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Abstract: Feature-based matching can provide high robust correspondences and it is usually invariant
to image scale and rotation. Nevertheless, in remote sensing, the robust feature-matching algorithms
often require costly computations for matching dense features extracted from high-resolution
satellite images due to that the computational complexity of conventional feature-matching
model is O(N2). For replacing the conventional feature-matching model, a fast dense (FD)
feature-matching model is proposed in this paper. The FD model reduces the computational
complexity to linear by splitting the global one-to-one matching into a set of local matchings
based on a classic frame-based rectification method. To investigate the possibility of applying
the classic frame-based method on cross-track pushbroom images, a feasibility study is given by
testing the frame-based method on 2.1 million independent experiments provided by a pushbroom
based feature-correspondences simulation platform. Moreover, to improve the stability of the
frame-based method, a correspondence-direction-constraint algorithm is proposed for providing the
most favourable seed-matches/control-points. The performances of the FD and the conventional
models are evaluated on both an automatic feature-matching evaluation platform and real satellite
images. The evaluation results show that, for the feature-matching algorithms which have high
computational complexity, their running time for matching dense features reduces from hours level
to minutes level when they are operated on the FD model. Meanwhile, based the FD method,
feature-matching algorithms can achieve comparable matching results as they achieved based on the
conventional model.

Keywords: fast dense feature-matching; pushbroom satellite imagery; epipolar resampling

1. Introduction

Feature-based matching is highly robust to image identity changes and distortions, which makes
it provide high confident correspondences [1]. Therefore, in remote sensing (RS), feature-based
matching is widely used in applications with complex image changes such as wide-baseline
stereo matching [2–4] and bundle adjustment [5,6]. Furthermore, the dense and redundancy
matched features in satellite imagery can be used for reconstructing high-resolution Digital Terrain
Models (DTM) [3,7,8], constructing a constraint initializer for the next step of dense matching [9]
and estimating Exterior Orientation/georeferencing Parameters (EOP) [10] which may be not provided
for commercially available [11].

However, due to that the feature-matching algorithms usually require costly computations,
they could be barely used for matching all features extracted from high-resolution pushbroom
satellite imagery. For instance, a graph based method Graph Transformation Matching (GTM) [12]
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was introduced to enforce the spatial constraint by constructing a median K-NN graph and its time
computational complexity is O(N3). Based on the basic idea of GTM, some algorithms were proposed
for improving the robustness and accuracy of it: instead of using a fixed average distance for each
image, the Weight Graph Transformation Matching (WGTM) algorithm [13] used the angular distance
between edges, which connect a feature-point to its K-NN graph, as the weight; the Spatial Order
Constraints Bilateral-Neighbor Vote (SOCBV) [14] algorithm replaced the undirected K-NN graph with
a directed one and formulates the feature-matching problem as a binary discrimination problem;
the Spatial Order Constraints (RSOC) [15] formulated the feature-matching as an optimization
problem for considering both local structure and global information; the Neighborhood Spatial
Consistent Matching (NSCM) [16] algorithm was proposed to remove outliers whose offsets between
matched features have sudden mutations. The computational complexities of WGTM, SOCBV, RSOC
and NSCM are O(N2log(N)), O(N2log(N)), O(N3) and O(N2) respectively. Hence, unfortunately,
the aforementioned algorithms could not be applied on matching dense features extracted from
high-resolution satellite imagery, since the numbers of dense features are usually over 10, 000
and the aforementioned algorithms will cost days or even run out of memory for matching the
dense features [17].

Moreover, the existing feature-matching algorithms are mostly based on the conventional
feature-matching model—i.e., before they removing false-matches, the putative matches have to
be generated by a global one-to-one matching whose computational complexity is O(N2). Therefore,
even some feature-matching algorithms (the locally linear transforming (LLT) [18] and a probabilistic
method [19]) can reduce the computational complexity of removing false-matches to linearithmic,
their computational complexities of generating putative matches are still O(N2).

For replacing the conventional feature-matching model, this paper presents a fast dense (FD)
feature-matching model which splits the global one-to-one matching into numerous dynamic local
matchings so that the complexity of generating putative matches is reduced to linear. Moreover,
based on the FD model, feature-matching algorithms with high computational complexity could also
be used for matching dense features extracted from high-resolution satellite imagery since the numbers
of features in each local matching are much less than the original number of features in the global
matching. Note that, the definition of dense feature-matching in this paper is given as—matching
images with features as dense as possible. Hence, the goal of dense feature-matching is to match the
high-resolution images with all the extracted dense features.

In particular, the FD model is designed to match features from cross-track pushbroom satellite
imagery. Unlike frame cameras that have well-known epipolar geometry, the physical structures
of linear pushbroom cameras are more diverse and complex; the resulting epipolar curves of linear
pushbroom cameras are hyperbola-shaped not straight [20,21]. As a result, it is almost impossible to
define the epipolar geometry of linear pushbroom cameras rigorously [22].

