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Abstract: To collect data efficiently and reliably in Mobile Crowd Sensing (MCS), a Participant
Service Ability Aware (PSAA) data collecting mechanism is proposed. First, participants select the
best sensing task according to the task complexity and desired reward in the multitasking scenario.
Second, the Stackelberg Game model is established based on the mutual choice of participants and
platform to maximize their utilities to evaluate the service ability of participants. Finally, participants
transmit data to platform directly or indirectly through the best relay and the sensing data from the
participants with better service ability is selected to complete sensing tasks accurately and efficiently
with the minimum overall reward expense. The numerical results show that the proposed data
collection mechanism can maximize the utility of participants and platform, efficiently accomplish
sensing tasks and significantly reduce the overall reward expense.
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1. Introduction

In recent years, the rapid proliferation of mobile devices such as smartphones and tablets with
powerful sensing ability enables MCS to become a mobile application hotspot for the collaborative
work between participants and platform [1,2]. In MCS, participants exploit the sensors embedded
in their carried mobile devices (e.g., light sensor and magnetic force sensor) to collect and share
data including the ambient brightness and magnetic field [3–5]. Then, the platform gathers sensing
data from participants and provides real time and accurate services based on the sensing results [6].
Because MCS collects large-scale sensing data efficiently and flexibly, it can be applied to various
projects. OrganiCity [7] is an example project with a very specific purpose to engage people in the
development of future smart cities and provides an Experimentation as a Service (EaaS) platform
to provide data streams from diverse sources inside a smart city to consumers, while recruiting
participants to collect data for updating diverse sources. SmartSantander [8] is based on the largest
Future Internet (FI) infrastructure and creates an experimental test facility for the research of Internet
of Things (IoT) architecture, services and applications. Participants can integrate smartphones into the
SmartSantander infrastructure to not only extend the infrastructure capabilities but also expand the
sensing coverage and ubiquity. Besides, SmartSantander can use these smartphones for event detection.
For example, SmartSantander can study mobility patterns in city streets and simultaneously monitor
environmental parameters. YouSense [9] is a model-based platform created to manage participatory
sensing activities and actively notify participants with questions when they are in the optimal location
to collect sensing data. While avoiding bothering participants with unnecessary requests, YouSense
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motivates more participants to actively participate in sensing activities to increase the quantity and
quality of sensing data.

In MCS, the platform is responsible for publishing sensing tasks and providing certain rewards
to motivate participants to actively perform sensing tasks. Participants are responsible for exploiting
sensors embedded in mobile devices to collect and upload data to the platform [10]. Compared with
the platform, participants are service providers, so the ability of participants to complete the sensing
task accurately and efficiently can be defined as service ability, and the high service ability indicates
that they can complete sensing tasks more efficiently. Therefore, the service ability is an important
factor for participants to complete sensing tasks accurately and efficiently. However, the service ability
evaluation and participant selection become challenging problems.

The existing MCS data collection research has two application modes according to service
objects: participant-centric and platform-centric modes [11,12]. In the participant-centric mode,
the relevant sensing data are collected by mobile devices to record participant activities. In contrast,
the platform-centric mode focuses on collecting environmental data and publishing sensing results
online to meet the public demands after analyzing and processing the sensing data. Although the
above modes can collect some sensing data, they only consider the number of participants in sensing
tasks or the total volume of sensing data collected by the platform. The larger number of participants
and greater total volume of sensing data signify the higher probability to complete sensing tasks,
but these two modes ignore the participant service ability. However, in the multitasking scenario,
there are differences among participants in several factors, such as the geographical location, interest
and residual energy, resulting in the differences in task duration and overall reward expense [13–15].
Therefore, how to exploit participants with better service ability in sensing tasks, how to select sensing
tasks according to the service ability of participants and how to complete sensing tasks accurately and
in real time with the minimum overall reward expense become key technical challenges.

In view of the above problems, a PSAA data collection mechanism is proposed. First,
participants measure the task complexity according to their willingness, energy consumption rate
and task duration, and then select the best sensing task based on the desired reward. Meanwhile,
to maximize the utility of platform and participants, the platform evaluates the service ability of
participants according to the timeliness and desired reward of participants and complexity of sensing
tasks to selectively collect sensing data. To complete sensing tasks efficiently, participants determine
the transmission mode of sensing data according to their residual energy and task duration, and then
transmit data to the platform directly or indirectly through the best relay, so that sensing tasks are
accomplished accurately and in real time with the minimum overall reward expense.

The main contributions of this paper are as follows:

(1) The complexity of sensing task is evaluated by the participant willingness, energy consumption
rate and task duration to effectively improve the energy utilization of mobile devices performing
sensing tasks. Consequently, participants select the best task according to the task complexity and
desired reward.

(2) Aiming at the mutual choice between participants and platform, the Stackelberg game model is
established to maximize the utility of participants and platform. Furthermore, the participant
service ability is evaluated according to the participant’s utility, timeliness, desired reward and
task complexity, and employed by the platform to selectively receive sensing data.

(3) To collect sensing data in time and provide reliable service, participants determine whether the
sensing data are transmitted directly or indirectly to the platform based on the residual energy,
energy consumption rate and task duration. If participants forward sensing data indirectly to the
platform, the best relay is selected based on the participant service ability, sensing task similarity
and intimacy degree between participants.

The rest of the paper is organized as follows. The related work are introduced in Section 2.
Section 3 describes the system model. The participant service ability is evaluated in Section 4.
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Section 5 designs a PSAA data collection mechanism. The numerical results are given in detail in
Section 6. Finally, Section 7 concludes this paper.

2. Related Work

We now introduce related work on MCS data collecting mechanisms.
Many research efforts have been dedicated to MCS data collecting mechanisms.

