

∂2x2(k)

]
. (53)

Theorem 4 Assume that the nonlinear filter is applied to system (1), (2). Then

P(k|k) ≥ J−1(k), (54)

where

J(k) = [Q(k− 1) + F(k)J−1(k− 1)FT(k)]−1 + HT(k)R−1(k)H(k). (55)

Proof. We use J(k) to denote the information matrix of state x(k). Then, the information matrix J(k)
can be recursively calculated according to the following formula [26]:

J(k) = D22(k)−D21(k)[J(k− 1) + D11(k)]−1D12(k), (56)

where 

D11(k) = E{−∆x(k−1)
x(k−1) ln p[x(k)|x(k− 1)]},

D12(k) = E{−∆x(k)
x(k−1) ln p[x(k)|x(k− 1)]},

D21(k) = E{−∆x(k−1)
x(k) ln p[x(k)|x(k− 1)]}

= DT
12(k),

D22(k) = E{−∆x(k)
x(k) ln p[x(k)|x(k− 1)]}

+E{−∆x(k)
x(k) ln p[z(k)|x(k)]},

(57)

where ∆y
x = ∇x∇T

y means the second-order operator. ∇x =
∂

∂x
is the first-order operator. Because

process noise and measurement noise are Gaussian white noise, we have

− ln p[x(k)|x(k− 1)]

= − ln

{
e{−

1
2 [x(k)−f(x(k−1))]TQ−1(k−1)[x(k)−f(x(k−1))]}

√
2π |Q(k− 1)|

}
= c1 +

1
2
[x(k)− f(x(k− 1))]TQ−1(k− 1)[x(k)− f(x(k− 1))]

(58)

− ln p[z(k)|x(k)]

= − ln

{
e{−

1
2 [z(k)−h(x(k))]TR−1(k)[z(k)−h(x(k))]}

√
2π |R(k)|

}
= c2 +

1
2
[z(k)− h(x(k))]TR−1(k)[z(k)− h(x(k))],

(59)

where constant c1 = ln[
√

2π |Q(k− 1)|] , c2 = ln[
√

2π |R(k)|].
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Substituting Equations (58) and (59) into Equation (57), then we can get

D11(k) = E{[∇x(k−1)f
T(x(k− 1))]Q−1(k− 1)[∇x(k−1)f

T(x(k− 1))]T}
= FT(k)Q−1(k− 1)F(k),

D12(k) = E{[∇x(k−1)f
T(x(k− 1))]Q−1(k− 1)

= FT(k)Q−1(k− 1) = DT
21(k),

D22(k) = Q−1(k− 1) + E{[∇x(k)h
T(x(k))]R−1(k)[∇x(k)h

T(x(k))]T}
= Q−1(k− 1) + HT(k)R−1(k)H(k).

(60)

J(k) = Q−1(k− 1) + HT(k)R−1(k)H(k)
−Q−1(k− 1)F(k)× [J(k− 1)+FT(k)Q−1(k− 1)F(k)]−1FT(k)Q−1(k− 1).

(61)

Equation (56) can be obtained by applying a matrix inversion lemma to Equation (61).

4. Simulation

In this section, two numerical simulation examples are provided to display and verify the
performance of the SACKF algorithm proposed in this paper, mainly including the following contents:

(1) For a class of inaccurate modeling with unknown measurement noise variance, we compare
the performance difference between the weighted fusion estimator (referred to as WF-NE) and the
single noise estimator (e.g., MAP estimation or VB estimation, respectively denoted as MAP-NE and
VB-NE).

(2) For a class of inaccurate modeling with unknown measurement noise variance, we study the
advantages and disadvantages of the HASCKF algorithm and the standard SCKF algorithm, and the
equivalence between the HASCKF and HASCIF algorithms.