Nevertheless, the FD model only aims to segment the global matching not eliminating the
vertical-parallax of stereo images. Consequently, there is no need to apply the rigorous resampling
method on the FD model. In this paper, the process of minimizing the vertical-parallaxes of the rectified
correspondences is solved by a classic frame-based rectification method [23] which is well-established
and easily-implemented. To investigate the possibility of applying the classic frame based method
on cross-track pushbroom satellite imagery, a comprehensive feasibility study is given in this paper.
Based on this study, the larger difference of emission angles the satellite cameras have, the more
complicated epipolar geometry they will get. As a result, the frame-based method may not work in
pushbroom images which have large difference of emission angles. For increasing the success rate
of the frame-based method on cross-track satellite imagery, a Correspondence-Direction-Constraint
(CDC) algorithm is proposed in the FD model for obtaining the most favourable seed-matches.

To evaluate the FD method, a cross-track pushbroom based automatic feature-matching evaluation
platform [17] is introduced for providing comprehensive experiments end evaluating the matching
results automatically. Meanwhile, 22 pairs of real cross-track pushbroom satellite images were
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also prepared for both training (2 pairs) the FD model and testing (20 pairs) the FD and the
conventional models.

The primary research contributions of the FD model can be summarized as follows:

1. Based on the FD model, the computational complexity of generating putative feature-correspondences
is reduced from O(N2) to linear.

2. Features in a certain local matching are independent to the features in other local matchings.
Hence, feature-matching can be operated in parallel by applying the FD model.

3. A comprehensive feasibility study of applying the classic frame-based rectification method on
cross-track pushbroom satellite imagery is given in this paper.

4. Based on the CDC algorithm, the success rate of minimizing vertical-parallaxes of the pushbroom
stereo images by the frame-based method is improved significantly.

The rest of this paper is organized as follows: the feasibility study of applying the classic
frame-based method [23] on cross-track pushbroom satellite imagery is introduced in Section 2.
The implementation detail of the FD model is described in Section 3. Parameters setting and the
performance evaluation of the FD model are discussed in Section 4. Finally, the paper is concluded
in Section 5.

2. Feasibility Study

Due to that the epipolar geometries of frame cameras and cross-track linear pushbroom
cameras are different, a feasibility study of applying the classic frame-based rectification method [23]
on cross-track pushbroom stereo images is given in this section. It includes (1) introducing the epipolar
geometry of linear pushbroom cameras according to [21]; (2) contrasting the differences of the original
and rectified epipolar curves projected by cross-track pushbroom geometry and the original and
rectified epipolar lines calculated by the frame-based rectification method; (3) investigating the stability
of the frame-based method on a large number datasets provided by a cross-track pushbroom based
automatic feature-matching evaluation platform [17].

2.1. Epipolar Geometry of Linear Pushbroom Cameras

For a point a = (a, b, c) in the world plane, it is viewed by two linear pushbroom cameras with
camera matrices E and E′. The points in the image planes according to the point a are x = (x, y)T and
x′= (x′, y′)T . These three points satisfy the following equations:

 x
wy
w

 = E


a
b
c
1

 ,

 x′

w′y′

w′

 = E′


a′

b′

c′

1

 , (1)

where the w and w′ are scale factors and these two equations can be rewritten as:

e11 e12 e13 e14 − x 0 0
e21 e22 e23 e24 y 0
e31 e32 e33 e34 1 0
e′11 e′12 e′13 e′14 − u′ 0 0
e′21 e′22 e′23 e′24 0 y′
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= 0. (2)

The 6× 6 matrix in Equation (2) can be denoted as A (E, E′) such that the Equation (2) is a set
of linear equations. If this system have a solution, then det A (E, E′) = 0. This rises to a cubic
equation g

[
x y x′ y′

]
= 0, where the coefficients of g are determined by the entries of E and
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E′. Since there are no terms of x2, x′2, y2 and y2 in Equation (2), there exists a matrix F satisfied
g
[

x y x′ y′
]
= 0 and can be written as:

[
x′ x′y′ y′ 1

]
F


x

xy
y
1

 = 0. (3)

The matrix F in the above equation is the fundamental matrix of linear pushbroom cameras.
It must be satisfied by any pair of corresponding image points (x, y)T and (x′, y′)T . Now, considering
the locus of all possible matched points (x′, y′)T and writing the (x′, y′)T as (α, β, γ, δ)T in Equation (2).
Then a equation of a hyperbola-epipolar loci could be obtained: αx′ + βx′y′ + γy′ + δ = 0. In other
words, unlike the frame cameras whose epipolar lines are straight lines, the epipolar lines of linear
pushbroom cameras are hyperbolas. The difference between the epipolar lines of the two kinds of
cameras are simulated in the following section.

2.2. Contrast of Epipolar Curves and Lines

An example of projecting epipolar curves of a cross-track pushbroom satellite camera model is
illustrated in Figure 1a, where the magenta and blue parallelograms at the top are the image planes
of two linear pushbroom cameras, the magenta and blue parallelograms at the bottom are the world
planes of the two cameras. The black and magenta cycles in image planes, which are q1 and q2, are two
conjugate points that projected by the object point Q (which is the green cycle in the world plane),
where q1, q2 and Q construct an epipolar plane. Then some evenly-distributed points are selected
along the lines of Qq1 and Qq2; epipolar curves are obtained by project evenly-distributed points to
image planes (red and blue stars in image planes of Figure 1a). It is obviously that the epipolar curves
shown in Figure 1a are not straight lines.