An incentive-aware time-sensitive data collection mechanism is designed in [16]. The proposed
mechanism selects relay user by applying the Nash bargain solution, and participants forward sensing
data through relay users to ensure the timely data collection. Although the above mechanism can
motivate participants to collect sensing data actively, it ignores the overall reward expense of the
platform. In addition, Shah-Mansouri et al. [17] proposed a Profit Maximizing Truthful (ProMoT)
auction mechanism. In ProMoT, the platform releases sensing tasks to participants, and then
participants submit task bids to the platform. Then, the platform selects a subset of participants based
on their bids and provides proper payments for them. Although the ProMoT auction mechanism
can maximize the platform utility, reduce the overall reward expense and motivate participants to
truthfully participate in the auction, it ignores the data quality of participants and cannot guarantee
the accuracy and reliability of sensing data. Sun et al. [18] designed an incentive scheme based on
heterogeneous trust values for joint social states and real-time throughput. Participants are selected
according to state attributes. Nevertheless, the proposed mechanisms do not take the reliability
of sensing data into account in [16–18]. Because participants are affected by their attributes, social
behaviors and other factors in MCS, when participants collect low quality sensing data, the sensing
tasks cannot be completed accurately and reliably.

To reliably collect sensing data in MCS, Gao et al. [19] designed a data quality prediction
mechanism with Poisson distribution based on the assumption that participants transmitted sensing
data one by one. The proposed mechanism ensures the high quality of data collection and completed
sensing tasks accurately. Dai et al. [20] proposed the Integrated Incentive Mechanism (IIM) to motivate
participants to provide high quality sensing data, where the platform updates the reputation of
participants based on their corresponding behaviors. Wen et al. [21] designed a quality-driven
auction-based incentive mechanism to evaluate the reliability of sensing data according to a
probabilistic model and verified the rationality of the proposed mechanism in the indoor positioning
application scenario. Krontiris et al. [22] proposed a multi-attribute auction mechanism based on
the traditional auction mechanism, which comprehensively considered factors such as the rewards
of participants, durations of sensing tasks and total amount of collected sensing data to effectively
improve the reliability of sensing data. Although the above mechanisms can ensure the reliability of
sensing data, they ignore the timeliness of sensing tasks and cannot meet the flexibility and real time
requirements of MCS.

In addition, only three factors are considered by the above-mentioned methods, namely the
timeliness of sensing tasks, reliability of sensing data and reward expense of platform, but the
complexity of sensing tasks should also be considered. In MCS, if the complexity of sensing tasks
exceeds the sensing ability of participants, they cannot complete the sensing tasks efficiently and
accurately. Given this kind of situation, a data collecting mechanism is designed in this paper to balance
the complexity, timeliness of sensing tasks and platform utility to ensure the timely accomplished
sensing tasks with the minimum overall reward expense.

3. System Model

The data collection process is shown in Figure 1. When users need to collect some GPS data,
they send the task request to platform, and then the platform analyzes and sends sensing tasks to
participants. In the multitasking scenario, when participants receive the information of sensing tasks
in the task area, they select the best task by evaluating the complexity of sensing tasks and then collect
sensing data correspondingly. At the same time, through the comprehensive analysis of the utility of
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participants and platform, the timeliness and other factors are combined to evaluate the participant
service ability, and then the platform chooses participants with high sensing data quality and low
rewards. In the participant selecting process, the best sensing task and participants with better service
ability are chosen, where the utility of participants and platform can be maximized simultaneously
by the equilibrium solution. After sensing data are transmitted directly or indirectly to the platform,
the platform decides whether to receive the sensing data according to the service ability, and therefore
can complete sensing tasks reliably and in time with the minimum overall reward expense.

Figure 1. Data collection process.

In the above process, the GPS data must differ among distinct locations. To tackle the spatial
inconsistencies, the task message is divided into many sensing tasks. We assume that the set of
sensing tasks is denoted by F = { f1, f2, ..., fn}, each sensing task has its specified area and time [23].
Considering that some participants may require some extra effort for performing sensing tasks, i.e.,
participants need to position themselves at the specified area. However, this paper focuses on how
participants choose sensing tasks and how the platform selectively receives sensing data based on the
service ability of participants when they are in the task area. Therefore, P = {p1, p2, ..., pm } is denoted
by the set of participants within the task area, the participant pi can measure the complexity of sensing
tasks and select the best sensing task. At the same time, when pi performs the sensing task, the ongoing
work or battery life of pi may be affected. To avoid the above situation, pi is free to choose the time to
perform the sensing task, but he must complete the sensing tasks within the task deadline. In addition,
we note that, if the sensing data of pi are constantly rejected by the platform, his willingness to perform
the sensing task will be reduced. To actively motivate pi participations in MCS, if the service ability of
pi is the same as others, the platform will receive his sensing data preferentially.

4. Evaluation of Service Ability

First, participants measure the complexity of a sensing task based on the willingness of
participants, energy consumption rate of mobile devices and duration of sensing tasks, and then
the best task can be selected according to the desired reward. Second, the Stackelberg game model is
established to analyze the utility of participants and platform to maximize the reward of participants
and the overall reward expense utilization of the platform in the equilibrium solution. Finally, by
evaluating the service ability of participants, the platform selects participants with better service ability
and participants choose the best task to complete accurately and reliably.

4.1. The Best Task Decision

Participants only execute one sensing task under the multitasking scenario. Because participants
choose sensing tasks according to their willingness, if the willingness of participants is low,
the probability of refusing a sensing task is high, resulting in the high complexity of the sensing
task. In addition, since the collection of sensing data mainly depends on the sensors embedded in
mobile devices, different types of sensing tasks should be processed. When collecting sensing data,
mobile devices carried by participants suffer a certain energy loss. If a participant consumes more
energy for a given sensing task, its complexity is higher. When participants perform a sensing task
with long duration, they not only consume more energy in the processes of collecting, storing and
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transmitting sensing data, but also affect the real time performance of tasks, and therefore the task
complexity is high. Based on the above analysis, the complexity of sensing tasks should be defined by
the participant willingness, energy consumption rate and task duration.

We assume the sensing task ultimately chosen by participant pi is f j. If the time when the platform
allows participants to start f j is ts

f j
and the time when sensing data collection ends is te

f j
, te

f j
− ts

f j
is the

task duration. Besides, we suppose the time when pi receives the information of f j is ta
ij and the time

when pi begins to collect sensing data is tm
ij . Obviously, the value range of tm

ij is [ta
ij, te

f j
], participating

decision time Bij of pi to f j is tm
ij − ta

ij. If participating decision time Bij is short, pi will participate in
sensing task f j actively, and the willingness of pi is high. In addition, We define that the total energy of
participant pi is Ea

i , his residual energy is Er
i . Since pi may affect the use of mobile devices, the high the

value of Er
i signifies the active participation of pi in f j, namely the high willingness of pi. In addition,

if the decision time Bij is equal to 0, it can be judged that the willingness of pi is equal to 1, which means
that the sensing task is performed immediately when pi receives the information of f j. Based on the
above analysis, the willingness Wij of pi can be measured by decision time Bij and residual energy Er

i ,
as calculated by Equation (1).