Example 1. This example is used to evaluate the performance of three kinds of noise estimators, MAP-NE,
VB-NE, and WF-NE. Considering the following first-order nonlinear discrete dynamic system:

x(k) = 0.5x(k− 1) +
0.2x(k− 1)

1 + x2(k− 1)
+ w(k), (62)

z(k) =
x2(k)

20
+ v(k), (63)

where w(k) and v(k) are mutually independent Gaussian white noise sequences. Assume that the initial value
of the system state and the error variance matrix are

x0 = 2 , P0 = 0.01, (64)

and the system state initial value x0 is independent of the two noises. The process noise statistic Q(k) = 0.001.
In the following, simulation experiments are performed for two cases where the measurement noise variance R(k)
is a constant and piecewise continuous function.

(1) Situation 1: If the measurement noise variance is constant and R(k) = 0.012. Assume that
the imprecise measurement noise variance of the initial value R̂0 = 0.04. In the simulation, MAP-NE
adopted the estimator described in Equation (19). The parameters of VB-NE were selected as follows:
ρ = 1− e−5, ζ(0) = 1, η(0) = 0.04, M = 1.

In order to compare the performance of various algorithms, we adopted the absolute error (AE)
and the mean absolute error (MAE), which are calculated as follows:
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AE(k) = |y(k)− ŷ(k)| , MAE(k) =
1

Ns

Ns

∑
k=1

AE(k), (65)

where y(k) and ŷ(k) are the value to be estimated and the estimated value respectively. Ns is the
number of simulation steps. In this case, Ns = 1000.

The estimated noise variance of the three kinds of noise estimators are shown in Figures 2 and 3,
and the estimation error is given in Table 1.

(2) Situation 2: If the measurement noise value is time varying, the true statistical characteristics
meet the following formula:

R(k) =

{
R 0 ≤ k ≤ 500
2R 501 ≤ k ≤ 1000

, and R = 0.012. (66)

Assume that the known inaccurate initial value of the measurement noise variance is R̂0 = 0.08.
In the simulation, MAP-NE adopted the estimator described in Equation (20), and the forgetting factor
b was 0.98. The parameters of VB-NE were selected as ρ = 1− e−5, ζ(0) = 1, η(0) = 0.08, M = 1.
The estimation results of the three kinds of noise estimators on the measured noise variance are shown
in Figures 4 and 5, and the mean absolute errors of several algorithms are given in Table 2.

Table 1. The mean absolute error of three noise estimation algorithms in Situation 1.

Algorithm MAP-NE VB-NE WF-NE

Mean absolute error 0.0010 0.0015 0.0005

CPU time cost 0.2188 0.2188 0.3725

Table 2. The mean absolute error of three noise estimation algorithms in Situation 2.

Algorithm MAP-NE VB-NE WF-NE

Mean absolute error 0.0024 0.0022 0.0019
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Figure 2. Estimation of measurement noise variance.
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Figure 3. Absolute estimation error of measurement noise variance.
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Figure 4. Estimation of measurement noise variance.
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Figure 5. Absolute estimation error of measurement noise variance.



Sensors 2018, 18, 4335 16 of 20

The simulation results of Example 1 show that the fusion estimator WF-NE proposed in Theorem 1
could obtain the best estimated result for either the constant unknown measurement noise variance or
for the time-varying one, compared with the MAP-NE and VB-NE. It had the same result with the
analysis conclusion in Note 2. In Situation 1, as shown in Figures 2 and 3, compared with the fusion
results of MAP-NE and VB-NE, the WF-NE had better estimates in most simulation steps. Due to the
randomness of noise, not all the noise variance estimates obtained by WF-NE were better than the
ones solved by other methods, especially for the estimation of the time-varying variance in Situation 2.
As shown in Figure 3, the MAP-NE method had relatively large estimation errors in the time interval
[160–360], and the VB-NE method had relatively large estimation errors in the time interval [390–800].
Nethertheless, the WF-NE could avoid large variation of the noise variance estimation error. Similarly,
the general trend of the WF-NE method was best in Figure 4, although the MAP-NE method or the
VB-NE method were best in some small time intervals. Although the CPU time cost of WF-NE (0.3725
for 1000 simulation steps) was larger than the other two methods (0.2188 for 1000 simulation steps),
it was still acceptable. Meanwhile, the mean absolute errors of WF-NE were smaller than the other
two methods, for boththe constant noise variance (in Situation 1) and for the time-varying variance (in
Situation 2).