Z

X

orbit

Y

orbit

q1
q2

Q

(a) (b)

Figure 1. Pushbroom satellite stereo systems simulation. (a) An example of a cross-track linear
pushbroom satellite stereo imaging system. (b) 5000 correspondences simulated by HiRISE
imaging system.

To compare the epipolar curves and lines, the pushbroom camera (shown in Figure 1a) is simulated
as HiRISE (High Resolution Imaging Science Experiment cameras which is on board NASA’s Mars
Reconnaissance Orbiter (MRO)) camera and 5000 pairs of epipolar curves are generated by the
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cross-track pushbroom based platform [17]; The corresponding epipolar lines are calculated by the
frame-based method [23]. More specifically, the slewing and emission angles of the simulated cameras
can be randomly rotated in −30◦ to 30◦ and the differences of slewing and emission angles of them
are set as 15◦. Figure 1b shows an example of 5000 pairs of simulated correspondences and Figure 2a
shows the most different pair of epipolar curves and lines among the 5000 simulated correspondences,
where the black and magenta lines are the epipolar lines calculated by the frame-based rectification
method. At first glance of Figure 2a, the epipolar curves and lines are looks like that they are arranged
together. However, the more specific distances of this pair of epipolar curves and lines (in Figure 2b)
tells us that not only the epipolar curves and lines are not arranged in straight lines but also the
epipolar curves are not straight lines.

Then, this pair of epipolar curves and lines are rectified by the classic frame-based method.
The rectified results and the distance of rectified curves and lines are shown in Figure 2c,d. As can be
seen, if the searching range could be limited in a reasonable value, the feature-correspondences could
be segmented in a set of local matchings so that the computational complexity of feature-matching
could be reduced.
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Figure 2. The most different original and rectified epipolar curves and lines. (a,b) The original epipolar
curves and lines and their corresponding distances. (c,d) The rectified epipolar curves and lines and
their corresponding distances.

2.3. Investigating the Stability of the Classic Frame-Based Method

7000 datasets were simulated based on the cross-track pushbroom based feature-matching
evaluation platform [17]; the specification of the platform was set as the HiRISE camera. The datasets
were classified in 7 groups by various differences of slewing and emission angles, and each group
contained 1000 datasets. Moreover, each dataset had 5000 feature-correspondences which are all
true-matches. Then, for each dataset, the frame-based method was performed based on sampling 10,
250 and 500 random evenly-distributed seed-matches/control-points; the method was repeated in
1000 times for each sampling. Therefore, totally, 2.1 million independent experiments were prepared.

The success rate can be described as Equations (4) and (5) which are calculated based on the
j-th experiment. In these equations, Tj indicates a threshold that restricts the valid differences of the
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absolute value of y-disparities of the rectified features, Yj is the set of y-values of the original features in
the left image, L represents that how many matching areas we want to split from the global matching (in
this paper L is set as 250 which means there are about 20 correspondences in each local matching, since
each dataset has 5000 correspondences), N represents the number of correspondences, ŷi and ŷ′i are the
y-values of i-th rectified features in the left and right images respectively, srj represents that whether
the rectification method could get a reasonable result in this experiment. In other words, for a certain
experiment, the rectified method succeeds if the number of qualified rectified correspondences is
over 99%.

Tj =
max

(
Yj
)
−min

(
Yj
)

L
, (4)

srj =

 1 i f

N
∑

i=1
bool(|ŷi−ŷ′i|≥Tj)

N ≥ 0.99
0 else

, (5)

SRk =

M
∑

j=1
srj

M
. (6)

Figure 3a,b show the success rates of the rectification method on datasets with various differences
of slewing and emission angles. The success rates for each classes are calculated as the average value
of SRk in Equation (6), where M represents the number of repeating time of the rectification method
and SRk represents the success rate in the k-th dataset (7000 datasets in total). It is obviously that,
the difference of slewing angles doesn’t affect the success rate, whereas the success rate declines
significantly while increasing the difference of emission angles, and the more seed-matches are selected
the higher success rate could be achieved by the rectification method. But the improvement will decline
while increasing the number of seed-matches. Moreover, as can be seen in Figure 3c, for the datasets
with the difference of emission angles of 30◦ and the number of seed-matches of 500, there are almost
10% of them that the method never succeed for even just one time over the 1000 repeated independent
experiments, even if their average success rate is over 75% (see in Figure 3d). Therefore, it may be like
trying to find a needle in a haystack that directly applying the classic frame-based rectification method
on some extreme cases of the pushbroom satellite imagery.
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Figure 3. The success rates of the rectification method performed on the 7000 simulated datasets.
(a) The success rates on datasets with various differences of slewing angles. (b) The success rates
on datasets withe various differences of emission angles. (c) The success rates on datasets with 500
seed-matches and various differences of emission angles.

Therefore, one of the objectives of the proposed FD model is to increase the success rate of
applying the well-established and classic frame-based rectification method on pushbroom satellite
imagery. In the FD model, a Correspondence-Direction-Constraint (CDC) algorithm is proposed to
obtain the most favourable seed-matches for the frame-based method. Figure 4 shows the success
rates of the rectification method based on the CDC algorithm. According to Figure 4, the success rates
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of the frame-based rectification method is improved significantly when it is based on the FD model.
Moreover, the frame-based rectification method can be used for getting reasonable splitting results in
all datasets and, for almost 99% datasets with the difference of emission angle of 30◦, the success rate
of rectification method based on the FD model is over 50% (see Figure 4c).