Wij =

 Er
i

Ea
i
·

v
∑

i=1
Bij

/
v

Bij
, Bij 6= 0

1 , Bij = 0
(1)

where v is the total number of participants selecting task f j and
v
∑

i=1
Bij

/
v is the average decision time

for f j.
The willingness of pi can be effectively measured by Equation (1). Furthermore, the energy

consumption per unit time of pi is assumed to be γij in sensing task f j, so that complexity Dij of
sensing task f j measured by pi is obtained by Equation (2).

Dij = 1−Wij +
γij · (te

f j
− tm

ij )

Er
i

(2)

To maximize the actual rewards with the minimum energy consumption, participants choose the
best task. Assuming the desired reward of pi is cij according to Dij , pi selects the best task based on
Equation (3): 

f j = arg
∀ f j∈F

max (xij · cij
/

Dij)

xij · (1− xij) = 0
∑∀ f j∈F xij = 1

(3)

where cij
/

Dij is the degree that pi participates in f j . When desired reward cij of pi is high,
the complexity Dij of f j is low. To maximize the reward with the minimum energy consumption,
a large cij

/
Dij signifies a high probability of pi participating in f j. Moreover, xij is a binary Boolean

variable and xij is set to 1 when pi selects task f j. Otherwise, xij is set to 0. ∑
∀ f j∈F

xij = 1 ensures the

total number of sensing tasks performed by pi at the same time is at most 1.

4.2. Utility Analysis

When participants perform the best task, there is an energy loss in their mobile devices during
the sensing data collecting process. Therefore, when participants perform sensing tasks successfully,
the platform needs to pay some rewards to compensate for the energy loss to motivate participants to
perform sensing tasks actively. However, the overall reward expense of each sensing task is limited,
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so participants with the high sensing data quality and low actual rewards must be selected to minimize
the overall reward expense of the platform.

4.2.1. Data Quality

Sensing data quality is determined based on two factors: completeness and accuracy. Because the
more complete are the sensing data, the clearer is the information transmitted to the platform by
participants, data completeness is conducive to the accurate completion of sensing tasks. In addition,
the sensing data accuracy can reflect the ground truth, which is also beneficial to the accurate
completion of the sensing task.

We suppose that the total volume of sensing data acquired by pi in the sensing task f j is lij.
Theoretically, the total volume of data obtained by pi is ltotal

ij . Obviously, the completeness of sensing

data is high when lij approaches ltotal
ij and max(lij

/
ltotal
ij ) signifies the maximum approximation among

all participants selecting task f j, so the completeness hij1 of sensing data can be calculated by:

hij1 =
lij
/

ltotal
ij

max(lij
/

ltotal
ij )

(4)

For the accuracy of sensing data, we assume that, when the platform ends collecting sensing
data, the sensing dataset collected by the participants selecting task f j is Xj = {x1j, x2j, ..., xvj} and
the platform will find a sensing data yj with the highest similarity from Xj. When xij is close to yj,
the similarity between xij and yj is high, indicating that the values of xij and yj are close and the
accuracy of xij is high. Therefore, the accuracy hij2 of xij is measured according to the similarity
between xij and yj, as shown in Equation (5).

hij2 =

θ

(yj−xij)
2

∑m
z=1

θ

(yj−xzj)
2

(5)

where the value of (yj − xij)
2 signifies the similarity between xij and yj, a small value indicates a high

similarity, θ is the sum of similarity deviations, and θ = ∑v
i=1 (yj − xij)

2 .
In the calculation of yj, the accuracy of each sensing data is initialized to 1/v to measure the

weight of yj. Thus, the most similar sensing data yj can be obtained by Equation (6).

yj = arg min ∑v
i=1 (hij2 · (yj − xij)

2) (6)

where hij2 is obtained by the iterative calculation. First, hij2 is initialized to 1/v, and yj is calculated
according to Equation (6). Then, hij2 is updated by Equation (5). Finally, when the iteration converges,
the update stops and the latest updated value is the accuracy of sensing data.

Through the above analysis, data quality qij of pi can be quantified from completeness hij1 and
accuracy hij2. Since hij1 and hij2 have different effects on qij, data quality of pi can be quantified by
qij = αj1hij1 + αj2hij2, where αj1 + αj2 = 1.

To avoid subjective factors leading to inaccurate results of αj1 and αj2, we use the entropy weight
method to determine their values [24]. The data dimension of hij1 and hij2 may introduce errors, so hij1
and hij2 are standardized, as shown in Equation (7).

∧
hijL =

hijL − µjL

ojL
, L = 1, 2 (7)

where µjL and ojL represent the mean and standard deviation of hijL, respectively.
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We can obtain the information entropy HjL of hijL according to Equations (7) and (8).

HjL = − 1
ln v
·∑v

i=1 ϑijL ln ϑijL (8)

where ϑijL is the proportion of
∧

hijL and ϑijL =
∧
hijL

/
∑v

i=1
∧
hijL. Finally, the normalized weight αjL of

hijL can be calculated by:

αjL = α
′
jL

/
∑2

L=1 α
′
jL (9)

where α
′
jL is the entropy weight of HjL and α

′
jL = (1− HjL)

/
∑2

L=1 (1− HjL).

4.2.2. Utility Analysis

The platform can analyze the utility of participants based on the data quality and actual rewards,
and then select participants with high utilities to maximize the platform utility. We assume that the
overall reward expense of platform for sensing task f j is Rj, and the energy cost per data quality is oj
in sensing task f j. If the data quality of pi is qij, the utility upi

j (qij, mp) of pi to f j can be calculated by:

upi
j (qij, mp) = mp · (qij/ ∑pi∈Pj qij)Rj − oj · qij (10)

where mp is the parameter determining the sensing data value, Pj is the set of participants performing
sensing task f j, and mp · (qij/ ∑pi∈Pj qij)Rj indicates the actual reward of pi.