Example 2. This example is used to verify the pros and cons of the hybrid adaptive SCKF estimation
algorithm HASCKF proposed by Theorem 2 and the standard SCKF algorithm described in Reference [4].
Assume that the target is moving in a uniform linear motion on a two-dimensional plane. The system state
x(k) = [x(k), ẋ(k), y(k), ẏ(k)]T , where x(k) and y(k) are the position components in the east–north coordinate
system. ẋ(k) and ẏ(k) are the corresponding velocity components, respectively. Then, the state equation can be
described as:

x(k) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 · x(k− 1) + w(k), (67)

where the sampling period T = 0.5 s, the process noise w(k) is zero mean Gaussian white noise. Its statistical

characteristic is Q(k) = 0.1× diag(Q1, Q2), and Q1 =

[
T3/

3
T2/

2
T2/

2 T

]
.

Consider a radar to track the target. The nonlinear measurement equation can be expressed as

z(k) =

 √
x2(k) + y2(k)

arctan
(

y(k)
x(k)

) + v(k). (68)

The real statistical characteristic of the measuring noise R(k) = diag{(4m)2, (0.1◦)2}. During the
simulation, the simulation time was set as Ns = 100 s. Suppose that the inaccuracy initial value of the
measurement noise variance R̂(0) = diag{(81m)2, (0.3◦)2}. MAP-NE adopts the estimator described in
Equation (19), and the parameters of VB-NE were selected as ρ = [1− e−5, 1− e−5]T , ζ(0) = [1, 1]T ,
η(0) = [100, 0.02]T , M = 1. The initial state estimate and the estimation error variance matrix are

x0 = [10, 000 m, 150 m/s, 15, 000 m, 200 m/s]T ,
P0 = diag{(100 m)2, (14 m/s)2, (100 m)2, (15 m/s)2}.

The estimated results of SCKF and HASCKF algorithms are shown in Figures 6–10. The estimation
error is given in Table 3.

From Figure 6 to Figure 10, it can be clearly seen that the standard SCKF estimation showed a large
deviation after 40 s. However, HASCKF could still better estimate the state of the target. This is because
the standard SCKF adopts an inaccurate prior noise variance R̂(0), while the HASCKF proposed in this
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paper estimates and corrects the inaccurate measurement noise variance, thus ensuring the accuracy
and stability of the algorithm. As analyzed in Example 1, due to the randomness of noise, not all the
noise variance estimates obtained by WF-NE were better. Therefore, the estimates of some components
of the state obtained by SCKF were better than the one solved by HASCKF at some time in the interval
[10 s, 40 s]. However, the general tend of the proposed HASCKF was better than SCKF, as shown in
Figures 6–10.
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Figure 6. Target’s trajectory and tracking result of SCKF and HASCKF.
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Figure 7. Absolute error curves of X-displacement.
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Table 3. The mean absolute error of two algorithms.

Mean Absolute Error
Algorithms

SCKF HASCKF

X-Position (m) 182.9477 6.4784
X-Velocity (m/s) 5.2113 0.7898

Y-Position (m) 129.5228 24.6147
Y-Velocity (m/s) 3.6766 1.0834
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Figure 8. Absolute error curves of Y-displacement.
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Figure 9. Absolute error curves of X-velocity.
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Figure 10. Absolute error curves of Y-velocity.

5. Conclusions

In this paper, aiming at the filtering problem caused by the inaccurate measurement noise variance
in real systems, a weighted fusion estimation method is designed and a class of hybrid adaptive filtering
structures is proposed, based on different measurement noise variance estimators. The stability and the
filtering accuracy of the hybrid adaptive filter are analyzed and discussed theoretically. The simulation
results showed that the algorithm had excellent accuracy and stability.

The work that can continue to be studied in the future includes further study on the research
and design of fusion methods based on hybrid adaptive filtering in nonlinear centralized fusion
framework and distributed fusion framework, research on functional equivalence among various
fusion algorithms, and so on.
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