0 10 20 30
Slewing Angle Di�erences(°)

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

Su
cc

es
s 

Ra
te

#Seed Mathces: 10
#Seed mathces: 250
#Seed mathces: 500

(a)

0 10 20 30
Emission Angle Di�erences(°)

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Su
cc

es
s 

Ra
te

#Seed Mathces: 10
#Seed Mathces: 250
#Seed Mathces: 500

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Proportion of Experiments in #Seed Matches of 500

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Su
cc

es
s 

Ra
te

Emission Angle: 10°
Emission Angle: 20°
Emission Angle: 30°

(c)

Figure 4. The success rates of the rectification method performed on the 7, 000 simulated datasets based
on the CDC algorithm. (a) The success rates on datasets with various differences of slewing angles.
(b) The success rates on datasets withe various differences of emission angles. (c) The success rates on
datasets with 500 seed-matches and various differences of emission angles.

3. The Fast Dense Feature-Matching Model

The most different of the conventional feature-matching model and the proposed FD model is that
the proposed model splits the global one-to-one feature-matching into numerous of local one-to-one
matchings. But they are both involved in feature extraction and generating putative correspondences.

3.1. Feature Extraction

In feature-based matching, features could be selected by the significant regions (lakes, fields), lines
(region boundaries, coastlines, rivers), points (region corners, descriptors) [24]. Owing to the rapid
development of robust and efficient descriptors (e.g., Scale-Invariant Fourier Transform (SIFT) [25]
and Speeded-Up Robust Features (SURF) [26]), points are the most popular features for feature-based
image registration in this decade. Among all the points’ features, SIFT is the most commonly used one
because of its high robustness and invariant to image scale and rotation.

In this paper, SIFT is adopted to extract robust features and is implemented by the open-source
VLFeat toolbox [27]. Examples of a pair of Martian stereo images (captured by HiRISE) and their
feature-points extracted by SIFT are shown in Figure 6a,b. Obviously, SIFT could give very dense
features (21,062 and 18,179 feature-points are extracted from the left and right images).

3.2. Global Matching Splitting

The flowchart of this procedure is shown in Figure 5. Firstly, the initial evenly-distributed
seed-matches should be obtained. Then the vertical-parallaxes of the seed-matches are minimized
by the correspondence-direction-constraint (CDC) algorithm and the classic frame-based rectification
method. Eventually, the numerous searching ranges are dynamically divided based on the locations of
the initial evenly-distributed seed-matches.
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Figure 5. The flow chart of global matching splitting.

3.2.1. Seed-Matches Initialization

For the present, suppose we have a pair of stereo images (see in Figure 6a), and they are
denoted as I and I′ respectively. Their features are extracted by SIFT operator and denoted as U
and U′ (see in Figure 6b). The initial putative correspondences are generated by matching U′ and n
sampled features randomly sampled from U, where the n features are denoted as u (see in Figure 6c).
Then, the false-matches of the initial putative correspondences are eliminated by the Random Sample
Consensus algorithm (RANSAC, see Figure 6d) and the resulting true-matches construct the initial
seed-matches whose corresponding feature-points in the left and right images are denoted as In and
In′ respectively.

The locations of the initial seed-matches are used for adjusting the searching ranges of the FD
model dynamically. Hence, the initial seed-matches are expected to be evenly-distributed. For ensuring
the initial seed-matches are evenly-distributed, Hypothesis 1 is proposed in this paper.

(a) (b) (c) (d)

Figure 6. An example of the seed-matching initialization. (a) A pair of Martian stereo images captured
by HiRISE. (b) Features-points extracted by SIFT operator (red and blue stars denote U and U′

respectively). (c) Feature sampling from U (green crosses represent u). (d) False-matches elimination
by RANSAC (red cycles, blue crosses and red lines represent the eliminated false-matches; blue cycles,
magenta crosses and yellow lines represent the initial seed-matches).

Hypothesis 1. Given p evenly-distributed points P, and sample q evenly-distributed points Q from P.
Construct Delaunay graphs of P and Q as DG(P) and DG(Q). Denote the averages of lengths of the edges in
DG(P) and DG(Q) as LP and LQ. The proportion of LQ to LP, which is denoted as RQP, should satisfy the
following equation:

RQP =
LQ
LP
≥ α

√
p
q

, (7)
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where α is the adjustment factor (0 ≤ α ≤ 1), and
√

p
q is the ideal proportion.

Hypothesis 1 is verified by 7 million independent experiments which contain 1000 independent
DG(P)s with 50,000 evenly-distributed points, and 100, 500, 1000, 5000, 10,000, 20,000, 40,000 points are
randomly sampled from each DG(P) in 1000 times to construct the DG(Q)s. The resulting proportion
of the maximum and minimum RQP and ideal proportions in various sampling numbers is shown in
Figure 7a. In these experiments, there are more than 99% RQPs larger than or equal to the corresponding
ideal proportions. The more specific results of ratios of the minimum RQPs to their corresponding
ideal proportions are shown in Figure 7b, which proves that the ideal proportion is the good indicator
of whether the seed-matches are evenly-distributed. Moreover, for some images that the seed-matches
cannot be evenly-distributed (e.g., images with many flat areas), a lower value of the adjustment factor
α could be set.