In situations of few participants in a sensing task, the sensing data quality of participants
is crucial for the platform to accomplish the sensing task accurately and reliably. Because of the
limited participant range, the platform utility grows with the increasing sensing data quality. With
the increasing number of participants, the platform aims to achieve the minimum overall reward
expense. By not only considering the sensing data quality of participants but also analyzing the utility
of participants, the platform prefers to select participants with high utility. Therefore, when the number
of participants is large, the sensing data quality is no longer the only factor affecting the accurate and
reliable completion of sensing tasks, and the platform utility grows slowly with the increasing sensing
data quality. Based on characteristics of platform utility and its change with sensing data quality,
platform utility us

j (qij, mp) for sensing task f j can be calculated by Equation (11).

us
j (qij, mp) = ms · log2(1 + ∑pi∈Pj qij)−mp · Rj (11)

where ms is the parameter determining the value of the received sensing data and log2(1 + ∑pi∈Pj qij)

reflects the overall trend of platform utility with the increase of data quality.
Since participants expect to maximize rewards with the minimal energy consumption, it is

necessary to maximize the utility of participants by solving the optimization problem in Equation (12).

max
qij

mp ·
qij

∑pi∈Pj qij
Rj − oj · qij

s.t. qij ≥ 0
(12)

Correspondingly, the platform selects participants with high sensing data quality and low actual
rewards to minimize the overall reward expense. Therefore, it is necessary to maximize the platform
utility by addressing the optimization problem in Equation (13).

max
mp

ms · log2(1 + ∑pi∈Pj qij)−mp · Rj

s.t. mp ≥ 0
(13)
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Obviously, Equations (12) and (13) constitute a Stackelberg game [25,26]. Since Stackelberg
equilibrium belongs to subgame Nash equilibrium, the unilateral decision changes of participants
or platform cannot further improve their utilities. Consequently, the equilibrium must be obtained
to find a stable utility equilibrium between participants and platform, so that the utilities of both
are maximized. According to the definition of equilibrium solution [27], for any qij ≥ 0 and
mp ≥ 0, if (q∗ij, m∗p) satisfies the conditions in Equation (14), (q∗ij, m∗p) is the equilibrium solution of
the Stackelberg game. {

upi
j (q∗ij, m∗p) ≥ upi

j (qij, m∗p)
us

j (q
∗
ij, m∗p) ≥ us

j (q
∗
ij, mp)

(14)

According to Equations (10) and (13) and the number of participants in the sensing task,
Equation (15) can be obtained.

q∗ij = mp ·
∣∣Pj
∣∣− 1∣∣Pj
∣∣2 · oj

Rj (15)

where q∗ij is an expression of parameter mp and
∣∣Pj
∣∣ represents the total number of participants in the

set of Pj. According to Equations (11) and (15), the partial derivatives of platform utility us
j can be

exploited to find the maximum value, as shown in Equation (16).
∂us

j
∂mp

= ms
ln 2 ·

(|Pj|−1)Rj

|Pj|·oj+mp ·(|Pj|−1)Rj
− Rj

∂2us
j

∂m2
p
= − ms

ln 2 ·
(|Pj|−1)

2
R2

j

[|Pj|·oj+mp ·(|Pj|−1)Rj ]
2

(16)

When mp is equal to zero, obviously us
j (qij, mp) is also zero, so platform utility us

j (qij, mp) is equal

to zero according to Equation (11). Because us
j (qij, mp) is increasing slowly, when us

j (qij, mp)
∣∣∣
mp=0

= 0,

∂us
j

∂mp

∣∣∣∣
mp=0

> 0 can be obtained and we can determine the value range of ms, as shown in Equation (17).

ms > ln 2 ·
∣∣Pj
∣∣ · oj∣∣Pj
∣∣− 1

(17)

Since Equation (16) shows that
∂2us

j

∂m2
p
≤ 0 always holds, parameter mp satisfying

∂us
j

∂mp
= 0 can

maximize us
j (qij, mp), where m∗p can be calculated by:

m∗p =
ms

ln 2 · Rj
−

∣∣Pj
∣∣ · oj

(
∣∣Pj
∣∣− 1)Rj

(18)

Thus, the equilibrium solution can maximize the utility of participants and platform, as shown in
Equation (19). 

upi
j (q∗ij, m∗p) =

m∗p ·Rj

|Pj|2

us
j (q
∗
ij, m∗p) = ms · log2(

|Pj|−1

|Pj|·oj
· ms

ln 2 )−
ms
ln 2 +

|Pj|·oj

|Pj|−1

(19)

According to Equation (19), as the total number of participants
∣∣Pj
∣∣ increases, the utility of

participants decreases sharply, because, when
∣∣Pj
∣∣ is large enough, the platform will selectively receive

sensing data to provide accurate and reliable services. Therefore, to incite the platform to receive
their sensing data, participants will inevitably improve sensing data quality or reduce actual rewards.
However, when participants change their strategies unilaterally, they cannot improve their own utilities
in the Stackelberg game, so that the utility of participants decreases as

∣∣Pj
∣∣ increases. Moreover, as

shown in Equation (19), parameter ms in the platform utility us
j (q
∗
ij, m∗p) are not all positive, because ms
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determines the value of the received sensing data. As the quality of sensing data is greatly improved,
the platform utility is not sharply increased, so ms are not all positive in us

j (q
∗
ij, m∗p). Based on the above

analysis, the game result determined by the equilibrium solution is accurate, which can maximize the
utility of participants and platform.

4.3. Evaluation of Service Ability

The utilities of participants and platform are maximized to select the best task in the multitasking
scenario. However, due to the significant features of a large number of participants in MCS, the only
goal of participants is to maximize their actual rewards in the sensing data collecting process and they
ignore the final rewards of other participants performing the same task. At the same time, the only
goal of the platform is to provide accurate and reliable services with the minimum overall reward
expense. Therefore, the maximum utility of a single participant or the platform cannot unilaterally
achieve the optimal overall utility. In addition, because participants have random mobility, they may
be interfered by factors such as the geographical environment in the sensing data collecting process,
causing the sensing data to be inconsistent with task requirements or to be tampered with by malicious
participants. The above situation seriously affects the sensing results of the platform, and therefore
not only participants should choose the best task, but also the platform should screen all participants
performing the same sensing task to provide accurate and reliable services.

Participants have the great flexibility in choosing a sensing task at any time, the willingness
of participants varies, and the energy consumption of sensing tasks is also different, indicating
participants independently measure the complexity of sensing tasks. Moreover, to maximize the actual
rewards of participants, minimize the overall reward expense of platform, and maximize the utilities of
participants and platform as a whole, the platform needs to analyze the service ability of participants to
select the best participants. The service ability is crucial for the platform to measure whether to receive
the sensing data of participants; a stronger service ability signifies a higher probability of sensing data
being received by the platform.

The platform limits the duration of sensing tasks due to the real time requirements of services.
Obviously, the less time a participant takes to make a decision about a sensing task signifies the better
timeliness and the higher probability of the participant choosing the task, and the platform tends
to select this participant in order to complete the task accurately and reliably. However, participant
selecting cannot be only based on the timeliness. Because the platform utility is affected by the
participant utility due to the important factor of data quality, the high participant utility signifies
the accurate sensing data and high benefits for the platform. Therefore, it is necessary to analyze
the impact of participant utility on service ability. In terms of the task complexity and the desired
rewards of participants, if the task complexity and desired rewards evaluated by participants are
low, the overall reward utilization rate of the platform is high and the participant service ability is
also strong. According to the above analysis, the participant service ability can be measured by the
timeliness, participant utility, task complexity and desired rewards.

We know participation decision time Bij of pi to f j is tm
ij − ta

ij in Section 4.1, and its maximum
value is te

f j
− ta

ij . If participation decision time Bij is short, pi chooses the best sensing task f j timely.
Therefore, timeliness of participants Mij can be analyzed by Bij. Obviously, when Bij is equal to 0,
timeliness Mij is the maximum and Mij must decrease with the growing Bij. Moreover, when the value
of Bij is small, the task duration is relatively long and the value of Mij changes slightly around the
maximum value. Otherwise, when the value of Bij is large, the sensing time allowed by the platform
is limited and the value of Mij will drop sharply. Although the above-mentioned nonlinear trend is

consistent with 1− e−e−Bij , for the convenience of description and comparison, it is defined that the
value of Mij is set to 1 when Bij is set to 0, and the value of Mij is set to 0 when Bij is equal to te

f j
− ta

ij .
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Due to the non-linear variation trend, Mij decreases slowly first and then sharply decreases and the
quantification of timeliness Mij is shown in Equation (20).

Mij =


0 , ta

ij = te
f j

Tij(Bij+ta
ij)−Tij(te

fj
)

Tij(ta
ij)−Tij(te

fj
)

, ta
ij 6= te

f j

(20)

where Tij(t) = 1− e−e−t
describes the overall trend of timeliness with participation decision time.

The platform determines whether to receive sensing data according to the participant service
ability. When continuing to participate in sensing tasks, the service ability of participants is updated
constantly, and the current service ability depends on not only the next sensing task but also the utility
of the participants who completed the last sensing task. Although participants select the best sensing
task at the initial stage, the historical task list is empty, which means that there is no participant who
completed the last sensing task. Therefore, the initial service ability is evaluated according to the
timeliness, task complexity and desired rewards. The range of service ability is defined in [0,1], and the
value of the strongest service ability is 1. Assuming the initial best sensing task of participant pi is f j,

we can obtain initial service ability sj
i of pi by Equation (21).

sj
i = Mij ·

min(ckj)

cij
·

max(Dkj)− Dij

max(Dkj)−min(Dkj)
, ∀pk ∈ Pj (21)

When the historical task list is not empty, if participant pi completes the last sensing task
significantly better than other participants, the platform will choose to receive the sensing data from
pi, which means pi has the strongest service ability to perform the next sensing task. With the increase
of participant utility, a new equilibrium is reached between participants and platform, the more
advantageous to platform completing the sensing task reliably, so the service ability of participants
grows faster and faster. Therefore, the utility of pi completing the last sensing task fb is assumed to be
upi

b . According to the initial service ability quantification method and the value range of service ability,
if pi selects fh as the next sensing task, next service ability sh

i can be obtained by Equation (22).

sh
i = min(1, sh

i · e(u
′ pi
b −1)) (22)

In Equation (22), u
′pi
b is equal to u

pi
b

∑ u
pi
b

/
|Pb|

, where ∑ upi
b

/∣∣∣Pb
∣∣∣ is the average utility of participants,

so u
′pi
b representing the extent to which utility upi

b of pi is significantly higher than those of other
participants for last sensing task fb.

5. Data Collection Mechanism

Due to the limited residual energy of mobile devices and task duration, the sensing data may
not be directly transmitted to the platform, so the transmission modes of sensing data can be
switched according to the relationship between the theoretical transmission delay and the maximum
transmission delay. Besides, participants choose the best relay according to the next service ability,
similarity of sensing tasks and intimacy degree of participants. The participant service ability aware
data collection mechanism is designed for the multitasking scenario.

5.1. Transmission Mode Determination

In the task duration, for the platform to collect sensing data in time and provide reliable services,
the sensing data are transmitted directly or indirectly to the platform based on factors such as the energy
consumption rate of mobile devices [28]. Therefore, it is necessary to discriminate the transmission
modes of sensing data.
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Constrained by the residual energy of mobile devices and sensing task duration, if participants
choose to transmit sensing data directly, the energy loss of data transmission must be lower than the
residual energy and the sensing data should be successfully transmitted to the platform. Therefore,
under the above two conditions, the low energy consumption of transmitting the sensing data signifies
the small actual transmission delay and the great probability of transmitting the sensing data directly.
Otherwise, the sensing data will be transmitted indirectly through the best relay.

To discriminate the transmission modes of sensing data, we assume that all participants
theoretically analyze the direct transmission. Once the above conditions are not met, participants
choose the indirect data forwarding. For sensing task f j, participant pi is assumed to start transmitting
sensing data at time tg

ij. If the sensing data transmission can be completed theoretically at time to
ij,

the total volume of sensing data collected successfully is Sij. In addition, the average data transmission
rate of pi is assumed to be ηij, so the above conditions are shown in Equation (23).