In practice, DG(P) and DG(Q) are constructed by u and In respectively. If they are not satisfied
the Equation (7), the procedure of initializing the seed-matches will start over.
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Figure 7. The verified results of the Hypothesis 1. (a) The proportion of the maximum and
minimum RQPs and ideal proportions. (b) The ratios of the minimum RQPs to their corresponding
ideal proportions.

3.2.2. Minimizing the Vertical-Parallaxes of Seed-Matches

The vertical-parallaxes of seed-matches is minimized by introducing the classic rectification
method [23]. In order to increase the success rate of the classic method, a correspondence-direction-
constraint (CDC) algorithm is proposed for identifying the most favourable combination of the
initial seed-matches.

V = In− In′. (8)
n

∑
i=1

bool (Si ≤ 0.01) =n. (9)

The combinations of the initial seed-matches are generated by the k-means [28] clustering
method. Firstly, the vectors of the initial seed-matches (denoted as V) are calculated by Equation (8).
Then, for the k-th iteration of the CDC, the seed-matches are classified in k combinations by k-means
method according to the slopes of V. More specifically, the classify precedure is done in the line 3 of
Algorithm 1, where “directions” means that classify the V by their directions. For each iterations, the
epipolar lines of u (denoted as EL) are calculated by the classic method based on the corresponding
combinations. For a certain combination, if all EL are horizontal (the “horizontal” is defined as
Equation (9), where Si is a slope of epipolar line in EL and n is the number of u), the CDC algorithm
will stop and output the optimal EL (ÊL) and the projective transformation matrices (H and H′).
The rectified In and In′ are denoted as În and În′ and calculated as:

În = HIn, (10)
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În′ = H′ In′. (11)

An example of the results of rectification is shown in Figure 9b. As can be seen, the y-disparities of
the rectified seed-matches are very small. A simple pseudocode is given in Algorithm 1. In particular,
in the line 4 of Algorithm 1, the algorithm will stop and the procedure of initializing seed-matches
will start over when the maximum number of the combinations is less than 7, since 7 pairs of
correspondences at least are needed for the classic rectification method [23].

Algorithm 1 The Correspondence-Direction-Constraint (CDC) Algorithm.

Input: In and In′: feature-points of the initial seed-matches in the left and right images respectively;

u: n feature-points randomly sampled from U; V: vectors of the initial seed-matches.
Output: ÊL: the optimal EL; H and H′: projective transformation matrices.

1: GoodComb = False; k = 1;
2: while GoodComb == False do
3: Combs=kmeans(V, k, directions);
4: if the dimension of the biggest cluster less than 7 then
5: break
6: end if
7: for i=1:k do
8: [EL,H,H′]=RectificationMethod(In (Combsi), In′ (Combsi),u);
9: if all EL are horizontal then

10: GoodComb = True;
11: ÊL=EL;
12: break
13: end if
14: end for
15: end while

3.2.3. Dynamic Searching Ranges Division

The rectified feature-points of the left and right images are obtained based on Equations (12)
and (13) and defined as Û and Û′. A searching line is set to traverse from the top to the bottom of the
Û and Û′, meanwhile the searching ranges are divided in both left and right images. The coverage of
the searching range in left image is denoted as T and defined as Equation (14), where Xmax and Xmin

are the maximum and minimum columns of Û, Ŝ is the absolute maximum slope in ÊL. On the other
hand, in order not to omit any potential true-matches, the coverage of the searching range in the right
image is two times larger than T.

Û = HU, (12)

Û′ = H′U′. (13)

T = 2
∣∣∣(Xmax − Xmin) Ŝ

∣∣∣ (14)

As can be seen in Figure 9b, the rectified epipolar lines are not exactly linked up to each other.
Hence, the searching ranges in the right images should be dynamically adjusted so that most of
the potential true-matched could be covered. The left and right images share the same searching
lines, but the top and the bottom of each searching ranges in the right image should be dynamically
adjusted according to the locations of the nearest seed-matches of the corresponding searching lines.
More specifically, for the i-th searching searching range, if its nearest right seed-match’s y-value is
larger than the left one’s, the top of the searching range in the right image should be extended as
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Equation (15) (see Figure 8a). Otherwise, the bottom of the searching range in the right image should
be extended as Equation (16) (see Figure 8b).

TOPi = TOPi +
(
yi
′ − yi

) [
bool

(
yi < yi

′)] (15)

BOTTOMi = BOTTOMi −
(
yi − yi

′) [bool
(
yi ≥ yi

′)] (16)

Left image Right image

yi

y’i

y
x

Left image Right image

y’i

yiy’i-yi

y’i-yi

yi-y’i

yi-y’iy
x

(a)
Left image Right image

yi

y’i

y
x

Left image Right image

y’i

yiy’i-yi

y’i-yi

yi-y’i

yi-y’iy
x

(b)

Figure 8. Two cases of adjusting the i-th searching range (black lines represent the searching line;
the area between green lines are the searching range in the left image (T); blue and magenta lines
represent the original top and bottom of the searching range in the right images (2T); blue and magenta
dashed lines are the updated top and bottom of the searching range). (a) Updating the top of the
searching range. (b) Updating the bottom of the searching range.