γij(to
ij − tg

ij) ≤ Er
i

ηij(to
ij − tg

ij) ≥ Sij

0 < to
ij − tg

ij ≤ te
f j
− tg

ij

(23)

In Equation (23), te
f j
− tg

ij represents the maximum transmission delay allowed by the platform to

collect the sensing data from pi and to
ij− tg

ij is the theoretical transmission delay. When the transmission
delay is too large to meet the conditions in Equation (23), indirect forwarding is employed to complete
the sensing data transmission. If the theoretical transmission delay satisfies the above equation,
the sensing data can be directly transmitted to the platform. However, since the actual scenario is
complicated, when the actual transmission delay is larger, participants consume more energy, which
affects the timeliness and efficiency of sensing data collection. According to Equation (23), the sensing
data are transmitted directly when (to

ij − tg
ij)
/
(te

f j
− tg

ij) ∈ (0, 0.5]. Otherwise, the sensing data are
transmitted in an indirect forwarding manner.

After discriminating the transmission modes of sensing data, Pd = {p1
d, p2

d, · · · }
and Pnd = {p1

nd, p2
nd, · · · } are assumed to be the participants with direct transmission and

indirect transmission respectively. Participant pα
d transmits sensing data to the platform directly,

whereas participant pβ
nd selects the best relay from Pd = {p1

d, p2
d, · · · } to complete the sensing data

transmission. If the next service ability of pα
d is strong, the probability that the utilities of the participant

and platform are maximized is high, and the platform will be highly likely to receive sensing data
from pα

d , and therefore the probability of pβ
nd choosing pα

d for data transmission is high. However,
in the multitasking scenario, many sensing tasks that can be selected by participants at the same
time, when the best tasks selected by pα

d and pβ
nd are different, because the next service ability of pα

d

is stronger, pα
d can successfully transmit the sensing data of pβ

nd to the platform, but the platform

cannot identify that the sensing data of pα
d and pβ

nd belong to different sensing task, the accuracy of

sensing results is affected. Therefore, pβ
nd tends to select the participant in the same sensing task for

data transmission. In other words, the high similarity of sensing tasks selected by pα
d and pβ

nd signifies

the great probability of pβ
nd selecting pα

d for indirect data forwarding. In addition, when pα
d and pβ

nd

choose the same sensing task,pα
d is not necessarily willing to help pβ

nd forward the sensing data, because
they may distrust each other and their mobile devices have the energy consumption in the process of
data transmission. Therefore, pα

d is not necessarily the best relay for pβ
nd. Due to the social attributes

of participants, when pβ
nd chooses the best relay or pα

d helps the data forwarding, they have certain

preferences [29–31]. If the social relationship between pα
d and pβ

nd is close, they will trust each other

and pβ
nd will be highly likely to select pα

d as the best relay. Eventually, the best relay can be selected
according to the next service ability of participants, similarity of sensing tasks and intimacy degree
between participants.
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According to the evaluation method in Equation (22), the next service ability of pα
d is assumed to

be sh
d_α. In terms of sensing tasks similarity, participants only consider the task complexity and desired

reward from their own perspectives when selecting the best sensing task, and they ignore the choices
of other participants. In other words, participants choose the best sensing task without distinguishing
the transmission mode. Therefore, they cannot analyze the similarity between sensing tasks of all
other participants within the participation decision time. To avoid the above problem, participants
perform sensing tasks continuously in the sensing area. When the similarity between historical task
lists of participants is high, they are interested in many sensing tasks and have high similarity in the
next sensing task. When analyzing the best relay, we should measure the similarity of sensing tasks
according to historical task lists. The method measuring similarity rαβ between sensing tasks of pα

d and

pβ
nd is shown in Equation (24).

rαβ =

∣∣Fα ∩ Fβ
∣∣∣∣Fα ∪ Fβ
∣∣ (24)

where Fα and Fβ represent the historical sensing tasks performed by pα
d and pβ

nd, respectively,
∣∣Fα ∩ Fβ

∣∣
and

∣∣Fα ∪ Fβ
∣∣ represent the total numbers of pα

d and pβ
nd performing the same historical sensing tasks,

and rαβ has value range [0,1].
In addition, the intimacy degree between participants can be analyzed through the interaction time,

because the long interaction time between participants signifies the high intimacy degree between them.
The intimacy degree between participants grows fast when their early interactions are established.
As they continue to interact, the intimacy degree gradually increases to the maximum. When the
intimacy degree is stable, its value remains almost unchanging. Therefore, the range of intimacy
degree is defined in [0,1], and the intimacy degree between pα

d and pβ
nd can be obtained according to

the interaction time, as shown in Equation (25).

Nαβ =

nαβ

/
∑

pσ
d∈Pd

nσβ

1 + e−t (25)

where nαβ represents the times that pα
d helps pβ

nd complete the sensing data transmission, and ∑
pσ

d∈Pd

nσβ

represents the times of the participants in set Pd forwarding the sensing data for pβ
nd. To accurately

determine the initial intimacy degree between participants, when pα
d and pβ

nd establish the first

interaction, their intimacy degree is set to nαβ

/
∑

pσ
d∈Pd

nσβ.

Since the next service ability of pα
d is sh

d_α, similarity of sensing tasks rαβ and intimacy degree Nαβ

between pα
d and pβ

nd are described by Equations (24) and (25), respectively. Finally, pβ
nd chooses the best

relay according to Equation (26).

pα
d = arg

∀pα
d∈Pd

max (sh
d_α · rαβ · Nαβ) (26)

The platform determines whether to receive the sensing data of participants according to the
service ability. If the best relay pα

d is selected by pβ
nd according to Equation (26), pα

d not only transmits

its own sensing data, but also helps pβ
nd forward sensing data. Therefore, after receiving the sensing

data from pβ
nd, pα

d marks it for the platform to collect the sensing data correctly.
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5.2. Sensing Data Collection

In the multitasking scenario, participants select the best sensing task according to the sensing task
complexity and desired rewards to maximize their utilities with the minimum energy consumption.
However, the platform determines whether to receive the sensing data to maximize its utility and
complete sensing tasks efficiently and accurately by evaluating the service ability of participants.
The next sensing task that participant pi selects to perform is assumed to be fh and the platform selects
participants according to Equation (27).

max us
h(qih, mp)

max upi
h (qih, mp)

max (min sh
i )

s.t.


xih = 1

∑
∀pi∈Ph

cg
ih ≤ Rh, ∀pi ∈ Ph

Bih < te
fh
− ta

ih

(27)

In Equation (27), objective function max us
h(qih, mp) and max upi

h (qih, mp) are employed to
maximize the utilities of participants and platform, when participants select the best sensing task
and platform chooses the participants with strong service ability. Besides, max (min sh

i ) represents
the requirements of the platform for participant service ability. The constraint conditions mean that,
when participant pi chooses fh as the next sensing task, the participation decision time of pi must
meet the real time requirement of fh and cannot exceed the maximum participation decision time of fh.
Furthermore, the total rewards of all participants who choosing fh must not exceed the total reward
cost of fh. Participants and platform choose each other to transmit sensing data directly or indirectly,
and then the platform chooses to receive the sensing data from participants with strong service ability.
The algorithm of proposed PSAA data collecting mechanism is shown below (Algorithm 1).

Algorithm 1 PSAA data collecting mechanism.

1: BEGIN
2: for all pi ∈ P do
3: choose task from F of pi according to Equation (2)
4: end for
5: for all pj

α ∈ Pj do
6: determine sending method of pj

α according to Equation (23)
7: end for
8: for all pγ

nd ∈ Pnd do
9: for all pλ

d ∈ Pd do
10: if satisfy Equation (26) then
11: pγ

nd sends data to pλ
d

12: else
13: Go to Line 9
14: end if
15: end for
16: end for
17: for all pj

α ∈ Pj do
18: if satisfy Equation (27) then
19: the server accepts sensing data
20: else
21: the server refuses to receive
22: end if
23: end for
24: END
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6. Numerical Results

We evaluated the proposed mechanism on a real dataset: T-drive [32,33]. T-drive contains the
GPS traces of 10,357 taxis in Beijing for one week, from 2 February to 8 February 2008. Each taxi is
equipped with the GPS sensor, and the average retrieving the GPS position is about 177 s. In T-drive,
each trace includes the taxi ID, timestamp and the latitude and longitude position of the taxi. We took
each taxi as a participant equipped with built-in sensors and assumed that the data collected by the
participants are their GPS location information.

We chose the region around the Fourth Ring Road in Beijing as the sensing region, the latitude
range of the sensing region is (39.84002◦ N–39.99397◦ N) and the longitude range is (116.27621◦

E–116.49424◦ E). According to the location of the sensing region, we selected 900 participants whose
trajectories were distributed in the sensing region. In addition, for the convenience of analysis, a dataset
containing the GPS traces of 900 participants for one day was extracted from T-drive. Meanwhile, a false
dataset containing 100 participants uploading the wrong GPS location information was constructed
to simulate the dishonesty behaviors of participants collecting low-quality sensing data. We selected
another 100 participants in the sensing region from T-drive. Some of their GPS position were modified
during a certain period, and the modified GPS position was randomly generated. Therefore, we used
the real dataset and the false dataset to build the simulation environment. Considering that a
participant’s reward could be achieved in different formats in practice, such as money or bonus
points, we used dimensionless units to represent both the participants’ reward and the maximum total
reward of sensing task. The main simulation parameters are given in Table 1.

Table 1. Simulation parameter settings.

Parameter Value

simulation duration/s 34,200
number of participants [100, 1000]

number of tasks [1, 15]
task duration/s [900, 3600]

total energy of mobile device/(mA·h) 2000
residual energy of mobile device/(mA·h) [400, 1900]

maximum total reward of sensing task [1000, 2000]
reward for a single participant [1, 5]

average data transmission rate/kbps 400

As shown in Table 1, the residual energy of participants and the reward of a single participant were
assumed to be generated randomly, and all simulations were run on MATLAB, which was deployed
on a PC with 1.70 GHz CPU and 4GB RAM. In addition, the proposed PSAA was compared with the
ProMoT [17] and IIM [20] mechanisms. First, we randomly selected some participants to observe the
change of their service ability. Then, the utilities of participants and platform were analyzed to validate
PSAA. Furthermore, in the multitasking scenario, PSAA, ProMoT and IIM mechanisms were analyzed
under different numbers of participants and different overall reward expenses.

6.1. Utility Analysis of Participants and Platform

To effectively analyze the service ability of participants, we selected participants No. 36, No.
125, No. 321 and No. 763 who performed the same sensing tasks, and their service abilities were
clearly differentiated. The changes in the service ability are shown in Figure 2. Obviously, the range of
service ability is [0,1] according to its definition. We note a difference in the initial service ability of
participants, which may be due to factors such as the residual energy or desired reward. Besides, the
service ability of participant No. 36 increased gradually from 0.61 to 0.93, indicating that he chose the
best sensing task and collected high-quality sensing data, so his service ability increased. The service
ability of participant No. 763 reduced gradually from 0.32 to 0.01, which may be caused by dishonest
behavior and unreasonable desired reward. The service ability of participant No. 125 increased from
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0.53 to 0.7 and then decreased to 0.55. It is possible that the residual energy of participant No. 125 was
insufficient to perform more sensing tasks, resulting in the increased complexity of the sensing task.
The service ability of participant No. 321 reduced from 0.47 to 0.23 and then increased to 0.51, because
it may be difficult to select the best sensing task when the number of sensing tasks is small, resulting in
his low willingness. As the number of tasks increases, he can choose the best sensing task to increase
the service ability.

Figure 2. Changes in the service ability of participants.

The utility of participants is shown in Figure 3. It can be seen that the utility of participants in
PSAA was the highest because participants chose the best task and platform selectively collects sensing
data. In the bilateral selection process, the Stackelberg game was formed with an equilibrium solution
to provide participants with the highest utility. At the same time, compared to ProMoT, IIM had
higher utility of participants, because the platform selectively received the sensing data according to
the reverse auction principle and participants collected high quality sensing data to obtain as high a
reward as possible.