3.3. Generating Putative-Correspondences

In this procedure, a set of putative-correspondences are generated by matching the features
from each searching ranges in left and right images. Then, the false-matches in each set
of putative-correspondences could be eliminated by the existing feature-matching algorithms.
An example of features in a searching range is shown in Figure 9c. As can be seen, matching features
in this searching range is much more easier than matching features in all the image.

Moreover, the features in each searching ranges are independent to each other. Therefore,
this procedure could be operated in parallel. Figure 9d shows a matching result by the WGTM
algorithm based on the FD model. As can be seen, preserved correspondences are very dense.
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(a) (b) (c) (d)

Figure 9. An example of minimizing the vertical-parallaxes of seed-matches, searching ranges and the
dense matching result based on.the FD model. (a,b) the original and rectified epipolar lines of the initial
seed-matches (black and magenta lines epipolar lines in the left and right images; red cyles and blue
crosses in (a) are In and In′, in (b) are În and În′). (c) An example of a local matching (the green line is
the searching line, the area between black lines and the area between magenta lines represent a certain
searching area). (d) An example of dense feature-matching results (7247 matched correspondences
in this case; red cycles, blue crosses and yellow lines represent the resulting correspondences of U
and U′).

4. Experimental Results

As mentioned before, the main purpose of this paper is to reduce the computational complexity
of feature-matching by replacing the conventional feature-matching model with the proposed FD
model. Therefore, the performances of the FD model and the conventional feature-matching model
were evaluated by performing three state-of-art feature-matching algorithms (LLT [18], SOCBV [14]
and WGTM [13]) on both an automatic feature-matching evaluation platform [17] and 22 pairs of
real HiRISE stereo images based on these two models (in Sections 4.4 and 4.5). The computational
complexity of the proposed FD model, the datasets and the parameters mentioned previously are
discussed in Sections 4.1–4.3 respectively.

In addition, all the experiments are performed on two personal computers, each with an
Intel i5 CPU (3.3 GHz and 4 cores) and 16-GB RAM. The program of the proposed FD model is
wrote in MATLAB code, where the source codes are available at https://github.com/WenliangDu/
FastDenseFeatureMatchingModel.

4.1. Computational Complexity

If the FD model is not operated in parallel, its time complexity is O
((

N
k

)2
× k
)

which can be

simplified as O(aN), where N denotes the total number of feature-correspondences, a denotes the
average number of feature-correspondences in each local matchings (a = N

k ).
The worst case of the FD model is that there is only one local matching in the FD model,

which means a = N and the worst complexity of the FD model is O(N2). The best case is that
each correspondences are exactly arranged in each independent local matchings so that a = 1 and
the best complexity of the FD model is O(N). To bring in the best performances of the existing
feature-matching algorithms, in the experiments of real HiRISE images, the value of a was kept just
larger than 300 which is also greatly less than N (usually more than 10,000).

https://github.com/WenliangDu/FastDenseFeatureMatchingModel
https://github.com/WenliangDu/FastDenseFeatureMatchingModel
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4.2. Datasets

The datasets provided by the automatic feature-matching evaluation platform [17] can evaluate
the performances of the two models automatically. The platform was simulated as the HiRISE camera
which is on board NASA’s Mars Reconnaissance Orbiter (MRO). Therefore, the specification of the
simulated remote sensor was set as [29]—focal length: 12 m, camera distance: 300 km, field of view
(FOV): 1.14◦, the number of pixels in the linear CCD array: 20,048 (10 RED CCDs), the number of
along-track lines: 40,000. The source codes of the platform are available at https://github.com/
WenliangDu/RS-FeatureMatchingEvaluatingPlatform.

20 pairs of real HiRISE stereo images were used for testing the two models and the results
were evaluated manually. 2 pairs of real HiRISE stereo images were used for training the value of
α (in Equation (7)) used in the FD model. The HiRISE stereo images could be downloaded from
https://hirise.lpl.arizona.edu.

4.3. Parameters Discussion

In Section 3.2, N features need to be sampled from U and to match all the U′ for generating the
initial seed-matches. In this paper, the value of N is set as 1000.

The value of α in Equation (7) is set as 1 for the datasets simulated by the automatic evaluation
platform. In contrast, the value of α is trained by the 2 pairs of HiRISE images and set as
0.7, which means the initial seed-matches/control-points generated by RANSAC may be not
evenly-distributed, since the features in the flat area may be too similar to each other.

4.4. Automatic Performance Evaluation

Four groups of datasets were prepared by the automatic evaluation platform [17] for evaluating
the two models in various differences of slewing and emission angles (0◦ to 30◦), ratios of false-matches
(10% to 50%) and numbers of feature-correspondences (1000 to 5000). For each experiment in
all the groups, 50 different datasets were prepared. Hence, the result of each experiment was
gathered with the average values of 50 independent tests; totally, 850 datasets were simulated for
automatically evaluating.

In the first two groups, the differences of slewing and emission angles were both varied from 0◦

to 30◦. The ratio of false-matches, which can be also called as outliers’ ratio, was set as 20%. Because
the execution time of feature-matching algorithms based on the conventional model is usually to long,
the number of feature-correspondences was selected as 2000. Note that, the slewing and emission
angles of the platform were randomly sampled from −30◦ to 30◦.