Figure 3. The utility of participants.

The platform utility is shown in Figure 4. As the number of sensing tasks increased, the platform
utility increased gradually and then remained relatively stable, because the platform needed
to collect, analyze, and process the sensing data. In addition, PSAA stabilized before IIM and
ProMoT. Because PSAA takes into account the timeliness of participants and data transmission
delay, it consumes the least time to complete the sensing task and its platform utility also stabilizes
quickly. Since the platform selectively receives sensing data according to the participant service ability,
the utilities of platform and participants of PSAA are both the highest due to the equilibrium solution.
Compared to IIM, the platform in ProMoT only considers the total volume of sensing data, which has
the lowest utility.
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Figure 4. The utility of platform.

6.2. Performance Analysis in the Multitasking Scenario

We assumed the total number of sensing tasks is 5 in the multitasking scenario, as shown in
Table 2. PSAA, ProMoT and IIM are verified based on the total volume of sensing data, overall sensing
time, total number of participants in each task and overall reward expenses.

Table 2. Sensing task information.

Task Starting Time Ending Time Task Duration/min

1 08:00:00 08:50:00 50
2 08:07:00 08:47:00 40
3 08:12:00 08:42:00 30
4 08:26:00 09:11:00 45
5 08:40:00 09:40:00 60

6.2.1. Performance Analysis under Different Numbers of Participants

The total volume of sensing data collected by the three data collection mechanisms is shown in
Figure 5. It can be seen that the total volume of sensing data increased rapidly and then slowly and
finally stabilized with the growing number of participants, because the number participants was small
at the beginning and the platform actively received sensing data to complete the sensing task efficiently
and accurately. When the number of participants increased gradually, there was some redundancy
between sensing data and the platform only processed the valid sensing data, so the total volume of
sensing data grew slowly. When the number of participants is large, the overall reward expense of the
platform was limited and the sensing data quality among participants was different, which means
that the platform needed to reject some participants’ sensing data, and therefore the total volume of
sensing data remained stable. In addition, ProMoT only considers the total volume of sensing data
collected by the platform, so its total volume of sensing data is the largest. However, compared to
IIM, PSAA analyzes the data transmission delay based on the total volume of sensing data, so its total
volume of sensing data is the least.

The overall sensing time of the three data collection mechanisms is shown in Figure 6. Apparently,
the overall sensing time decreased rapidly and then stabilized with the growing number of participants.
When the number of participants started to increase, the total volume of sensing data collected by
the platform also grew to facilitate the completion of sensing tasks and reduce the overall sensing
time. When the number of participants was large enough, the total volume of sensing data processed
by the platform did not increase, so the overall sensing time stabilized. In addition, the timeliness
of participants is considered by PSAA in the service ability analysis and the transmission mode of
sensing data is determined according to the transmission delay, so the overall sensing time of PSAA
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is the lowest. IIM updates the participant reputation dynamically and selects participants with high
reputation, which has lower overall sensing time than ProMoT.

Figure 5. The total volume of sensing data.

Figure 6. The overall sensing time.

The number of participants in each sensing task is shown in Figure 7. It can be seen that the
number of participants in sensing task No. 5 was the largest for all three mechanisms, because the
platform allowed the longest sensing time for task No. 5 due to the large and complex scene scale.
Therefore, the platform required many participants in No. 5 scene. Moreover, participants select the
best sensing task and the platform chooses sensing data according to the participant service ability in
PSAA, so its number of participants is the smallest. The reputation of participants is analyzed by the
platform in IIM, whereas ProMoT only maximizes the rewards of participants, resulting in the larger
number of participants in ProMoT.

Figure 7. The number of participants.
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6.2.2. Performance Analysis under Different Total Reward Expenses

The total volume of sensing data collected by the three data collection mechanisms is shown in
Figure 8. It can be seen that the total volume of sensing data grew to a certain extent and then stabilizes
with the increase of overall reward expense. When the overall reward expense increased gradually,
it inevitably attracted participants to perform the sensing task actively, so the total volume of sensing
data grew gradually. When the overall reward expense was high, the platform selectively received the
sensing data under the three data collection mechanisms, so the total volume of sensing data stabilized.
In addition, the platform expects to collect enough sensing data in ProMoT, so its total volume of
sensing data is the largest. Compared to IIM, PSAA considers the data transmission delay, so its total
volume of sensing data collected by the platform is the least.

Figure 8. The total volume of sensing data.

The overall sensing time of the three data collection mechanisms is shown in Figure 9. It can be
seen that the overall sensing time decreased and then stabilized with the increase of overall reward
expense. When the overall reward expense was low and the number of participants was small, the
platform could not collect sensing data efficiently, resulting in a high overall sensing time. However,
more and more participants chose to perform sensing tasks due to the increase of overall reward
expense, so the overall sensing time decreased. When the overall reward expense was relatively large,
the total volume of sensing data stabilized, which means the platform collected no more sensing data,
so the overall sensing time remained almost unchanged. In addition, the utility of participants and
platform in PSAA can reach the maximum and its overall sensing time stabilizes first. While aiming to
maximize the utility of participants, ProMoT has the largest overall reward expense.

Figure 9. The overall sensing time.

The overall reward expense of each sensing task is shown in Figure 10. Obviously, the overall
reward expense of sensing task No. 5 was the largest for all three mechanisms. According to Figure 6,
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the number of participants in sensing task No. 5 was the largest, so it had the largest overall reward
expense. Combined with the number of participants in Figure 6, Figure 9 shows the overall reward
expenses of PSAA and ProMoT are the lowest and the highest, respectively.

Figure 10. The overall reward expense.

7. Conclusions

To collect data efficiently and reliably in MCS, PSAA is proposed in our paper. First, participants
select the best sensing task by measuring the task complexity and desired reward. Second,
the Stackelberg game model is established according to the mutual choice between participants
and the platform to maximize the utilities of participants and platform. Then, the next service ability
of participants is employed along with the initial service ability for the platform to selectively receive
sensing data. Finally, participants transmit data directly or indirectly to the platform, ensuring the
efficient and accurate completion of sensing tasks the minimum overall reward expense. In our future
work, the mobility of participants would be considered for MCS data collection.
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