The performances of the three state-of-art feature-matching algorithms based on the two matching
models were evaluated on four generic criteria [13,30]:

Accuracy =
TP + TN

TP + TN + FN + FP
, (17)

Precision =
TP

TP + FP
, (18)

Recall =
TP

TP + FN
, (19)

Speci f icity =
TN

TN + FP
, (20)

where TP and FP denote the number of resulting true-matches and false-matches respectively, FN and
TN denote the number of missing true-matches and false-matches. Therefore, the Accuracy describes
the degree of true-matches to all matches, the Precision gives the degree of remaining true-matches
to all remaining feature-correspondences, the Recall tells the degree of the number of remaining

https://github.com/WenliangDu/RS-FeatureMatchingEvaluatingPlatform
https://github.com/WenliangDu/RS-FeatureMatchingEvaluatingPlatform
https://hirise.lpl.arizona.edu
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true-matches to the number of all true-matches, the Speci f icity states the degree of the number of
discriminated false-matches to the number of all false-matches.

The automatic evaluation results of the first group datasets are shown in Figure 10, where the “FD-”
means that the corresponding algorithm was performed on the FD model, otherwise the algorithm was
performed on the conventional model. Apparently, the abilities of preserving true-matches of SOCBV
and WGTM algorithms based on both the two models are declined while increasing the differences
of slewing angle (see Figure 10a,c). In contrast, the ability of removing false-matches of the LLT is
improved significantly when it is based on the FD method (see Figure 10b,d).
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Figure 10. Automatic evaluation results of the three algorithms on datasets with various differences of
slewing angles. (a) Accuracy. (b) Precision. (c) Recall. (d) Specificity.

According to Figure 11, in contrast to the three method based on the conventional model,
the abilities of preserving true-matches of the three method based on the FD model are indeed
decreased but not insignificant (1 to 0.96, see Figure 11c), which is reasonable, since the epipolar
geometry is getting more complicated while increasing the differences of the emission angle. However,
when the difference of emission angle goes to 30%, the ability of eliminating false-matches declines of
the LLT based on the FD model is greater than it is based on the conventional model.
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Figure 11. Automatic evaluation results of the three algorithms on datasets with various differences of
emission angles. (a) Accuracy. (b) Precision. (c) Recall. (d) Specificity.

The performances of the three matching algorithms on various ratios of false-matches are shown
in Figure 12. As can be seen, for higher ratios of false-matches, the ability of WGTM algorithm for
preserving true-matches and the ability of LLT algorithm for eliminating false-matches are improved
when they are performed on the FD model (see Figure 12c,d). As can be seen in Figure 12d, the three
algorithms can remove nearly all the false-matches based on the FD model.
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Figure 12. Automatic evaluation results of the three algorithms on datasets with various outliers’ ratio
(ratio of false-matches). (a) Accuracy. (b) Precision. (c) Recall. (d) Specificity.

The datasets with various numbers of feature-correspondences were used for evaluating the
running time of the two models; the corresponding results are shown in Table 1. Obviously,
when SOCBV and WGTM algorithms were performed on the FD model, their operating time reduced
substantially then they were performed on the conventional model. Therefore, by applying the FD
model, SOCBV and WGTM algorithms could be performed on high-resolution pushbroom satellite
images which contain very dense feature-correspondences, even the complexities of them are very
high. On the other hand, for the LLT algorithm, its operating time increased slightly when it was
performed on the FD model, while its operating time is still very low.

Table 1. Running time comparison of the three matching algorithms on two feature-matching models
with varying numbers of correspondence.

Methods
Number of Simulated Correspondences

1000 2000 3000 4000 5000

LLT 0.53 s 0.96 s 1.14 s 1.41 s 1.83 s
FD-LLT 0.80 s 1.93 s 1.99 s 2.13 s 3.06 s
SOCBV 1 min 11.27 s 16 min 59.17 s 56 min 47.03 s 2 h 27 min 12.00 s 3 h 4 min 34.68 s

FD-SOCBV 15.38 s 38.15 s 1 min 58.21 s 4 min 10.03 s 6 min 23.43 s
WGTM 1 min 57.75 s 21 min 20.23 s 1 h 3 min 39.94 s 2 h 30 min 46.95 s 4 h 24 min 52.70 s

FD-WGTM 10.54 s 17.28 s 57.54 s 2 min 5.13 s 3 min 4.54

4.5. Performance Evaluation on HiRISE images

The three algorithms were only performed on the FD model for matching the 22 pairs of real
HiRISE images, because the complexities of SOCBV and WGTM algorithms are so high that they
may cost days or even weeks for matching one pair of HiRISE images when they are based on the
conventional feature-matching model. Besides, the LLT algorithms runs out of memory for matching
some of the 22 pairs of HiRISE images when it is based on the convention model obtained.

The results of the three algorithms of matching the 22 pairs of real HiRISE images based on the FD
model were evaluated manually. A manual evaluation for a matching result of an algorithm performed
on one pair of HiRISE images cost us at least five minutes of human operator time, since the numbers
of the resulting correspondences of most matching results are more than 10, 000. The evaluating results
are shown in Figure 13. It is apparent that, for all the 22 pairs of HiRISE images, all the three algorithms
achieved good matching results when they were based on the FD model (more than 98% false-matches
can be eliminated).
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Figure 13. Manual evaluation results of the three algorithms based on FD model for 22 pairs of HiRISE
images (the 1 and 2 are training pairs, the rests are testing images pairs). (a) Accuracy. (b) Precision.
(c) Recall. (d) Specificity.

The number of resulting correspondences generated by the three algorithms based on the FD
model and the number of putative correspondences generated by the conventional and the FD model
are shown in Figure 14a. As can be seen, all the three algorithms preserved more correspondences
than the putative correspondences generated by the conventional model, since the FD model obtained
much more putative correspondences than the conventional model.

The running time of eliminating false-matching by the three algorithms and generating
putative-correspondences by the two models is shown in Figure 14b. Obviously, the running time of
the three algorithms and the FD model is all shorter than the running time of the conventional model.
More specifically, based on the FD model, the running time of the SOCBV and WGTM algorithms for
eliminating false-matches from the 22 pairs of high-resolution HiRISE images is always lower than
1 min, even the computational complexities of the two algorithms are both O

(
N2 log (N)

)
.
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Figure 14. The number of resulting correspondences and running time of the conventional and the
FD models and the three algorithms. (a) The numbers of putative-correspondences generated by the
conventional model and the FD model (magenta and cyan lines) and of the correspondences preserved
by the SOCBV, WGTM and LLT algorithms (black, red and blue lines respectively). (b) The running
time of generating putative-correspondences by the conventional and the FD models (magenta and
cyan lines) and of eliminating false-matches by the SOCBV, WGTM and LLT algorithms (black, red and
blue lines respectively).

5. Conclusions

To match dense features extracted from high-resolution cross-track pushbroom satellite imagery
in efficiently, this paper proposed a fast dense (FD) feature-matching model. The FD model
splits the global one-to-one matching into a large number of local matchings by minimizing the
vertical-parallaxes with the help of a classic frame-based rectification method [23]. By replacing
the conventional feature-matching model with the FD model, the computational complexity of
generating putative-correspondences is reduced from O(N2) to linear. Based on the FD model,
the existing feature-matching algorithms could be applied on matching dense features extracted from
high-resolution satellite imagery, even they have high computational complexities.

To ensure that the classic frame-based method is suitable for minimizing the vertical-parallaxes of
cross-track pushbroom satellite imagery, a feasibility study was given in this paper by applying the
frame-based method on 2.1 million independent experiments which were provided by a cross-track
pushbroom based automatic feature-matching evaluating platform [17]. This feasibility study shows
that the success rate of the frame-based method for minimizing vertical-parallaxes of cross-track
pushbroom images will decline when it is performed on images with large differences of emission
angle of the satellite cameras (see Figure 3). In order to increase the success rate, in the FD model,
a correspondence-direction-constraint (CDC) algorithm was proposed to get the most favourable
seed-matches for the frame-based method. Based on the FD model, the frame-based method could be
used for getting reasonable splitting results in all the 2.1 million experiments (see Figure 4).

The procedures of FD model include feature extraction, seed-matches initialization, minimizing
vertical-parallaxes, dynamic searching range division and generating putative-correspondences. In the
procedure of seed-matches initialization, a hypothesis was presented and verified by 7 million
independent experiments for ensuring the initial seed-matches are evenly-distributed, since the
evenly-distributed seed-matches can help dynamically adjust the searching ranges in the later
procedure. In the procedure of minimizing vertical-parallaxes, the CDC algorithm was proposed for
improving the stability of the frame-based method by identifying the most favourable combination
of the initial seed-matches based on the k-means method. Eventually, the dynamic searching ranges
are generated based on Equations (14)–(16). Because the features in a certain searching range are
independent to features in other searching ranges, the matching process can be operated in parallel
based on the FD model.
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The performances of the FD model and the conventional feature-matching model were evaluated
on both the cross-track pushbroom based automatic evaluating platform and real HiRISE images.
Three state-of-art feature-matching algorithms (LLT [18], SOCBV [14] and WGTM [13]) were used for
evaluating the two models. According to the evaluation results based on the automatic evaluating
platform, the running time of the SOCBV and WGTM algorithms reduced substantially when they
were based on the FD model. Meanwhile, based on the FD model, all the three algorithms achieved the
comparable matching results as they achieved based on the conventional model. On the other hand,
the matching results of the two models on real HiRISE images were evaluated manually. The manual
evaluating results shows that all the three algorithms achieved extremely good matching results for all
the real HiRISE images prepared by this paper.

In the future, the dense and efficient matching results provided by the FD model may be used
for automatic epipolar resampling of the cross-track pushbroom satellite imagery. Furthermore,
the existing epipolar resampling methods are mostly based on the assumption that the trajectory of
the remote sensor is straight [20–22]. However, the remote sensors may be suffered high-frequency
pointing variations (“jitter”) [29]. Therefore, based on the dense matching results, the assumption
of straight trajectory may be eliminated for the future epipolar resampling methods. Eventually,
to bring in the best performances of the three feature-matching algorithms, in the experiments of real
HiRISE images, the number of correspondences in each local matching was kept just larger than 300,
which means the best performance of the FD model was not achieved. Therefore, a more suitable
feature-matching algorithm for the FD model could be developed in the future.
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